Academic literature on the topic 'Lyapunov time'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lyapunov time.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lyapunov time"
Zagrebina, I. S. "Lyapunov inequality for time scales." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, no. 2 (April 2008): 47–48. http://dx.doi.org/10.20537/vm080216.
Full textBohner, Martin, Stephen Clark, and Jerry Ridenhour. "Lyapunov inequalities for time scales." Journal of Inequalities and Applications 2002, no. 1 (2002): 829403. http://dx.doi.org/10.1155/s102558340200005x.
Full textEvans, Denis J. "Time correlation relation for Lyapunov exponents." Physical Review Letters 69, no. 3 (July 20, 1992): 395–97. http://dx.doi.org/10.1103/physrevlett.69.395.
Full textKharitonov, V. L., and E. Plischke. "Lyapunov matrices for time-delay systems." Systems & Control Letters 55, no. 9 (September 2006): 697–706. http://dx.doi.org/10.1016/j.sysconle.2006.01.005.
Full textTanaka, Toshiyuki, Kazuyuki Aihara, and Masao Taki. "Lyapunov exponents of random time series." Physical Review E 54, no. 2 (August 1, 1996): 2122–24. http://dx.doi.org/10.1103/physreve.54.2122.
Full textPyragas, K. "Conditional Lyapunov exponents from time series." Physical Review E 56, no. 5 (November 1, 1997): 5183–88. http://dx.doi.org/10.1103/physreve.56.5183.
Full textBryant, Paul, Reggie Brown, and Henry D. I. Abarbanel. "Lyapunov exponents from observed time series." Physical Review Letters 65, no. 13 (September 24, 1990): 1523–26. http://dx.doi.org/10.1103/physrevlett.65.1523.
Full textBalibrea, Francisco, and María Victoria Caballero. "Using Lyapunov exponents in time series." IEICE Proceeding Series 1 (March 17, 2014): 447–49. http://dx.doi.org/10.15248/proc.1.447.
Full textLi, Huijuan, and Qingxia Ma. "Finite-Time Lyapunov Functions and Impulsive Control Design." Complexity 2020 (October 27, 2020): 1–9. http://dx.doi.org/10.1155/2020/5179752.
Full textGao, Wenhua, Feiqi Deng, Ruiqiu Zhang, and Wenhui Liu. "Finite-TimeH∞Control for Time-Delayed Stochastic Systems with Markovian Switching." Abstract and Applied Analysis 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/809290.
Full textDissertations / Theses on the topic "Lyapunov time"
Manolescu, Crina Iulia. "Lyapunov transformations and control." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266339.
Full textMarikar, Mohamed Tariq. "Polyhedral Lyapunov functions and stabilization under polyhedral constraints." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266114.
Full textLeitenmaier, Lena. "Iterative methods and convergence for the time-delay Lyapunov equation." Thesis, KTH, Numerisk analys, NA, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192633.
Full textLyapunovekvationen för tidsfördröjningssystem är ett matrisrandvärdesproblem och är viktigt för att karakterisera tidsfördröjningssystem, till exempel igenom stabilitetsanalys. Denna ekvation är svår att lösa numeriskt. För specialfallet med bara en fördröjningsterm har en ny algoritm baserad på en fördröjningsfri formulering föreslagits. Använder man denna formulering är det möjligt att få ett linjärt system av ekvationer med en ekvivalent lösning. Detta system kan lösas med en effektiv metod för storskaliga problem som GMRES eller någon liknande iterativ metod. Förutom den förkonditionerare some föreslagits in litteraturen, som är baserad på att lösa en T-Sylvester ekvation, härleds här en ny förkonditionerare. Den använder diagonalerna av tidsfördröjningssystemets n × n statusmatriser för att beräkna en uppskattning av verkningen av n² × n² matrisen associerad med det linjära systemet. Beräkningskostnader och konvergens av denna nya förkonditionerare undersöks och bevisas. Dessutom genomförs en analys som bygger på pseudospectra av båda förkonditionerares tillhöriga operatorerna för att få en bättre förståelse av deras konvergens. Flera sätt för att uppnå pseudospectrabaserad konvergensuppskattningar presenteras. En analys genomförs för att visa hur väl uppskattningarna beskriver konvergensen.
Lopez, Ramirez Francisco. "Control and estimation in finite-time and in fixed-time via implicit Lyapunov functions." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I063/document.
Full textThis work presents new results on analysis and synthesis of finite-time and fixed-time stable systems, a type of dynamical systems where exact convergence to an equilibrium point is guaranteed in a finite amount of time. In the case of fixed-time stable system, this is moreover achieved with an upper bound on the settling-time that does not depend on the system’s initial condition.Chapters 2 and 3 focus on theoretical contributions; the former presents necessary and sufficient conditions for fixed-time stability of continuous autonomous systems whereas the latter introduces a framework that gathers ISS Lyapunov functions, finite-time and fixed-time stability analysis and the implicit Lyapunov function approach in order to study and determine the robustness of this type of systems.Chapters 4 and 5 deal with more practical aspects, more precisely, the synthesis of finite-time and fixed-time controllers and observers. In Chapter 4, finite-time and fixed-time convergent observers are designed for linear MIMO systems using the implicit approach. In Chapter 5, homogeneity properties and the implicit approach are used to design a fixed-time output controller for the chain of integrators. The results obtained were verified by numerical simulations and Chapter 4 includes performance tests on a rotary pendulum
Schroll, Arno. "Der maximale Lyapunov Exponent." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21994.
Full textReductions of movement stability due to impairments of the motor system to respond adequately to perturbations are associated with e. g. the risk of fall. This has consequences for quality of life and costs in health care. However, there is still an debate on how to measure stability. This thesis examines the maximum Lyapunov exponent, which became popular in sports science the last two decades. The exponent quantifies how sensitive a system is reacting to small perturbations. A measured data series and its time delayed copies are embedded in a moredimensional space and the exponent is calculated with respect to this reconstructed dynamic as average slope of the logarithmic divergence curve of initially nearby points. Hence, it provides a measure on how fast two at times near trajectories of cyclic movements depart. The literature yet shows a lack of knowledge about the consequences of applying this system theory to sports science tasks. The experimental part shows strong evidence that, in the evaluation of movements, the exponent is less about a complex determinism than simply the level of dynamic noise present in time series. The higher the level of noise, the lower the stability of the system. Applying noise reduction therefore leads to reduced effect sizes. This has consequences: the values of average mutual information, which are until now only used for calculating the delay for the embedding, can already show differences in stability. Furthermore, it could be shown that the estimation of the embedding dimension d (independently of algorithm), is dependent on the length of the data series and values of d are currently overestimated. The greatest effect sizes were observed in dimension three and it can be recommended to use the very first beginning of the divergence curve for the linear fit. These findings pioneer a more efficient and standardized approach of stability analysis and can improve the ability of showing differences between conditions or groups.
Tanaka, Martin L. "Biodynamic Analysis of Human Torso Stability using Finite Time Lyapunov Exponents." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26580.
Full textPh. D.
Chao, Chien-Hsiang. "Robust stabilization of linear time-invariant uncertain systems via Lyapunov theory." Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53928.
Full textPh. D.
Montagnier-Michau, Pierre Jean Andre. "Dynamics and control of time-periodic mechanical systems via floquet-lyapunov theory." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=38242.
Full textFirst, Floquet-Lyapunov theory is used to derive the Floquet factors of the state-transition matrix of a given system. We introduce a novel approach to obtain every real representation. It is demonstrated that the periodicity of the periodic factor can be determined a priori using a constant matrix, which we call the Yakubovich matrix, based upon the signs of the eigenvalues of the monodromy matrix. We then introduce a novel method for the numerical computation of the Floquet factors, relying upon a boundary-value problem formulation and the Yakubovich matrix.
In the second part, we use the invertibility of the controllability Gramian and a specific form for the feedback gain matrix to build a novel control law for the closed-loop system. The new controller can be full-state or observer-based and allows the control engineer to assign all the invariants of the system, i.e. the full monodromy matrix. Deriving the feedback matrix requires first solving a matrix integral equation for the periodic Floquet factor of the new state-transition matrix of the closed-loop system. This is achieved via a spectral method, which can then be further refined by a boundary-value problem formulation. Computational efficiency of the scheme may be further improved by performing the controller synthesis on the transformed system obtained from the reducibility theorem.
Finally, the effectiveness of the method is illustrated with an application to a quick-return mechanism using a software toolbox developed for MATLAB(TM).
Zhang, Xiping. "Parameter-Dependent Lyapunov Functions and Stability Analysis of Linear Parameter-Dependent Dynamical Systems." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/5270.
Full textOrstavik, Odd-Halvdan Sakse. "Analysis of chaotic multi-variate time-series from spatio-temporal dynamical systems." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314071.
Full textBooks on the topic "Lyapunov time"
Kharitonov, Vladimir L. Time-Delay Systems: Lyapunov Functionals and Matrices. Boston: Birkhäuser Boston, 2013.
Find full text1958-, Mielke Alexander, ed. Multi-pulse evolution and space-time chaos in dissipative systems. Providence, R.I: American Mathematical Society, 2009.
Find full textKharitonov, Vladimir. Time-Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser, 2012.
Find full textKharitonov, Vladimir. Time-Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser, 2012.
Find full textSanjuan, Miguel A. F., and Juan C. Vallejo. Predictability of Chaotic Dynamics: A Finite-time Lyapunov Exponents Approach. Springer, 2019.
Find full textSanjuan, Miguel A. F., and Juan C. Vallejo. Predictability of Chaotic Dynamics: A Finite-time Lyapunov Exponents Approach. Springer, 2018.
Find full textBook chapters on the topic "Lyapunov time"
Agarwal, Ravi, Donal O’Regan, and Samir Saker. "Lyapunov Inequalities." In Dynamic Inequalities On Time Scales, 175–214. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11002-8_4.
Full textPesin, Yakov, Agnieszka Zelerowicz, and Yun Zhao. "Time Rescaling of Lyapunov Exponents." In Advances in Dynamics, Patterns, Cognition, 29–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53673-6_3.
Full textZhang, Lixian, Ting Yang, Peng Shi, and Yanzheng Zhu. "Time-Varying Lyapunov Function Approach." In Analysis and Design of Markov Jump Systems with Complex Transition Probabilities, 207–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28847-5_10.
Full textHolzfuss, Joachim, and Ulrich Parlitz. "Lyapunov exponents from time series." In Lecture Notes in Mathematics, 263–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086675.
Full textArtstein, Zvi. "The Lyapunov method (a tutorial)." In Hybrid and Real-Time Systems, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0014708.
Full textAgarwal, Ravi P., Martin Bohner, and Abdullah Özbekler. "Lyapunov-Type Inequalities for Dynamic Equations on Time Scales." In Lyapunov Inequalities and Applications, 513–90. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69029-8_8.
Full textSadlo, Filip. "Lyapunov Time for 2D Lagrangian Visualization." In Mathematics and Visualization, 167–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44900-4_10.
Full textParlitz, Ulrich. "Estimating Lyapunov Exponents from Time Series." In Chaos Detection and Predictability, 1–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48410-4_1.
Full textShaikhet, Leonid. "Difference Equations with Continuous Time." In Lyapunov Functionals and Stability of Stochastic Difference Equations, 227–81. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-685-6_9.
Full textOchoa, Gilberto, Juan E. Velázquez, Vladimir L. Kharitonov, and Sabine Mondié. "Lyapunov Matrices for Neutral Type Time Delay Systems." In Topics in Time Delay Systems, 61–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02897-7_6.
Full textConference papers on the topic "Lyapunov time"
Lazar, Mircea, and Rob Gielen. "On parameterized Lyapunov and control Lyapunov functions for discrete-time systems." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5716952.
Full textDebeljkovic, D. Lj, M. Aleksendric, N. Yi-Yong, and Q. L. Zhang. "Lyapunov and Non-Lyapunov Stabilty of Linear Discrete Time Delay Systems." In 4th International Conference on Control and Automation. Final Program and Book of Abstracts. IEEE, 2003. http://dx.doi.org/10.1109/icca.2003.1595032.
Full textKaczorek, Tadeusz, and Przemyslaw Przyborowski. "Positive Continuous-Time Linear Lyapunov Systems." In EUROCON 2007 - The International Conference on "Computer as a Tool". IEEE, 2007. http://dx.doi.org/10.1109/eurcon.2007.4400242.
Full textKlose, Bjoern, and Gustaaf Jacobs. "Video: 3D finite-time Lyapunov exponent." In 71th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2018. http://dx.doi.org/10.1103/aps.dfd.2018.gfm.v0086.
Full textMattioni, Mattia, Salvatore Monaco, and Dorothee Normand-Cyrot S. "Lyapunov stabilization of discrete-time feedforward dynamics." In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8264289.
Full textJiang, Xia, Xianlin Zeng, Jian Sun, and Jie Chen. "Distributed Algorithm for Discrete-Time Lyapunov Equations." In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, 2018. http://dx.doi.org/10.1109/icarcv.2018.8581279.
Full textLopez-Ramirez, F., D. Efimov, A. Polyakov, and W. Perruquettil. "On Implicit Finite- Time and Fixed- Time ISS Lyapunov Functions." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619502.
Full textColonius, Fritz, and Wolfgang Kliemann. "Stability of Time Varying Systems." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0276.
Full textMiron, Philippe, Jérôme Vétel, and Andre Garon. "Efficient computation of the finite-time Lyapunov exponent." In 21st AIAA Computational Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3086.
Full textMaggia, Marco, Kenneth D. Mease, and Benjamin F. Villac. "Finite-Time Lyapunov Analysis of Orbits Near L1." In AIAA/AAS Astrodynamics Specialist Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-4352.
Full textReports on the topic "Lyapunov time"
Mitra, Joydeep, Mohammed Ben-Idris, Omar Faruque, Scott Backhaus, and Sidart Deb. A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1421846.
Full textBranicki, Michal, and Stephen Wiggins. Finite-Time Lagrangian Transport Analysis: Stable and Unstable Manifolds of Hyperbolic Trajectories and Finite-Time Lyapunov Exponents. Fort Belvoir, VA: Defense Technical Information Center, August 2009. http://dx.doi.org/10.21236/ada513245.
Full text