Dissertations / Theses on the topic 'Lymphocyte B mémoire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Lymphocyte B mémoire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Murera, Uwanyirigira Diane. "Study of lymphocyte autophagy in normal and autoimmune responses." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ068.
Full textAutophay is a catobolic lysosomal process essentail for cellular maintenance and fucntion such as lymphocyte homeosatsis. The generation of mice models with an Atg5 conditional knock-out in B and T cells respectively, have allowed us to study autophagy requirements of those immune cells in vivo. We have demonstrated that autophagy was dispensable for B cell development but that in autoimmune settings B cell autophagy was required for the maintenance of long-lived plasma cells and for the production of autoantibodies. In mice deficient for autophagy in T cells, long-term tumoral response to a T-dependent antigen is decreased. We also showed that in mice adoptively transferred with autophagy deficient CD4 T cells, the antigen specific memory humoral immune response was impaired. We also investigated the signaling pathways leading to autophagy induction upon TCR stimulation in normal and lupus T cells and showed that the calcium signaling is highly involved
Stubbe, Muriel. "Lymphocytes T CD4 et réponses vaccinales: du processus de différenciation à la mémoire immunologique." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210593.
Full textPour approcher cette question, nous avons utilisé deux approches expérimentales. La première est un suivi de la différenciation des LT CD4 au cours de la réponse immune primaire chez des sujets vaccinés contre l’hépatite B ;la deuxième est la caractérisation phénotypique et fonctionnelle des LT CD4 mémoires antigène(Ag)-spécifiques pendant la phase d’état. Cette analyse a été réalisée au sein des LT CD4 spécifiques d’Ag vaccinaux, l’Ag de surface du virus de l’hépatite B (HBs) et la toxine tétanique (TT), ainsi que ceux spécifiques des Ag du cytomégalovirus (CMV). Les LT CD4 Ag-spécifiques ont été mis en évidence par cytométrie de flux après marquage intracytoplasmique du ligand du CD40 (CD40L) exprimé en réponse à une stimulation de courte durée par l’Ag. Des expériences basées sur la stimulation par la toxine du syndrome du choc toxique et le marquage du segment Vbeta2 du récepteur des LT ont démontré la bonne sensibilité et spécificité de cette méthode.
Le suivi de la réponse primaire chez 11 donneurs jusqu’à plus d’un an après immunisation par le vaccin anti-hépatite B a permis d’établir un modèle de différenciation des LT CD4 Ag-spécifiques in vivo chez l’homme. Nous avons mis en évidence des LT CD4 spécifiques d’un nombre limité de peptides immunodominants de la protéine HBs suggérant une réponse de type oligoclonale. Grâce à l’utilisation d’un cytomètre neuf couleurs, nous avons mené une analyse détaillée de l’hétérogénéité de la population mémoire HBs-spécifique. L’expression du CCR7 permet de distinguer des cellules de type mémoire centrale (LTCM, CCR7+) et effectrice (LTEM, CCR7-) se distinguant notamment par leur capacité à migrer vers les ganglions lymphatiques ainsi que par leurs propriétés fonctionnelles. Nous avons montré l’existence de ces deux sous-populations au sein des cellules HBs-spécifiques mais par opposition à leur définition initiale, ces LTCM sont capables de produire des cytokines effectrices. La proportion importante de LTCM exprimant le Ki67 témoigne d’une activité proliférative persistante in vivo et suggère la capacité de ces cellules à s’auto-renouveler et éventuellement à alimenter le pool des LTEM. La proportion importante de LTCM exprimant la chaîne alpha du récepteur à l’IL-7 (CD127) suggère que ces cellules sont sensibles aux signaux émanant de l’IL-7, une cytokine dont le rôle dans le maintien de la mémoire lymphocytaire T est connu. Compte tenu de la relevance potentielle de ces caractéristiques uniques pour le développement de vaccins et de l’accumulation de travaux montrant l’avantage sélectif des LTCM à conférer une immunité protectrice, nous avons focalisé la dernière partie de ces recherches sur cette sous-population. Une étude transversale des LTCM spécifiques de plusieurs types d’Ag (éliminés (HBs et TT) ou persistants (CMV)) a été menée. Nos résultats montrent une hétérogénéité, variable selon l’Ag, de la capacité de ces cellules à produire des cytokines effectrices et de leur phénotype de différenciation. Cette donnée nouvelle soulève la possibilité que les LTCM soient hétérogènes dans leur capacité à conférer une immunité protectrice. L’acquisition du marqueur KLRG1 par une fraction des LTCM s’associe à une capacité accrue à produire des cytokines effectrices et à une expression élevée du CD127. La possibilité que ces cellules soient particulièrement aptes à conférer une immunité protectrice et durable est discutée, tout comme les mécanismes menant à leur génération et l’intérêt de ces connaissances pour la conception de nouveaux vaccins.
Doctorat en Sciences médicales
info:eu-repo/semantics/nonPublished
Silvy, Anne. "Étude des voies d'activation des lymphocytes B à mémoire humains." Lyon 1, 1997. http://www.theses.fr/1997LYO1T112.
Full textSnanoudj, Renaud. "Lymphocytes B mémoire dans la réponse humorale anti-HLA en transplantation d'organe." Phd thesis, Université René Descartes - Paris V, 2013. http://tel.archives-ouvertes.fr/tel-00919770.
Full textArpin, Christophe. "Production et caractérisation de plasmocytes et lymphocytes B à mémoire humains." Lyon 1, 1997. http://www.theses.fr/1997LYO10085.
Full textNattes, Tristan de. "Rejet humoral d'allogreffe rénale et allo-immunisation HLA." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMR053.
Full textKidney transplantation is the best treatment of end-stage renal disease, improving life quality and quantity. Despite advances in pathophysiological knowledge of kidney transplant immunology, kidney transplant rejection remains the major cause of allograft dysfunction, especially antibody-mediated rejection.Antibody-mediated rejection risk assessment is based on the evaluation of donor-specific anti-HLA antibodies. However, these antibodies have a poor predictive value for incidence and prognosis of rejection. This could be explained by the heterogeneity of their intrinsic characteristics. These characteristics depend on cells responsible for their secretion, which include short- and long- lived plasma cells. Consequently, they indirectly depend on the cells responsible for maintaining the pool of these antibody-secreting cells, such as memory B cells. In infectious diseases, it is known that memory B cells are heterogeneous in terms of phenotype, function, degree of clonality, and diversification of their B-cell receptor (BCR). However, this heterogeneity has not been examined in the context of kidney transplantation.The aim of the first part of this thesis was to study the heterogeneity of HLA-specific memory B cells in sensitised patients on kidney transplant waiting list. To this end, single-cell analysis of HLA-specific memory B cells from patients with various aetiologies and degrees of immunisation was performed. This led to their phenotypic and transcriptomic characterisation and to the assessment of their BCR repertoire.The second part of this thesis was dedicated to the diagnosis of kidney transplant rejection.In recent years, biopsy-based transcriptomics has emerged, enabling the assessment of hundreds of transcripts in kidney biopsy tissue. These tools provide the opportunity to elucidate new physiopathological pathways and potentially enhance the diagnosis of rejection, especially humoral rejection. However, their application in clinical practice is still limited due to their restricted availability, required expertise for data processing and interpretation, and cost. Furthermore, their exact impact on patient management remains undetermined. Here, a molecular diagnostic tool with characteristics suitable for clinical use was developed. This tool enables the diagnosis of rejection and its classification between antibody-mediated and T-cell mediated rejection. Subsequently, this tool was assessed in ambiguous clinical situations to evaluate its impact in clinical practice.Through these studies, this thesis focused on enhancing our understanding of the humoral response in renal transplantation, which could help improving immunological risk stratification in transplantation. Additionally, it aimed to improve biopsy-based transcriptomics in the diagnosis of kidney transplant rejection
Gervais-St-Amour, Catherine. "Étude de la différenciation des lymphocytes B mémoires en milieu sans sérum." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30245/30245.pdf.
Full textLagresle, Chantal. "Rôle des molécules CD40 et Fas dans le développement et l'activation des lymphocytes B à mémoire humains." Lyon 1, 1996. http://www.theses.fr/1996LYO1T003.
Full textTremblay, Rochette Josiane. "Une niche pour la différenciation : La réponse in vitro des lymphocytes B à mémoire aux cytokines de leur environnement." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28343/28343.pdf.
Full textFecteau, Jessie-Farah. "Étude comparative de la réponse des lymphocytes B humains naïfs et mémoires in vitro." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24431/24431.pdf.
Full textHumoral immunity, managed by B lymphocytes and their antibody production, provides to the body soluble and specific weapons to clear current infections and to preserve an immunological memory. Traditionally, naive B cell response is associated with the first encounter with an antigen, while memory cell response is related to its subsequent appearance. Both populations, circulating in human peripheral blood, can be distinguished by the differential expression of the CD27 molecule. During this project, the in vitro response of peripheral naive (CD27) and memory B cells (CD27+) was studied, in a system exploiting CD40-CD154 interaction, normally provided by T cells, in the presence of soluble factors. This study highlighted a distinct response from naive and memory cells when separately stimulated, reflecting their different requirements. Comparison between their stimulation, together and separately, also underlined possible B-B cell interactions, suggesting a new vision of primary response initiation in vivo. Furthermore, this study conducted to the identification of a distinct memory cell subset in periphery, displaying a CD27IgG+ phenotype, which questions the use of CD27 as a memory B cell marker in humans. A potential regulatory role has also been suggested for the CD27-IgG+ memory subset, presumably aimed to suppress naive cell response once the infection is controlled. Overall, this project supports the elaboration of a model for primary and secondary humoral responses, taking into account the new memory subset identified and the interactions among B cells that likely occur in vivo.
Rouers, Angéline. "Impact de l’infection par le virus de l’immunodéficience humaine sur les populations de lymphocytes T folliculaires helper et les réponses B mémoires." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066497/document.
Full textHIV infection is associated with a defect of humoral response. T follicular helper cells (Tfh) support multiple steps of B cell maturation and antibody production. My work was divided in two complementary axes aiming to characterize Tfh and memory B cell responses in HIV-infected patients.I identified several Tfh populations in HIV+ and HIV- spleens by FACS. These three populations were increased in HIV+ spleen. I also evidenced an impact of HIV infection on transcriptional profile and a compromised production of B cell differentiation-related cytokines by splenocytes from HIV+ donors. These results suggest Tfh functions impairment during HIV-infection. In parallel, we noticed an altered maturation of B cells in HIV+ spleens. In a cohort study, we compared memory B cell responses in the blood of Elite controllers (EC) who naturally control HIV and treated HIV+ patients. I evidenced that EC naturally preserve their memory B cell compartments. In contrast to anti-HIV IgG2 and IgG3 secreting B cells, most EC exhibit a high frequency of anti-HIV IgG1 secreting B cells. My work highlights a defective Tfh differentiation, which might explain why B cell maturation is severely affected in HIV-progressors. The status of HIV-controller seems associated with the presence of an IgG1 B cell memory response. Further work will highlight whether Tfh functions are preserved in EC
Moukambi, Félicien. "Études de la dynamique des cellules Tfh et T CD4 mémoires au cours de l'infection au VIH." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27740.
Full textSince its discovery, HIV-1 has caused the death of 35 million people, and 36.9 million are living infected. Although researches have led to the development of antiretroviral therapies, which not only improve life expectation but also life quality of infected individuals, these therapies are not capable of eradicating the virus, and unfortunately there is no vaccine. The pathogenesis of HIV-1 is linked to a dysfunction of CD4 T cells that favors progression to AIDS. Therefore, given that most vaccines are based on T cell-dependent antibody production, the first part of my PhD research is devoted to understanding the impact of HIV-1 on CD4 T Follicular helper (Tfh) cells, which are essential for B cell activation and the production of specific antibodies. These cells are particularly crucial in the spleen, which is the major organ for B cell response. In the second part, I have analyzed the dynamics of memory CD4 T, Tfh and of B cells in mesenteric lymph nodes: an inductive site of the immune response that provides memory cells to the lamina propria (effector site) of the intestinal mucosa. Given the difficulties to study these deep organs, particularly during the acute phase in humans, I have used rhesus macaques infected with the simian immunodeficiency virus (SIV) to study the dynamics of Tfh cells. My results show an early depletion of splenic Tfh cells during the acute phase; a depletion that persists during the chronic phase within macaques in which the infection rapidly progresses to AIDS. Concomitantly, we report a depletion of memory B cells and low titers of anti-SIV IgG titers in these macaques. Furthermore, I observed a massive depletion of memory CD4 T, Tfh and B cells in mesenteric lymph nodes, as well as a phenotypic change of Tfh cells that become central memory cells associated with the upregulation of the expression of CD127 (IL-7 receptor). My results also show that environmental cytokines such as IL-7 and IL-27 contribute to their dysfunction as support the expression of transcription factors that inhibit Tfh cells such as T-bet, Foxo1 and Stat5. In conclusion, my results provide a better understanding of B cell dysfunction related to the early loss of the Tfh cells during HIV/SIV infection. Moreover, I hypothesize that the loss of immunity in the intestinal mucosa is due to the sudden depletion of memory CD4 T, Tfh and B cells in the mesenteric lymph nodes. Therefore, maintaining Tfh and memory CD4 T cells during the early phase of infection could be a promising therapeutic and vaccine approach for neutralizing HIV/SIV, as well as preventing bacterial translocation.
Côté, Geneviève. "Étude in vitro sur la communication entre les lymphocytes B naïfs et à mémoire suite à la stimulation de CD40 par CD154." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23855/23855.pdf.
Full textAbduh, Maisa. "Follicular CD4 T Cells Tutor CD8 Early Memory Precursors : an Initiatory Journey to the Frontier of B Cell Territory." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS371.
Full textAntigen-specific CD8 T cells are involved in the adaptive immune response and play a critical role in protecting the host from infection by intracellular pathogens. This long-lasting protection depends on the generation of memory CD8+ T cell responses, which are highly functional in terms of frequency and functionality, after secondary infection.Following antigen activation, a naive CD8 T cell undergoes strong clonal expansion, generating a heterogeneous population of activated cells that is dominated, at the peak of expansion, by short-lived CD8 effectors (SLECs). This expansion is followed by a phase of drastic contraction through massive apoptosis. A few cells survive this contraction phase and eventually become highly competent memory cells. Precisely when and how these memory precursors (MPECs) are generated is largely unknown, and so are the subsequent steps of their maturation into fully functional memory cells. Help signals from CD4+ T cells are clearly required throughout the MPEC maturation process.Our team has previously shown that FoxP3+ regulatory CD4+ T cells (Tregs) favor MPECs maturation by limiting exposure to IL-2 and by providing inhibitory signals, but this is probably only one facet of the complex and multifaceted help provided by CD4+ T cells to MPEC, and Tregs act on pre-existing MPECs.B-cell memory and CD8+ T cell memory share some common features, such as the expression of the transcription factor Bcl-6. Tfh are major producers of the cytokine IL-21. The mechanisms by which Tfh induces Bcl-6 in B-cells need to be clarified, they might include IL-21 and CD40-CD40L.In this PhD project, we have investigated the potential role of Tfh on the initiation of CD8 memory differentiation, in transgenic mice models, allowing transient and selective depletion of Tfh cells, infected by recombinant Listeria monocytogenes-OVA.We have shown that as early as 2 days after infection, very early memory precursors can be identified by their expression of the chemokine receptor CXCR5. These early precursors, which have an effector phenotype, expand and temporarily migrate to the junction of T-cell and B-cell zones, where they interact with follicular CD4 T cells (Tfh) then lose their CXCR5 expression.Remarkably, this interaction with Tfh, hitherto considered as exclusive B-cell helpers, is required for memory precursors to become competent memory cells responsive to IL-21 and capable of mounting efficient cytotoxic secondary effector responses.This study thus unveils critical early steps in the generation of CD8 memory, identifies CXCR5 as the earliest known marker of CD8 memory precursors, reveals a major helper role for Tfh, and points to possible coordination, through Tfh, between the pathways of CD8 and B-cell memory generation. These findings may have implications for vaccine and immunotherapy design
Mathieu, Mélissa. "Étude de la différenciation des lymphocytes T CD8+ effecteurs et mémoires : rôle de la cellule présentatrice d’antigène et de la voie de signalisation Notch." Thèse, 2014. http://hdl.handle.net/1866/11791.
Full textFollowing an infection with a pathogen, antigen-specific naive CD8+ T lymphocytes (Tn) will proliferate and differentiate into effector (Te) cells. Those Te cells will produce different cytokines and acquire a cytotoxic activity, leading to pathogen clearance. Only 5 to 10 % of Te cells will survive and differentiate into memory CD8+ T lymphocytes (Tm) able to respond rapidly following a second encounter with the same pathogen, contributing to the success of vaccination. However, the mechanisms regulating Te and Tm cells development remain incompletely understood. To better understand the signals required for CD8+ T lymphocytes during an immune response, we proposed two hypotheses. First, we propose that different antigen presenting cells (APCs) can deliver different signals to CD8+ T lymphocytes at the time of priming leading to different outcome. Given their potential for use in immunotherapy, we compared the ability of CD40 activated B lymphocytes (CD40-B) and dendritic cells (DCs) to activate CD8+ T lymphocytes. We have shown that CD40-B cell immunisation leads to an effector response but very few Tm cells are generated compared to DC immunisation. The Te cells generated following CD40-B cell immunisation are functional because they secrete cytokine, are cytotoxic and control a Listeria monocytogenes (Lm) infection. We propose that CD40-B cells secrete less cytokines and interact during shorter period of time with the CD8+ T lymphocytes, without engulfment, contributing to the decreased Tm generation observed following immunisation with CD40-B cells. Second, among the signals provided by APC at the time of CD8+ T lymphocyte priming, we have hypothesised that the Notch signalling pathway influences Te and Tm cell differentiation by inducing a particular genetic program. Using an in vitro system, we first studied the role of the Notch signalling pathway in the hours following CD8+ T lymphocyte priming. We demonstrated that Notch signalling directly regulates PD-1 expression. Then, studying mice where Notch1 and Notch2 receptor genes are deleted only in mature CD8+ T lymphocytes, we characterised the role of the Notch signalling pathway on Te and Tm differentiation during an immune response. Our results show that following Lm infection or a DC immunisation, the Notch signalling pathway promotes the differentiation of short lived effector cells Te cells (KLRG1highCD127low) meant to die by apoptosis. However, the Notch signalling pathway did not influence the generation of CD8+ Tm cells. Most interestingly, IFN- regulation by the Notch signalling pathway depends on the activation context. Indeed, following Lm infection, lack of Notch receptors does not impact IFN- secretion by Te cells while it is significantly decreased following a DC immunisation suggesting a context dependant role for the Notch signalling pathway. Our findings provide a better understanding of the key signals provided by APC as well as the Notch signalling pathway, and thus the molecular mechanisms leading to CD8+ lymphocyte effector and memory generation which is crucial as this knowledge may ultimately lead to improved vaccination.
"Étude in vitro sur la communication entre les lymphocytes B naïfs et à mémoire suite à la stimulation de CD40 par CD154." Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/23855/23855.pdf.
Full text