Dissertations / Theses on the topic 'Lymphocyte T CD4+ "helper"'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Lymphocyte T CD4+ "helper".'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Le, Saout Cécile. "Rupture de la tolérance périphérique en conditions de lymphopénie : coopération entre les cellules T CD8+ et CD4+." Montpellier 2, 2009. http://www.theses.fr/2009MON20097.
Full textThe onset of autoimmunity in patients as well as experimental rodent models frequently correlates with a lymphopenic state. In this condition, the immune system has evolved compensatory homeostatic mechanisms that induce quiescent naive T cells to proliferate and differentiate into memory-like lymphocytes even in the apparent absence of antigenic stimulation. Since memory T cells have less stringent requirements for activation than naïve cells, we hypothesized that auto-reactive T cells that arrive to secondary lymphoid organs in a lymphopenic environment could differentiate and bypass the mechanisms of peripheral tolerance. Utilizing a transgenic mouse system in which a model antigen is expressed in the pancreas, we have shown that potentially auto-reactive memory-like CD8+ T cells, generated under lymphopenic conditions, are not sufficient to induce auto-immunity because they are tolerized in the draining lymph nodes of the pancreas. Induction of self-reactivity required antigen-specific CD4+ T cell help. These helper cells promoted the further differentiation of memory-like CD8+ T cells into effectors in response to antigen cross-presentation with subsequent migration to the tissue of antigen expression where autoimmunity ensued. We also found that this effect is mediated by IL-2, a cytokine mainly produced by CD4 helper T cells. Thus, the cooperation between self-reactive memory-like CD4+ and CD8+ T cells under lymphopenic conditions overcomes cross-tolerance resulting in autoimmunity. These studies raise new perspectives, notably on cancer immunotherapy and the development of promising strategies optimizing anti-tumor T cell responses
Espinosa, Carrasco Gabriel. "L'activation des cellules T CD8+ et T CD4+ en réponse aux auto-antigènes : du tissu lymphoïde à l'organe cible." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT026.
Full textThe immune system has evolved multiple mechanisms of peripheral tolerance to control CD8+ T cell responses. Under particular conditions that are not yet well understood, potentially autoreactive T cells may override tolerance and differentiate into effector cells capable of targeting the own components of the organism resulting in self-reactivity. Utilizing transgenic mice expressing a model antigen in the beta cells of the pancreas, I have studied two important processes involved in CD8+ T cells differentiation in response to self-antigens. 1) Role of lipopolysaccharides (LPS) translocation in the breakdown of CD8+ T cell tolerance. It has been previously shown in our laboratory that lymphodepleting protocols, such as total body irradiation, promote breakdown of peripheral CD8+ T cell tolerance. Irradiation induces translocation of commensal bacteria LPS, a potent innate immune system activator, into the bloodstream. My data demonstrated that LPS translocation correlated with systemic activation of CD11c+ dendritic cells (DC), in particular CD8+ DC, responsible for pancreatic self-antigen cross-presentation, in lymphoid tissue. While antibiotic treatment of mice before irradiation prevented LPS translocation, DC activation was only partially affected, and onset of autoimmunity and breakdown of CD8+ T cell tolerance could not be prevented.2) Intra-vital visualization of effector CD8+ and CD4+ T cell cooperation in beta cell destruction in the pancreas. Using two-photon microscopy, I have been able, for the first time, to simultaneously analyze dynamics of fluorescently tagged autoreactive CD8+ and CD4+ T cells as they infiltrated the pancreas and induced autoimmune diabetes. I found that T cell infiltration promoted extracellular matrix remodeling in the pancreas, which in turn served as a scaffold for T cell migration. In addition, I showed that MHC class II dependent arrest of effector CD4+ T cells, due to interactions with antigen presenting cells, occasionally also implicating CD8+ T cells, provided help to effector CD8+ T cells in maintaining their effector functions
Asrir, Assia. "Caractérisation phénotypique et fonctionnelle des différentes populations de Lymphocytes T CD4 Folliculaires Mémoires." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30084/document.
Full textT Helper Follicular (TFH) cells form a distinct lineage of helper T cells and they specifically control B cells and memory B cell generation. While these cells were considered as effector cells, recently it was identified in Human and in mouse, the existence of memory TFH cells. Memory TFH cells, as CD4 memory T cells, are necessary in case of antigen (Ag) rechallenge to establish a fast, efficient and high affinity Antibody (Ab) response. Indeed, their presence is correlated with the generation and the long-term maintenance of high affinity Ac during viral infections. Moreover, recent studies have shown that analysis of memory TFH cells in the blood may provide clues to understanding the mode of action of vaccines and the pathogenesis of autoimmune diseases. In addition, in the context of many diseases, recent works have also suggested that the frequency and phenotype of memory TFH cells in the blood could serve as a biomarker for diagnosis. Likewise to memory B cells that are subdivided into different cell populations based on their location and the nature of their Ab, different populations of memory TFH cells have recently been identified. Some are in secondary lymphoid organs (SLO) draining the site of immunization, vaccination or infection, or circulating in the non-draining SLO or near the long-lived plasma cells (PC) in bone marrow (BM). These observations raise the question of their phenotypes, functional differences and interactions with the different subsets of memory B cells. The aim of my thesis was to study the phenotypic and functional heterogeneity between the different subsets of memory TFH cells. Due to the heterogeneity of memory B cells (draining lymph nodes or non-draining spleen) and long-lived PCs (BM), we also evaluated the cellular and functional interaction that occurs between these different memories populations. In this context, we have developed a unique experimental model of protein vaccination in unmodified wild-type mice. Specifically, after immunization, we evaluated the development of memory TFH cells and memory B cells specific for the same Ag in the draining SLO and circulating in the spleen and BM. We demonstrated that local memory TFH cells (that reside in the draining SLO) exhibit a more polarized phenotype than their circulating counterparts (present in non-draining SLO)
MacKenzie, Jason Roderick, and Jason Mackenzie@ipaustralia gov au. "The Role of Eosinophils in the Regulation of CD4+ T helper 2 Regulated Inflammation." The Australian National University. The John Curtin School of Medical Research, 2004. http://thesis.anu.edu.au./public/adt-ANU20051007.121844.
Full textBinet, Bénédicte. "Régulation épigénétique de la programmation des lymphocytes T CD4 par SETDB1." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30217.
Full textCD4 T lymphocytes play a central role in the defense of mammal organisms against infections by pathogens and the development of tumors. Upon activation, naïve CD4 T cells differentiate into distinct helper cell subsets depending on environmental cues. T helper cells are key players of the immune system as they finely orchestrate immune responses in a danger-adapted manner. The process of T helper differentiation relies on the establishment of complex and lineage-specific gene expression programs. The dynamics and stability of these programs are regulated at the chromatin level through epigenetic control of cis-regulatory elements. My thesis objective was to investigate the epigenetic pathways involved in the regulation of enhancer activity in CD4 T cells. In this purpose, we studied the role of the H3K9 specific methyltransferase SETDB1 in the differentiation of Th1 and Th2 cells, which are strongly antagonistic. We report that SETDB1 critically represses the Th1 gene expression program. Indeed, Setdb1-deficient naïve T cells show exacerbated Th1 priming. Moreover, when exposed to a Th1-instructive signal, SETDB1-deficient Th2 cells cross lineage boundaries and transdifferentiate into Th1 cells. Surprisingly, SETDB1 does not directly target Th1 enhancers to heterochromatin. Instead, SETDB1 deposits the repressive H3K9me3 mark at a restricted and cell type specific set of endogenous retroviruses, strongly associated with genes involved in immune processes. Further bioinformatic analyses indicated that these retrotransposons flank and repress Th1 gene cis-regulatory elements or behave themselves as Th1 gene enhancers. Thus, H3K9me3 deposition by SETDB1 ensures T cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network
Barron, Luke. "The roles of Bim-dependent apoptosis in controlling the responses of CD4+ T helper lymphocytes." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3261259.
Full textDosset, Magalie. "Caractérisation et influence des lymphocytes T CD4 anti-télomérase dans les cancers." Thesis, Besançon, 2012. http://www.theses.fr/2012BESA3014/document.
Full textRecent advances in immunology have now validated the concept of cancer immunosurveillance and the leading role of adaptative T cell immunity. Until a few years ago, antitumor CD8 T cell responses have been the most studied due to their direct cytotoxic activity on tumor cells. On the other hand, study of antitumor CD4 T cell responses are even more challenging because of the heterogeneity and plasticity of the various CD4 T cells subpopulations described. Among them, CD4 T helper type-1 cells (Th1), mainly characterized by the production of IFN, control the activation of antitumor cellular immunity. Thus, stimulation of specific CD4 Th1 cells may have a major interest for the development of anticancer immunotherapies. During this research thesis, we characterized novel HLA class II epitopes derived from a relevant tumor antigen, telomerase (TERT), and studied their capacities to stimulate specific CD4 Th1 cell responses. Using a method based on predictive immunology, we identified 4 peptides derived from TERT, referred as « Universal Cancer Peptides » (UCPs), enable to bind the most commonly found HLA-DR alleles in human. Using HLA-A2/HLA-DR1 transgenic mouse model, we first evaluated the in vivo immunogenicity of these peptides. Immunization of mice with UCPs induces high avidity specific CD4 T cells. The study of their polarization showed that UCP-specific CD4 T cells do not produce IL-4, -5, -10 or -17 cytokines, excluding a Th1, Treg or Th17 differentiation. In contrast, we measured high amount of IFN and IL-2 which characterize a Th1 pattern. The study of helper role allow us to demonstrate that CD8 peptide-based vaccinations in presence of UCPs enhance the efficacy of tumor specific CTL responses. Indeed, the intensity of these responses is strongly correlated with that of UCP-specific CD4 T cells induced in vivo. Furthermore, the stimulation of UCP-specific CD4 T cells promotes activation and IL-12 release by dendritic cells through a mechanism that involves IFN, GM-CSF and CD40L. We also demonstrated the antitumor efficacy of UCPs during a therapeutic vaccination in mice, as well as their capacity to foster the recruitment of specific CD8 T cells at the tumor site. In addition, the presence of naturally occurring UCP-specific CD4 T cell responses was found in different types of cancers such as leukemia, lung, colorectal or renal cancers. A study conducted in a cohort of 84 metastatic lung cancer patients revealed a synergistic effect of spontaneous UCP-specific CD4 Th1 and chemotherapy-treatment. Altogether, this study provides further evidences that stimulation of antitumor CD4 Th1 cells is a powerful method to improve cancer vaccines and also highlights the interest of TERT-derived UCPs for the innovative monitoring of antitumor CD4 T cell responses
Jaafoura, Salma. "Mémoire lymphocytaire T et persistance virale." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114847.
Full textDuring the primary immune response, CD8 memory emerges from an environment of strong immune activation. The FoxP3 regulatory CD4 T-cell subset (Treg) is known as a key suppressive component of the immune system. We report that Tregs are required for the generation of functional CD8 memory. In the absence of Tregs during priming, the resulting memory cells proliferate poorly and fail to differentiate into functional cytotoxic secondary effectors following antigen reactivation. We find that the Tregs act early, during the expansion phase of primary CD8 effectors, by fine tuning interleukin-2 exposure of CD8 memory precursors. This crucial new role of Tregs has implications for optimal vaccine development. In patients who are receiving prolonged antiretroviral treatment (ART), HIV can persist within a small pool of long-lived resting memory CD4 T cells infected with integrated latent virus. This latent reservoir involves distinct memory subsets. We provide results that suggest a progressive reduction of the size of the blood latent reservoir around a core of less-differentiated memory subsets (central memory and stem cell-like memory).This process appears to be driven by the differences in initial sizes and decay rates between latently infected memory subsets. Our results also suggest an extreme stability of the TSCM sub-reservoir, the size of which is directly related to cumulative plasma virus exposure before the onset of ART, stressing the importance of early initiation of effective ART. The presence of these intrinsic dynamics within the latent reservoir may have implications for the design of optimal HIV therapeutic purging strategies
Claireaux, Mathieu. "Analyses phénotypique et fonctionnelle des cellules T CD4+ spécifiques du VIH chez les patients contrôlant spontanément l’infection à VIH." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC264/document.
Full textHIV Controllers are rare individuals able to spontaneously control viral replication in the absence of treatment. Several studies showed that controllers develop effective anti-viral T cell responses. Gag-specific CD4+ T cells could play a particular role in HIV control, because this population is preserved in comparison with the treated patients and correlates negatively with the viral load. In order to study this population, we performed a multiplexed single cell transcriptional and protein analysis from CD4+ T cells detected ex vivo by MHC-II tetramer labeling against the Gag293 peptide (Tet+). We compared the expression of 44 genes and 6 surface proteins in 9 Controllers patients and 9 treated patients. Firstly, we validated the high frequency of Tet+ CD4+ T cells in controllers compared to the treated patients, then we showed that Tet+ CD4+ T cells from controllers were activated and engaged in advanced Th1 differentiation with a cytotoxic profile. In addition, Tet+ CD4+ T cells from controllers showed a limited state of exhaustion, reflected by a lower expression of PD-1, which could be one of the reasons for maintaining their frequency and functions. In a second study, we studied follicular helper T cells (Tfh) among the Gag-specific CD4+ T cell population of HIV controllers. Tfh plays an essential role in the affinity maturation of the antibody response by providing help to B cells. To determine whether this CD4+ T cell subset may contribute to the spontaneous control of HIV infection, we analyzed the phenotype and function of circulating Tfh (cTfh: T cells CD4+ CD45RA- CXCR5+). We performed a MHC-II tetramer labeling against Gag293 peptide to detect HIV-specific cTfh (cTfh Tet +), and showed that this population is preferentially maintained in HIV controllers. Phenotypic analysis of Tet+ cTfh population showed a higher intensity of PD-1 expression (MFI) in the treated group suggesting abnormal immune activation in these patients. The function of cTfh, analyzed by the capacity to promote IgG secretion in cocultures with autologous memory B cells, did not show major differences between groups in terms of total IgG production. However, the production of HIV-specific IgG is significantly more efficient in the controller group, especially for the anti-Env response that is more than 30-fold greater than those of the treated patients. Finally, the frequency of Tet+ cTfh correlated positively with the production of specific IgG, supporting the idea of an important role of Tfh function in the humoral antiHIV response. Taken together, these results indicate that Gag-specific CD4+ T cell population supports the two arms of the antiviral immune response in HIV controllers: the cell-mediated response through a preferential differentiation toward Th1 cell type showing a cytotoxic profile, and the humoral response, reflected by preserved cTfh / B interactions, resulting in a vigorous memory response. Maintaining the function and frequency of these Gag-specific CD4+ T cells could therefore play an important role in HIV control
Ghenassia, Alexandre. "Induction de réponses mémoires lymphocytaires T CD8 et protection vaccinale après transfert de gènes par le vecteur AAV recombinant." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T032/document.
Full textImmunological memory is the fundamental biological mechanism at the beginning of the development of vaccination. Understanding this mechanism and its interactions with the various players of the immune system has allowed the development of vaccines that are today the most effective barrier against the emergence of life-threatening infectious diseases. Route of injection and the nature of carriers of these vaccines are key parameters to be taken into consideration because they define a modulation of immune responses and their specific features. Nowadays, only the intramuscular injection route remains the major route of vaccines injection in the context of primary prophylaxis in human health. During our study, we were interested in comparing the injection of antigen (ovalbumin) following two routes of administration: intramuscular and intradermal routes. We also relied on a technology in the laboratory that involves the transfer of genes by rAAV2/1 vectors. We had two constructs of these vectors having specificity to target skeletal muscle cells and allowing us to provide a helper effect from CD4+ T cells during injections into female mice recipients. Moreover, one of these constructs enabled us to avoid the direct presentation of antigens by dendritic cells (DCs) to CD8+ T cells. The capacity of modulation of these vectors allowed us to show for the first time that the rAAV2/1 vector was able to trigger the expression of a transgene in the skin, and there to generate a strong cellular response. We have also shown that CD4+ T cell help and the intradermal route of immunization synergize to improve greatly cellular responses from the cross-presentation of antigens. Finally, we have demonstrated that CD8+ T cells generated following this synergism exhibited a phenotypic profile of polyfunctional memory cells and able to protect the host against a pathogenic challenge
Gu-Trantien, Chunyan. "Gene expression profiling of CD4+ T cells infiltrating human breast carcinomas identified CXCL13-producing T follicular helper cells associated with tertiary lymphoid structures and better patient outcome." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209474.
Full textOver the past decade, studies using murine models have led to the demonstration that CD4+ T helper (Th) cells play a critical role in the control of cancer progression. Additional support for their importance comes from the growing body of recent clinical/translational research data demonstrating the importance of tumor-infiltrating T and B lymphocytes in long-term patient survival for various types of cancer, including breast cancer (BC). As the key population coordinating adaptive immune responses, the role(s) played by individual Th subsets in cancer immunity remains largely controversial. The Th1 subset has uniquely been shown to have a clear anti-tumor effect, guiding CD8+ cytotoxic T cells-mediated direct tumor cell lysis through IFN-γ secretion. Although the negative regulatory role played by Treg cells has been extensively studied in cancer, its prognostic value along with that of Th2 and Th17 cells have not been clearly demonstrated in patients. T follicular helper (Tfh) cells, a recently characterized Th subset that plays a primary role in the generation of B cell memory in secondary lymphoid organs, have not been previously described infiltrating solid tumors. The principal objective of this thesis was to perform an in-depth characterization of tumor-infiltrating CD4+ T cells (TIL) and Th subsets in human BC, where very little is currently known.
Using whole genome microarrays, we analyzed the gene expression profiles of TIL relative to their counterparts from the axillary lymph nodes and peripheral blood. Applying a novel approach, we compared TIL profiles with public microarray data for Th subsets, demonstrating: 1) the presence of all major Th subsets (Th1, Th2, Th17, Treg as well as Tfh) in the TIL, 2) the TIL are effector memory rather than central memory cells, 3) the TIL are concomitantly activated and suppressed and 4) TIL from tumors with extensive lymphoid infiltrates are more activated/less suppressed in the TCR/CD3 signaling pathway, producing higher levels and a wider panel of Th cytokines than TIL from minimally-infiltrated tumors.
We also performed in vitro experiments to study tumor microenvironment effects on TIL by treating normal CD4+ T cells from healthy donor blood with primary tumor supernatants (SN). Tumor SN largely reproduces the TIL profile in normal Th cells, totally suppressing their activation and inhibiting their cytokine production. Intriguingly, the highly restricted number of cytokines induced by tumor SN included several tumor-promoting factors, such as IL-8 and TNF. SN from an extensively-infiltrated tumor was found to be less immune-suppressive than SN from minimally-infiltrated tumors. In line with this, TIL from minimally-infiltrated tumors are closer to SN-treated (suppressed) activated donor cells whereas TIL from extensively-infiltrated tumors are more similar to activated cells without SN treatment.
These results led us to further investigate the observed differences between TIL from extensive and minimally-infiltrated tumors. Genes characterizing Th1 and Tfh cells were enriched in the extensively-infiltrated tumors. PD-1hiCD200hi Tfh cells were specifically detected in extensively-infiltrated tumors by flow cytometry and these cells were determined to be the major source of the chemokine CXCL13. Immunohistochemical analysis demonstrated highly-organized tertiary lymphoid structures (TLS) within the tumor, containing a CD4+/CD8+ T cell zone and a B cell zone with reactive germinal centers where Tfh cells and follicular dendritic cells (FDC) are resident. Their presence suggests the origin of an effective memory anti-tumor immune response.
Finally, we generated Tfh- and Th1-specific gene signatures reflecting differences between extensive and minimal TIL and tested their prognostic value in large-patient-scale public data sets. Our Tfh signature predicts better 10-year disease-free survival for all BC subtypes, outperforming the Th1 signature, suggesting that Tfh cells play a more central role than Th1 cells in anti-tumor immunity. CXCL13 is the determinant gene of our Tfh signature, showing particularly strong prognostic power for the HER2+ subtype. Additionally, these signatures also predict a better response to neoadjuvant chemotherapy.
This thesis research has demonstrated that a previously undetected Th subset, Tfh cells, infiltrates solid tumors and shown that their presence signals enhanced anti-tumor immunity.
Durant cette dernière décennie, des travaux menés dans des modèles murins ont permis de mettre en évidence le rôle crucial joué par les lymphocytes T auxiliaires CD4+ (Th) dans le contrôle de la progression des cancers. De plus, de nombreuses études cliniques et/ou translationnelles récentes corroborent ces observations en montrant une corrélation entre l’importance de l’infiltration intra-tumorale par les lymphocytes T et B et la survie à long terme des patients atteints de différents types de cancer, dont le cancer du sein. En tant que chefs d’orchestre de la réponse immune adaptative, les rôles spécifiques des sous-populations des cellules Th restent controversés. Les Th1 sont la seule population exerçant une claire réponse anti-tumorale, qui est liée à la sécrétion d’IFN-γ, une cytokine primordiale à l’action des lymphocytes T cytotoxiques CD8+. Bien que le rôle néfaste des T régulateurs (Treg) a été largement étudié dans le cancer, leur implication pronostique ainsi que celle des Th2 et Th17 n’ont pas encore été clairement démontrées. La présence d’une sous-population de CD4, les T auxiliaires folliculaires (Tfh), cellules clés dans la différenciation des lymphocytes B mémoires au sein des organes lymphoïdes secondaires, n’a jamais été décrite dans les cancers solides. Le but principal de ce travail est de caractériser les sous-populations des lymphocytes T CD4+ infiltrant la tumeur (TIL) en prenant comme modèle le cancer du sein humain. A l’heure actuelle, il existe très peu de données sur les TIL CD4 dans ce type de cancer.
Nous avons d’abord établi le profil génique des TIL en les comparant avec ceux provenant des ganglions axillaires ou du sang périphérique. En appliquant une nouvelle approche, nous avons comparé les profils des TIL avec les données publiques de sous-populations de Th et démontré que :1) toutes les sous-populations de cellules Th (Th1, Th2, Th17, Treg et Tfh) infiltrent la tumeur, 2) les TIL ont un phénotype plus proche de celui des cellules mémoires effectrices que des cellules mémoires centrales, 3) les TIL sont simultanément activés et supprimés et 4) les TIL provenant des tumeurs massivement infiltrées («extensives») par des lymphocytes sont mieux activés et moins supprimés que les TIL des tumeurs peu infiltrées («minimales») dans la voie de signalisation TCR et produisent des cytokines d’une quantité plus élevée et d’une répertoire plus large.
Nous avons également effectué des expériences in vitro pour étudier l’effet de l’environnement tumoral sur les TIL en traitant des CD4 normaux (provenant des donneuses saines) par le surnageant (SN) extrait des tumeurs fraiches. Le SN tumoral induit un profil génique proche de celui des TIL en inhibant l’activation et la production de cytokines de ces cellules stimulées. Curieusement, parmi le peu de cytokines induites par le SN tumoral, des facteurs pro-tumoraux comme IL-8 et TNF sont détectés. Le surnageant provenant d’une tumeur «extensive» est moins immunosuppresseur que ceux des tumeurs «minimales». Conformément, les TIL provenant des tumeurs «minimales» ont un profil génique proche des cellules normales activées et traitées (supprimées) par le SN tumoral tandis que les TIL des tumeurs «extensives» ressemblent aux cellules activées non traitées.
Ces résultats nous avaient guidés à investiguer plus profondément les différences observées entre les TIL des tumeurs «extensives» et «minimales». Les gènes caractéristiques des Th1 et Tfh sont enrichis dans les tumeurs «extensives». Les cellules Tfh PD1hiCD200hi sont spécifiquement détectées par cytométrie de flux dans les tumeurs «extensives» et sont identifiées comme les producteurs principaux de la chimiokine CXCL13. L’examen par immunohistochimie a permis de détecter des structures lymphoïdes tertiaires (TLS) dans la tumeur, composées d’une zone T (CD4 et CD8) et d’une zone B au sein de laquelle se trouve parfois un centre germinatif actif contenant des Tfh et des cellules dendritiques folliculaires (FDC). La présence de ces structures suggère l’origine d’une réponse immune mémoire anti-tumorale.
Finalement, nous avons établi des signatures géniques spécifiques aux Tfh et Th1 et recherché leur impact pronostique dans deux bases de données publiques à grande échelle. Notre signature Tfh est positivement corrélée avec la survie à 10 ans des patientes de tous les sous-types de cancer du sein, et est plus performante que la signature Th1. Ceci suggère que les Tfh pourraient jouer un rôle plus crucial que les Th1 dans la réponse immune anti-tumorale. CXCL13 est le gène déterminant de notre signature Tfh et son expression est fortement associée à une meilleure survie chez les patientes du sous-type HER2+. De plus, ces signatures prévoient également une meilleure réponse à la chimiothérapie néoadjuvante (préopératoire).
Cette étude a démontré qu’une nouvelle sous-population de CD4, les Tfh, infiltre la tumeur solide et leur présence indique l’existence d’une immunité anti-tumorale renforcée.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Nuttens, Charles. "Mécanismes impliqués dans la polarisation des lymphocytes T CD4+ folliculaires et l'initiation de l'immunité muqueuse après immunisation intradermique par un antigène particulaire." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066429/document.
Full textThe quality of the adaptive immune response to a vaccine is driven by the nature of dendritic cells (DCs) engaged during vaccination. Skin immunization is particularly efficient as it targets the numerous cutaneous DCs, including Langerhans cells (LCs). However, the relationship between DCs and effector cells associated with humoral immunity has not been elucidated. The main objective of my thesis was to identify cellular mechanisms implicated in the initialization of the humoral immune response, in the context of intradermal (i.d.) vaccination with particle-based antigens. In examining the spatial and temporal distribution of synthetic PLA particles adsorbed with the HIV-p24 protein, we observed their uptake by both cutaneous DCs and also skin-draining lymph node (dLNs) resident DCs. However, our immune response study highlighted that only skin cells, and in particular LCs, were able to stimulate polarization of follicular helper T cells (TFH) and the development of IgA-secreting B lymphocytes. I.d. vaccination also induced an inflammatory cell infiltration at both the injection site and in dLNs. Using a Ccr2-/- mouse model, we have shown the CCR2+ dependant cells can interfere in TFH polarization. Finally, the study of the dLN micro-environment suggested TNF can promote TFH formation. In conclusion, these findings highlight the importance of targeting skin DC in vaccination to propose new vaccine strategies
ELJAAFARI-CORBIN, ASSIA, and PIERRE-ANDRE CAZENAUE. "Etude des mecanismes biochimiques impliques dans l'induction differentielle des fonctions helper et cytotoxiques au sein de populations monoclonales de lymphocytes t humains cd4+ et bifonctionnels." Paris 6, 1992. http://www.theses.fr/1992PA066466.
Full textVahlas, Zoï. "Régulation métabolique de l'infection des cellules T CD4 par VIH-1 : vers de nouvelles cibles thérapeutiques." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT009.
Full textThe susceptibility of CD4 T cells to HIV-1 infection is regulated by glucose and glutamine metabolism, but the relative contributions of these nutrients to infection are not known. During my PhD, I identified glutaminolysis as a major pathway fueling oxidative phosphorylation (OXPHOS) in activated naïve as well as memory CD4 cell subsets, and found that induction of this metabolic network is required for optimal HIV-1 infection. Moreover, we determined that under conditions of attenuated glutaminolysis, the α-ketoglutarate (αKG) TCA (tricarboxylic acid) cycle intermediate is a rate-limiting step in infection; exogenous α-KG directly increased OXPHOS and rendered both naïve and memory CD4 T cells significantly more sensitive to infection. Furthermore, blocking the glycolytic flux of pyruvate to lactate resulted in an increased OXPHOS and a significantly augmented level of HIV-1 infection. In agreement with these data, infected CD4 T cells exhibited increased mitochondrial biomass and respiration as compared to their non-infected counterparts. These data identify the OXPHOS/ aerobic glycolysis balance as a major regulator of HIV-1 infection in CD4 T lymphocytes.In order to gain more insight into the metabolic pathways regulating HIV-1 infection in CD4 T cells, we developed a complementary approach to target upstream processes, specifically altering glucose (GLUT1), glutamine (ASCT2), and arginine (CAT1) transporter expression by lentiviral-mediated delivery of specific shRNAs. Testifying to the importance of these transporters, CD4 T cells with downregulated expression of either GLUT1, ASCT2 or CAT1 were negatively selected, resulting in a loss of approximately 80% of shRNA-transduced cells within 14 days. Notably, the permissivity of CD4 T cells to HIV-1 infection was differentially impacted by inhibition of specific nutrient transporters. Consistent with the data presented above, knockdown of GLUT1 did not significantly impact HIV-1 infection whereas knockdown of CAT1 significantly decreased both OXPHOS as well as HIV-1 infection (by 35%). Surprisingly though, ASCT2 knockdown resulted in a significantly augmented infection, by approximately 20%. Mechanistically, we found that this was associated with a markedly higher persistence of naïve, as compared to memory, T cells with downregulated ASCT2 levels. These data highlight differences in the relative importance of distinct nutrient transporters in the survival of naïve vs memory CD4 T cell subsets and demonstrate their specific impact on the sensitivity of these populations to HIV-1 infection.In conclusion, using two complementary approaches, my PhD research has revealed the critical impact of a CD4 T cell’s energetic state on its susceptibility to HIV-1 infection. My data identify the importance of mitochondrial metabolism, with an environment rich in TCA cycle intermediates such as α-KG, in regulating the susceptibility of CD4 T cells to HIV-1 infection. Furthermore, I find that nutrient transporter expression differentially impacts the sensitivity of naïve and memory CD4 T cells to HIV-1 infection. These studies therefore provide new prospects for the development of targeted metabolic therapeutic strategies against HIV-1 infection
Hu, Jian. "L'etude de la regulation de l'activation de clones de lymphocytes t humains helpers et cytotoxiques par les molecules cd2." Paris 7, 1988. http://www.theses.fr/1988PA077078.
Full textPoizot-Martin, Isabelle. "Signalisation induite par les molécules HLA de classe II dans les cellules B lymphoïdes normales et malignes folliculaires." Université Joseph Fourier (Grenoble), 2000. http://www.theses.fr/2000GRE10170.
Full textGrandclaudon, Maximilien. "Analyses multivariées de la génération de la diversité des cytokines des cellules T CD4 et association de cette diversité aux différents sous types de cancer du sein." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS286/document.
Full textToday several levels of complexity have emerged in the field of T helper cytokines: 1) the important number of distinct cytokines that Th cell can secrete in various combinations; 2) The multiplicity of signals that can act during Th differentiation to define the Th cytokine secretion profiles 3) The associations of these T helper secretion profiles with complex diseases. During my PhD I focused on these three levels of complexity and study the generation of T helper cytokine diversity and its association to breast cancer subtypes using multivariate analysis and statistical modeling. First, I was able to build the first statistical model linking 37 dendritic cell derived signals to 18 T helper cytokines. Using this model to derive in silico predictions, I was able to found a new role for IL-12p70 as a promoter of Th17 differentiation and as a main differential inducer of IL-17F independently of Il-17A in presence of IL-1. Then, studying the associations of the Th cytokine diversity with the different subtypes of human breast cancers, I found that Th17 cytokines were preferentially associated to Triple Negative Breast Cancer (TNBC). I found that TNBC patients with a high Th17 signature had a better survival. In addition, I showed that Th17 can be combined to clinical prognosis assessment scores, such as the Nottingham Prognosis Index, to better stratify TNBC patients in relevant subgroups for survival prognosis assessment
Trüb, Marta. "Follicular T helper cell populations." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20466.
Full textCole, Jennifer Louise. "Pathways of helper CD4 T cell allorecognition in humoral alloimmunity." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607868.
Full textNoble, Peter Richard. "CD4 T lymphocyte responses to human papillomavirus type 16." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314205.
Full textKelly, Helena T. "The role of T helper 1 and T helper 2 lymphocyte subsets in the pathogenesis of experimental autoimmune uveoretinitis." Thesis, University of Aberdeen, 1995. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU543992.
Full textGalle, Cécile. "Inflammatory and helper T lymphocyte responses in human abdominal aortic aneurysm." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210815.
Full textAbdominal aortic aneurysm (AAA) is a chronic degenerative disease that usually affects men over 65 years with an estimated prevalence of 5%. Aneurysm rupture represents a catastrophic event which carries a mortality rate of almost 90%. Current therapeutic options for AAAs measuring 5.5 cm in diameter or larger are based on prophylactic surgery, including conventional open reconstruction and endovascular stent-graft insertion. For patients with small asymptomatic AAAs (4.0 up to 5.5 cm in diameter), evidence from two recent large randomized controlled trials indicates no long-term survival benefit from immediate elective surgical repair as compared to imaging surveillance until aneurysm expands to 5.5 cm. This highlights the need for development of novel medical management strategies, including selective pharmacologic approaches, directed at preventing aneurysm expansion. In this regard, it is expected that a detailed knowledge of the pathobiology of human AAA lesion and a better understanding of pathophysiological mechanisms underlying initiation and progression of aneurysmal degeneration, particularly the specific involvement of T lymphocytes, will have special relevance to this challenging issue.
Inflammatory and helper T-cell responses in abdominal aortic aneurysm :controversial issues
Innate and inflammatory responses to endovascular versus open AAA repair. The occurrence of early acute systemic inflammatory responses after conventional open AAA repair is widely recognized and is thought to lead to the development of organ dysfunction and multiple organ failure, responsible for a large proportion of morbidity and mortality associated with aortic surgery. New therapeutic strategies designed to avoid ischemia-reperfusion injury related to aortic cross-clamping and to minimize the degree of tissue damage have thus been developed recently. Specifically, the advent of endovascular techniques has radically extended management options for patients with AAA. Although the method is believed to offer a clear short-term benefit over open repair, notably as regards restricted perioperative haemodynamic parameter fluctuations, reduced blood loss, briefer duration of surgery, shorter hospital stay, and lower 30-day mortality and complication rates, conflicting data are available regarding the exact nature and extent of the inflammatory events arising after such endoluminal procedures ;while several authors have indeed reported that endovascular AAA repair can determine a less intense and extensive inflammatory response, others have unexpectedly observed that the method may elicit a strong inflammatory response, the so-called « postimplantation syndrome ».
Adaptive cellular immune responses in human aneurysmal aortic lesion.
The inflammatory nature of AAA disease has long been suggested by the presence of a great number of CD4+ T lymphocytes in the outer media and adventitia of human AAA lesion. Interestingly, such infiltrating T-cell populations may have significant implications in the process of aneurysm dilation, since cytokines produced by T cells, notably IFN-gamma, have previously been shown to modulate production of matrix-degrading enzymes by resident macrophages and to induce apoptosis of medial SMCs. Through these key pathological mechanisms, T cells could potentially contribute to orchestrate aortic wall connective tissue disordered remodeling and degradation, and promote extensive disruption of elastic media, ultimately leading to aneurysmal degeneration. Nevertheless, despite their relative abundance in human AAA wall tissues, there is limited and controversial information as regards the functional profile of lesional lymphocytes, the exact nature of aortic wall adaptive cellular responses, and the etiologic role of T cells and their cytokines in initiation and progression of the aneurysmal process. Indeed, both Th1-type and Th2-type responses have been identified in human studies and experimental animal models of AAA.
Aims of the work
The main objectives of our work were to explore the innate and adaptive cellular immune responses in human AAA. In the first part of our work, we aimed to examine prospectively innate and inflammatory responses arising in a non-randomised cohort of patients undergoing endovascular versus open AAA repair. In the second part of our work, we focused our efforts on characterizing the nature of adaptive cellular immune responses and the phenotypic and functional repertoire of T cells in human AAA wall tissues obtained from a consecutive series of patients undergoing open AAA repair. Specifically, we sought to determine whether type 1 or type 2 responses occur predominantly in advanced AAA lesion.
Main experimental findings
Limited inflammatory response after endovascular AAA repair. Serial peripheral venous blood samples were collected preoperatively, immediately after declamping or insertion of endograft, and after 1, 3, 6, 12, 24, 48, and 72 hours. We first examined the acute phase reaction and liberation of complement cascade products using turbidimetric method and nephelometry. We found that endovascular repair produced lower postoperative CRP, leucocytosis, neutrophilia, and C3d/C3 ratio as compared to open surgery. We next analyzed surface expression of activation markers on peripheral CD3+ T cells using flow cytometry. We observed a strong upregulation of CD38 after open but not endovascular repair. Analysis of CD69 and CD25 molecules revealed no perioperative fluctuations in any group. We then investigated release of various circulating soluble cell adhesion molecules, proinflammatory cytokines, and chemokines using enzyme-linked immunosorbent assays. We demonstrated that both procedures are characterized by similar increases in ICAM-1 and IL-6 levels. Finally, tendency towards high levels of TNF-alpha and IL-8 was detected in endovascular repair, but data failed to reach statistical significance.
Predominance of type 1 CD4+ T cells in human aneurysmal aortic lesion. We have developed a tissue enzymatic digestion and cell extraction procedure to isolate intact mononuclear cells from aortic wall segments. This original cell isolation protocol enabled us to examine ex vivo the presence, phenotype, and cytokine secretion profile of infiltrating T lymphocytes freshly isolated from human AAA tissues for comparison with their circulating counterparts using flow cytometry. We found that both populations of infiltrating CD4+ and CD8+ T cells display a unique activated memory phenotype, as assessed by an increased expression of CD69 and HLA-DR activation antigens, downregulation of CD62L molecule, and predominant expression of the CD45RO isoform characteristics of memory cells. In addition, we identified the presence in human aneurysmal aortic wall lesion of CD4+ T cells producing high levels of IFN-gamma but not IL-4, reflecting their type 1 nature. In an additional series of experiments, cytokine gene expression was determined in whole aneurysmal and non-diseased aortic samples using LightCycler-based quantitative real-time reverse transcription-polymerase chain reaction. The molecular basis of type 1 or type 2 dominant responses was further specified by analyzing mRNA levels of transcription factors specifically involved in Th1 or Th2 differentiation such as T-bet and GATA-3. We demonstrated that aneurysmal aortic specimens exhibit high transcript levels of IFN-gamma but not IL-4, and consistently overexpressed the IFN-g-promoting cytokine IL-12 and the type 1-restricted transcription factor T-bet, further establishing the prominent type 1 nature of aortic wall responses. Moreover, such selective tissue expression of IL-12 and T-bet in the vessel microenvironment points to a potential role for these signals in directing aortic wall responses towards a type 1 phenotype.
Conclusions
Our findings indicate that endovascular AAA repair is associated with a lesser degree of acute phase reaction, peripheral T-cell activation, and release of complement proteins as compared to conventional open surgery, suggesting that the innate and inflammatory responses to AAA repair are significantly attenuated by the endovascular approach as compared to the traditional open reconstruction. These results support the view that the endoluminal procedure represents an attractive alternative to open surgery for the treatment of large aneurysms. On the other hand, we have demonstrated that Th1 cell infiltrates predominate in human end-stage AAA lesion. These observations are relevant for helping clarify the pathobiology of human AAA tissues and defining prospects for the prevention of aneurysm expansion. Indeed, identification of such infiltrating populations of IFN-gamma-producing CD4+ T cells not only provide new insights into the pathogenesis of the disorder, but could also serve as a basis for the development of novel medical management strategies directed at preventing aneurysm formation and progression, including therapeutic approaches based on the modulation of aortic wall responses and designed to selectively target T-cell activation and cytokine production. In this respect, the present work provides experimental evidence in support of the emerging concept that, although multifactorial, aneurysm disease may be regarded as a Th1-driven immunopathological condition, and suggests that strategies targeting IFN-gamma could be a particularly exciting and fruitful avenue for further investigation. Ongoing clinical and basic research in these areas can be expected to yield design of promising pharmacologic approaches to control AAA expansion. From a clinical perspective, such efforts have the potential to dramatically influence both the outcome and management of this common and life threatening condition.
Doctorat en sciences médicales
info:eu-repo/semantics/nonPublished
Wolski, David. "Integrative analysis of CD8 T-cell responses in the context of adaptive immunity to acute Hepatitis C virus infection." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ018/document.
Full textInfection with Hepatitis C virus typically establishes chronic infection, but about 20% of subjects clear HCV spontaneously. There is strong evidence that functional CD8 T cells are critical for HCV control. In the first part of my thesis we identified a new marker for exhausted T cells, CD39, that we showed to be upregulated in chronic HCV infection, progressive HIV infection and in chronic infection with LCMV. In the second part we used an integrative analysis approach to study transcriptional regulation of CD8 T cells in the acute phase of HCV infection with different outcomes. We found early transcriptional changes in key immune effector pathways as well as metabolic and nucleosomal processes in CD8 T cells from patients with persistent infection. Some of these changes track with a lack of HCV-specific CD4 T cells exhibit associations with subject age and sex. Our findings suggest that CD8 T cell exhaustion in HCV infection is linked to early gene regulatory events that are not only amplified by chronic inflammation and a lack of CD4 help, but might also be influenced by disease-relevant host factors such as patient age and sex
Putheti, Prabhakar. "CD4+CD25+ T regulatory cells in multiple sclerosis /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-962-5.
Full textBroadbent, Suzanne, and n/a. "The Effects of Age and Aerobic Training on T Helper Lymphocyte Proliferation." Griffith University. School of Physiotherapy and Exercise Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20050113.115912.
Full textMisztela, Dominika. "The differential effects of CD80 and CD86 in helper T lymphocyte activation." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670088.
Full textMolinder, Karen Marie. "Galectin-1 effects on development and function of CD4+ T helper cells /." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1709046691&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textSerroukh, Yasmina. "Transcriptional and epigenetic regulation of human CD4 T cell cytotoxic function: Molecular study of human cytotoxic CD4 T cells." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/245998.
Full textDoctorat en Sciences médicales (Médecine)
info:eu-repo/semantics/nonPublished
Miles, Brodie, Shannon M. Miller, and Elizabeth Connick. "CD4 T Follicular Helper and Regulatory Cell Dynamics and Function in HIV Infection." FRONTIERS MEDIA SA, 2016. http://hdl.handle.net/10150/622733.
Full textCariou, Anne. "Spécificité de l'aide T CD4 lors de la réponse T CD8 mémoire." Paris 6, 2009. http://www.theses.fr/2008PA066730.
Full textClay, Elizabeth. "The effects of environmental oxygen on CD4+ T lymphocyte activation and responses." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5795/.
Full textCao, Duojia. "CD25+CD4+ regulatory T cells in rheumatic disease /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-178-4/.
Full textMacKenzie, Jason Roderick. "The role of eosinophils in the regulation of CD4+ T helper 2 regulated inflammation /." View thesis entry in Australian Digital Theses Program, 2004. http://thesis.anu.edu.au/public/adt-ANU20051007.121844/index.html.
Full textSánchez-Guajardo, Vanesa María. "Kinetics and competitive capacities of Th1 vs. Th2 CD4+ T cells : the role of Stat6 and Stat4 in CD4+ T cell homeostasis." Paris 6, 2005. http://www.theses.fr/2005PA066547.
Full textHorak, Katherine Eileen. "CD4+ Lymphocyte Regulation of Vascular and Cardiac Extracellular Matrix Structure and Function." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/196093.
Full textFeltquate, David Marc. "Helper T Cell Differentiation in DNA-Immunized Mice: A Dissertation." eScholarship@UMMS, 1998. http://escholarship.umassmed.edu/gsbs_diss/181.
Full textCox, Jennifer H. "The function of the CD4 co-receptor for T helper cell activation and HIV infection." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413989.
Full textHu, Jian. "Etude de la régulation de l'activation de clônes de lymphocytes T humains Helpers et cytotoxiques par les molécules CD2." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb376144010.
Full textTanabe, Kazutaka. "Migration of splenic lymphocytes promotes liver fibrosis through modification of T helper cytokine balance in mice." Kyoto University, 2015. http://hdl.handle.net/2433/200488.
Full textSather, Blythe Duke. "CD4+ Foxp3+ regulatory T cell homing & homeostasis /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8343.
Full textBlackburn, Matthew James. "Characterization of a CD4 T cell population enriched in T follicular helper cells in macaques during chronic SIV infection." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12055.
Full textA preventive vaccine for HIV infection is urgently needed to curb the HIV/AIDS pandemic. To date only one human trial testing the combination of an ALVAC-HIV/gp120 protein strategy (Thai trail) has resulted in some protection from HIV infection. The correlate of protection elicited by this vaccine strategy was non-neutralizing antibodies to the gp120 protein. Nevertheless, the overall efficacy of the Thai trial was limited (31.2%); indicating that more work needs to be performed to ameliorate the Thai trial vaccine efficacy. T Follicular Helper (TFH) cells are subset of CD4 T cells that localize within the follicular region of lymph nodes, are required for the formation and maintenance of the germinal center, and provide help to B cells. TFH may therefore be critical for the development of effective antibodies to HIV/SIV. Here, we characterize TFH in different lymphoid compartments of naïve and infected rhesus macaques, the preferred animal model to assess the efficacy of candidate vaccines for HIV. First, we looked at the frequency of TFH within the various lymphoid compartments. TFH, characterized as PD-1++, ICOS++ and CCR7-, were higher within the spleen, the lamina propria of the rectal mucosa, and the tonsils than the lymph nodes. Interestingly, during chronic SIV infection, the frequency of TFH significantly increased in the lymph nodes while remaining fairly constant in the spleen. We then functionally characterized TFH in the lymph nodes of infected and non-infected macaques by performing an intracellular cytokine staining to measure the production of IFN-γ, TNF-α, IL-17, and IL-21 after in vitro stimulation with PMA-ionomycin and SIV-env and SIV-gag overlapping peptides. Interestingly, while TFH (CCR7-/PD-1++) and non-TFH were capable of producing IFN-γ, TNF-α and IL-21 after stimulation with PMA- ionomycin, in chronically infected animals, we observed an impaired production of IL-21. As localization in the germinal center is believed to be relevant for TFH functionality, we established a migrational assay as a way to better discriminate TFH from non-TFH in macaques. The aim was to mimic the in vivo migration of non-TFH to the T cell zone and of TFH to the B cell zone of the lymph nodes, induced by CCL19/CCL21, and CXCL13, respectively, using a two-step assay. We obtained an enrichment of phenotypic defined non-TFH (first migration: CCL19/CCL21) and TFH cells (second migration: CXCL13) from lymph nodes from both naïve and infected macaques. We show that CD4 T cells from naïve macaques that migrated to the CXCL13 had higher levels of Bcl-6 expression and were capable of producing higher levels of IL-21 and lower levels of IFN-γ than cells that migrated to the CCL19 and CCL21-T zone chemokines. Additionally, in SIV infected macaques, CD4 T cells that migrated to CXCL13 were impaired in the production of IL-21 following stimulation with PMA- ionomycin. These results validate our two-step migration assay as an innovative way to study TFH in macaques.
Pouche, Lucie. "Variabilité d'origine génétique et épigénétique de la pharmacodynamie des inhibiteurs de la calcineurine en transplantation rénale." Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0017/document.
Full textInter-individual genetic variation might account for diverse efficacy and toxicity of calcineurin inhibitors (cyclosporin and tacrolimus). In particular, some variants located within genes coding for proteins of the calcineurin pathway can explain part of this variability. In this manuscript, a panel of candidate genes was selected based on bibliographic review and tested in a pharmacogenetics study encompassing 381 renal transplants followed for one year after surgery. None of these candidates was associated with the acute rejection or serious infection risks. Furthermore, the pharmacodynamic variability of these drugs was also investigated, exploring the use of epigenomics profiling as proximal readout of the calcineurin inhibition treatment. In particular, we investigated the impact of drug exposure on DNA methylation in two experimental models. Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq, Ion Proton technology) was deployed in JURKAT cell line, used as in vitro model, and in CD4 T lymphocytes isolated from mice treated with either cyclosporin or tacrolimus for three months. After sequencing, the differentiated methylated regions caused by drug exposure were analyzed. Bioinformatics analyses were performed using SAMtools (Li et al., 2009), BEDtools (Quinlan and Hall, 2010), MACS2 (Zhang et al., 2008) and Diffbind (Stark and Brown, 2011 - Bioconductor). Overall, the genome-wide analysis revealed only 24 regions with a differentiated enrichment in DNA methylation after three month-tacrolimus treatment, indicating a targeted effect of these treatments on a subset of key genes. Of note, CALM2 promoter, coding for the calmodulin isoform 2 protein, showed significant hypermethylation in tacrolimus-treated mice. These preliminary results corroborate the interest in using DNA methylation as promising approach to identify candidate biomarkers for therapeutic drug monitoring in calcineurin inhibitor treatments
Bharath, Krishnan Nair Sreekumar. "The Role of IkZF Factors in Mediating TH1/TFH Development and Flexibility." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96583.
Full textPh. D.
T-helper (TH) cells are an important component of the immune system, as these cells aid in the fight against pathogens by secreting factors that either accentuate the inflammatory response during infection or attenuate immune responses post infection. Such effects are made possible because T-helper cells can differentiate into a variety of subsets, with each subset being an important mediator in maintaining immune homeostasis. For example, the T-helper cell subset called TH1 plays a vital role in the fight against intracellular pathogens such as viruses and certain parasites, while T-follicular helper (TFH) cells aid in the production of antibodies specific to the invading pathogen. The development of such subsets occur when cell extrinsic signals, called cytokines, lead to the activation or induction of cell intrinsic proteins called transcription factors. Interestingly, research over the years have shown that T-helper cells are highly adaptable in nature, with one subset having the ability to attain certain characteristic features of other subsets. This malleable nature of T-helper cells relies on several factors, with cytokines within the micro-environment being an important one. Although this form of flexibility is efficient and beneficial at times, it can also be detrimental, as such flexibility is known to promote certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and type 1 diabetes. Such detrimental effects are thought to be due to cytokines within the environment. Therefore understanding how cytokines influence the flexible nature of T-helper cells is important; as controlling such flexibility (either by regulating cytokines or the transcription factors activated as a consequence) could prevent the propagation of undesired T-helper cell functions. As such, the work in this dissertation hopes to uncover how one such cytokine, termed Interleukin-2 (IL-2) mediates the flexibility between TH1 and TFH cells. The work highlighted in this dissertation broadens our understanding of how cytokines influence T-helper cell development and flexibility, and consequently allows the design of novel therapeutic strategies to combat autoimmune diseases.
URGELL, LAFONT PASCALE. "Evolution des populations lymphocytaires cd4+ et cd8+ dans le sang au cours de la polyarthrite rhumatoide : etude longitudinale a propos de 39 cas." Toulouse 3, 1992. http://www.theses.fr/1992TOU31005.
Full textLeen, Ann Marie. "Differential of Epstein-Barr virus (EBV) latent cycle proteins for human CD4+T helper 1 responses." Thesis, University of Birmingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397405.
Full textVerhoef, Adrienne. "Characterisation of the CD4+ T lymphocyte response to the group II allergen of Dermatophagoides spp." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307517.
Full textPowell, Michael D. "Insights Into the Regulatory Requirements for T Follicular Helper Cell Development." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89085.
Full textPh. D.
Specialized cells called T helper cells serve as a critical interface between the innate (first line of defense) and adaptive (specialized and long-term) immune systems. During the course of an infection, T helper cells are responsible for orchestrating the immune-mediated elimination of invading viruses, bacteria, and parasites. This wide breadth of functionality is achieved through the formation of distinct T helper subsets including T helper 1 (TH1), TH2, TH17, and T follicular helper (TFH) populations. Individual subsets have distinct developmental requirements and have unique functions within the immune system. For example, TFH cells are required for the production of effective antibodies that recognize invading pathogens, leading to their subsequent elimination. This naturally occurring process is the basis for a number of modern medical therapies including vaccination. Conversely, aberrant generation of antibodies that recognize host tissues can result in the onset of various autoimmune diseases including lupus, multiple sclerosis, and crohn’s disease. Due to the importance of TFH cells to human health, there is intense interest in understanding how these cells are formed. It is recognized that the generation of these therapeutically important immune cells is mediated by numerous cell-extrinsic andintrinsic influences, including proteins in their cellular environment called cytokines, and important proteins inside of the cell called transcription factors. However, as this is a complicated and multi-step process, many questions remain regarding the identity of these cytokines and transcription factors. The work in this dissertation seeks to understand how cellextrinsic cytokine signals and cell-intrinsic transcription factor activities are integrated to properly regulate TFH cell development. Collectively, this body of work significantly advances our understanding of the regulatory mechanisms that govern TFH cell differentiation, setting the basis for the rational design of novel immunotherapeutic strategies and increasingly effective vaccines.
Blalock, Emily L. "Roles of TH2 and TH17 CD4+ T-Helper Cell Cytokines in the Pathogenesis of Experiemental Cytomegalovirus Retinitis." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/biology_diss/122.
Full textTownsend, William Mathew. "A study of CD4+ follicular helper T cells in the follicular lymphoma microenvironment and normal germinal centres." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/a-study-of-cd4-follicular-helper-t-cells-in-the-follicular-lymphoma-microenvironment-and-normal-germinal-centres(744b7c2f-f848-4c41-8fd1-687dc2201f6b).html.
Full textDiSanto, James Philip. "Molecular events in human T cell activation : CD4, CD8 and the human Lyt-3 molecules /." Access full-text from WCMC, 1989. http://proquest.umi.com/pqdweb?did=745024391&sid=1&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Full text