Academic literature on the topic 'Macaulay 2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Macaulay 2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Macaulay 2"
Frühbis-Krüger, Anne, and Alexander Neumer. "Simple Cohen–Macaulay Codimension 2 Singularities." Communications in Algebra 38, no. 2 (February 12, 2010): 454–95. http://dx.doi.org/10.1080/00927870802606018.
Full textMCKELVY, WILLIAM R. "TWO UNPUBLISHED MACAULAY LETTERS." Notes and Queries 45, no. 2 (June 1, 1998): 215–16. http://dx.doi.org/10.1093/nq/45-2-215.
Full textSmith, Larry. "Some Rings of Invariants that are Cohen-Macaulay." Canadian Mathematical Bulletin 39, no. 2 (June 1, 1996): 238–40. http://dx.doi.org/10.4153/cmb-1996-030-2.
Full textHong Loan, Nguyen. "On certain invariants of idealizations." Studia Scientiarum Mathematicarum Hungarica 51, no. 3 (September 1, 2014): 357–65. http://dx.doi.org/10.1556/sscmath.51.2014.3.1288.
Full textNaeem, Muhammad. "Cohen–Macaulay monomial ideals of codimension 2." manuscripta mathematica 127, no. 4 (October 16, 2008): 533–45. http://dx.doi.org/10.1007/s00229-008-0217-4.
Full textHoang, Do Trong, Giancarlo Rinaldo, and Naoki Terai. "Cohen-Macaulay and (S2) Properties of the Second Power of Squarefree Monomial Ideals." Mathematics 7, no. 8 (July 31, 2019): 684. http://dx.doi.org/10.3390/math7080684.
Full textJafari, Madineh, Amir Mafi, and Hero Saremi. "Sequentially cohen-macaulay matroidal ideals." Filomat 34, no. 13 (2020): 4233–44. http://dx.doi.org/10.2298/fil2013233j.
Full textBallhatchet, Kenneth. "The importance of Macaulay." Journal of the Royal Asiatic Society of Great Britain & Ireland 122, no. 1 (January 1990): 91–94. http://dx.doi.org/10.1017/s0035869x00107877.
Full textHOLM, HENRIK. "THE STRUCTURE OF BALANCED BIG COHEN–MACAULAY MODULES OVER COHEN–MACAULAY RINGS." Glasgow Mathematical Journal 59, no. 3 (June 10, 2016): 549–61. http://dx.doi.org/10.1017/s0017089516000343.
Full textHiramatsu, Naoya. "Degenerations of graded Cohen-Macaulay modules." Journal of Commutative Algebra 7, no. 2 (June 2015): 221–39. http://dx.doi.org/10.1216/jca-2015-7-2-221.
Full textDissertations / Theses on the topic "Macaulay 2"
Renz, Carolina Noele. "Sobre anéis locais Cohen-Maucaulay com Dimensão de imersão e + d - 2 : uma conjectura de Sally." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/23240.
Full textThis work develops the proof, given by Wang in 1977, for Sally's conjecture, stated in 1983. The conjecture says that given a local Noetherian Cohen-Macaulay ring of dimension d and embedding dimension e + d - 2, where e is its multiplicity, its associated graded ring has depth greater than or equal to d - 1. Using a property proved by Sally, in 1979, called the Sally Machine, we reduce the problem to the 2-dimensional case proving that the depth of its associated graded ring is positive.
Macaulay, Zachary. "Zachary Macaulay and the Development of the Sierra Leone Company, 1793-4 - Part 2, Journal, October-December 1793." Universität Leipzig, 2002. https://ul.qucosa.de/id/qucosa%3A33952.
Full textAtanasov, Risto. "Groups of geometric dimension 2." Diss., Online access via UMI:, 2007.
Find full textSullivan, Melissa. "Revisioning middlebrow culture Virginia Woolf, Rose Macaulay, and the politics of taste, 1894-1941 /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 317 p, 2008. http://proquest.umi.com/pqdweb?did=1601514451&sid=1&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textBooks on the topic "Macaulay 2"
Eisenbud, David. Computations in Algebraic Geometry with Macaulay 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002.
Find full textEisenbud, David, Michael Stillman, Daniel R. Grayson, and Bernd Sturmfels, eds. Computations in Algebraic Geometry with Macaulay 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1.
Full textCampbell, David, ed. Stewart Macaulay: Selected Works. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33930-2.
Full textDavid, Eisenbud, ed. Computations in algebraic geometry with Macaulay 2. Berlin: Springer, 2002.
Find full textSturmfels, Bernd. Computations in Algebraic Geometry with Macaulay 2. Springer, 2001.
Find full textMacaulay, Thomas. The Miscellaneous Writings of Lord Macaulay (Collected Works of Thomas Macaulay 2 volumes). Classic Books, 2000.
Find full textMacaulay, Thomas. Speeches (Collected Works of Thomas Macaulay 2 volumes). Classic Books, 2000.
Find full textMacaulay, Macaulay Thomas Babington. Biographies, Lays and Poems, Part 2 (The Complete Writings of Lord Macaulay). Kessinger Publishing, 2004.
Find full textBook chapters on the topic "Macaulay 2"
Sturmfels, Bernd. "Ideals, Varieties and Macaulay 2." In Computations in Algebraic Geometry with Macaulay 2, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_1.
Full textSchreyer, Frank-Olaf, and Fabio Tonoli. "Needles in a Haystack: Special Varieties via Small Fields." In Computations in Algebraic Geometry with Macaulay 2, 251–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_10.
Full textWalther, Uli. "D-modules and Cohomology of Varieties." In Computations in Algebraic Geometry with Macaulay 2, 281–323. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_11.
Full textEisenbud, David. "Projective Geometry and Homological Algebra." In Computations in Algebraic Geometry with Macaulay 2, 17–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_2.
Full textGrayson, Daniel R., and Michael E. Stillman. "Data Types, Functions, and Programming." In Computations in Algebraic Geometry with Macaulay 2, 41–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_3.
Full textSmith, Gregory G., and Bernd Sturmfels. "Teaching the Geometry of Schemes." In Computations in Algebraic Geometry with Macaulay 2, 55–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_4.
Full textHoşten, Serkan, and Gregory G. Smith. "Monomial Ideals." In Computations in Algebraic Geometry with Macaulay 2, 73–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_5.
Full textSottile, Frank. "From Enumerative Geometry to Solving Systems of Polynomial Equations." In Computations in Algebraic Geometry with Macaulay 2, 101–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_6.
Full textAvramov, Luchezar L., and Daniel R. Grayson. "Resolutions and Cohomology over Complete Intersections." In Computations in Algebraic Geometry with Macaulay 2, 131–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_7.
Full textStillman, Michael, Bernd Sturmfels, and Rekha Thomas. "Algorithms for the Toric Hilbert Scheme." In Computations in Algebraic Geometry with Macaulay 2, 179–214. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04851-1_8.
Full textConference papers on the topic "Macaulay 2"
LEYKIN, ANTON. "D-MODULES FOR MACAULAY 2." In Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0017.
Full text