Dissertations / Theses on the topic 'Machine and deep learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Machine and deep learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fan, Shuangfei. "Deep Representation Learning on Labeled Graphs." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96596.
Full textDoctor of Philosophy
Graphs are one of the most important and powerful data structures for conveying the complex and correlated information among data points. In this research, we aim to provide more robust and accurate models for some graph specific tasks, such as collective classification and graph generation, by designing deep learning models to learn better task-specific representations for graphs. First, we studied the collective classification problem in graphs and proposed recurrent collective classification, a variant of the iterative classification algorithm that is more robust to situations where predictions are noisy or inaccurate. Then we studied the problem of graph generation using deep generative models. We first proposed a deep generative model using the GAN framework that generates labeled graphs. Then in order to support more applications and also get more control over the generated graphs, we extended the problem of graph generation to conditional graph generation which can then be applied to various applications for modeling graph evolution and transformation.
Zhuang, Zhongfang. "Deep Learning on Attributed Sequences." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/507.
Full textElmarakeby, Haitham Abdulrahman. "Deep Learning for Biological Problems." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/86264.
Full textPh. D.
Arnold, Ludovic. "Learning Deep Representations : Toward a better new understanding of the deep learning paradigm." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00842447.
Full textTegendal, Lukas. "Watermarking in Audio using Deep Learning." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159191.
Full textShi, Shaohuai. "Communication optimizations for distributed deep learning." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/813.
Full textManda, Kundan Reddy. "Sentiment Analysis of Twitter Data Using Machine Learning and Deep Learning Methods." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18447.
Full textFlowers, Bryse Austin. "Adversarial RFML: Evading Deep Learning Enabled Signal Classification." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91987.
Full textMaster of Science
Deep learning is beginning to permeate many commercial products and is being included in prototypes for next generation wireless communications devices. This technology can provide huge breakthroughs in autonomy; however, it is not sufficient to study the effectiveness of deep learning in an idealized laboratory environment, the real world is often harsh and/or adversarial. Therefore, it is important to know how, and when, these deep learning enabled devices will fail in the presence of bad actors before they are deployed in high risk environments, such as battlefields or connected autonomous vehicle communications. This thesis studies a small subset of the security vulnerabilities of deep learning enabled wireless communications devices by attempting to evade deep learning enabled signal classification by an eavesdropper while maintaining effective wireless communications with a cooperative receiver. The primary goal of this thesis is to define the threats to, and identify the current vulnerabilities of, deep learning enabled signal classification systems, because a system can only be secured once its vulnerabilities are known.
Franch, Gabriele. "Deep Learning for Spatiotemporal Nowcasting." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/295096.
Full textRigaki, Maria. "Adversarial Deep Learning Against Intrusion Detection Classifiers." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64577.
Full textMariani, Tommaso. "Deep reinforcement learning for industrial applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20548/.
Full textIda, Yasutoshi. "Algorithms for Accelerating Machine Learning with Wide and Deep Models." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263771.
Full textKostopouls, Theodore P. "A Machine Learning approach to Febrile Classification." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1173.
Full textShao, Han. "Pretraining Deep Learning Models for Natural Language Understanding." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin158955297757398.
Full textDarborg, Alex. "Real-time face recognition using one-shot learning : A deep learning and machine learning project." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-40069.
Full textGeras, Krzysztof Jerzy. "Exploiting diversity for efficient machine learning." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28839.
Full textZhao, Yajing. "Chaotic Model Prediction with Machine Learning." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8419.
Full textJaderberg, Maxwell. "Deep learning for text spotting." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:e893c11e-6b6b-4d11-bb25-846bcef9b13e.
Full textAl, Chalati Abdul Aziz, and Syed Asad Naveed. "Transfer Learning for Machine Diagnostics." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43185.
Full textMorri, Francesco. "A thermodynamic approach to deep learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textEmenonye, Don-Roberts Ugochukwu. "Application of Machine Learning to Multi Antenna Transmission and Machine Type Resource Allocation." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99956.
Full textMaster of Science
Wireless communication systems is a well researched area of engineering that has continually evolved over the past decades. This constant evolution and development has led to well formulated theoretical baselines in terms of reliability and efficiency. This two part thesis investigates the possibility of improving these wireless systems with machine learning. First, with the goal of designing more resilient codes for transmission, we propose to redesign the transmit and receive blocks of the physical layer. We focus on jointly optimizing the transmit and receive blocks to produce a set of transmit codes that are resilient to channel impairments. We compare our results to the current conventional codes for various transmit and receive antenna configuration. The second part of this work investigates the possibility of designing a distributed multi-access scheme for machine type devices. In this scheme, MTDs pseudo-randomly transmit their data by randomly selecting time slots. This results in the possibility of a large number of collisions occurring in the duration of these slots. To alleviate the resulting congestion, we employ a heterogeneous network and investigate the optimal MTD-BS association which minimizes the long term congestion experienced in the overall network. Our results show that we can derive the optimal MTD-BS algorithm when the number of MTDs is less than the total number of slots.
Addis, Antonio. "Deep reinforcement learning optimization of video streaming." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textMansanet, Sandín Jorge. "Contributions to Deep Learning Models." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61296.
Full text[ES] El Aprendizaje Profundo (Deep Learning en inglés) es una nueva área dentro del campo del Aprendizaje Automático que pretende crear modelos computacionales que aprendan varias representaciones de los datos utilizando arquitecturas profundas. Este tipo de métodos ha ganado mucha popularidad durante los últimos años debido a los impresionantes resultados obtenidos en diferentes tareas como el reconocimiento automático del habla, el reconocimiento y la detección automática de objetos, el procesamiento de lenguajes naturales, etc. El principal objetivo de esta tesis es aportar una serie de contribuciones realizadas dentro del marco del Aprendizaje Profundo, particularmente enfocadas a problemas relacionados con la visión por computador. Estas contribuciones se resumen en dos novedosos métodos: una nueva técnica de regularización para Restricted Boltzmann Machines llamada Mask Selective Regularization (MSR), y una potente red neuronal discriminativa llamada Local Deep Neural Network (Local-DNN). Por una lado, el método MSR se basa en aprovechar las ventajas de las técnicas de regularización clásicas basadas en las normas L2 y L1. Ambas regularizaciones se aplican sobre los parámetros de la RBM teniendo en cuenta el estado del modelo durante el entrenamiento y la topología de los datos de entrada. Por otro lado, El modelo Local-DNN se basa en dos conceptos fundamentales: características locales y arquitecturas profundas. De forma similar a las redes convolucionales, Local-DNN restringe el aprendizaje a regiones locales de la imagen de entrada. La red neuronal pretende clasificar cada característica local con la etiqueta de la imagen a la que pertenece, y, finalmente, todas estas contribuciones se tienen en cuenta utilizando un sencillo sistema de votación durante la predicción. Los métodos propuestos a lo largo de la tesis han sido ampliamente evaluados en varios experimentos utilizando distintas bases de datos, principalmente en problemas de visión por computador. Los resultados obtenidos muestran el buen funcionamiento de dichos métodos, y sirven para validar las estrategias planteadas. Entre ellos, destacan los resultados obtenidos aplicando el modelo Local-DNN al problema del reconocimiento de género utilizando imágenes faciales, donde se han mejorado los resultados publicados del estado del arte.
[CAT] L'Aprenentatge Profund (Deep Learning en anglès) és una nova àrea dins el camp de l'Aprenentatge Automàtic que pretén crear models computacionals que aprenguen diverses representacions de les dades utilitzant arquitectures profundes. Aquest tipus de mètodes ha guanyat molta popularitat durant els últims anys a causa dels impressionants resultats obtinguts en diverses tasques com el reconeixement automàtic de la parla, el reconeixement i la detecció automàtica d'objectes, el processament de llenguatges naturals, etc. El principal objectiu d'aquesta tesi és aportar una sèrie de contribucions realitzades dins del marc de l'Aprenentatge Profund, particularment enfocades a problemes relacionats amb la visió per computador. Aquestes contribucions es resumeixen en dos nous mètodes: una nova tècnica de regularització per Restricted Boltzmann Machines anomenada Mask Selective Regularization (MSR), i una potent xarxa neuronal discriminativa anomenada Local Deep Neural Network ( Local-DNN). D'una banda, el mètode MSR es basa en aprofitar els avantatges de les tècniques de regularització clàssiques basades en les normes L2 i L1. Les dues regularitzacions s'apliquen sobre els paràmetres de la RBM tenint en compte l'estat del model durant l'entrenament i la topologia de les dades d'entrada. D'altra banda, el model Local-DNN es basa en dos conceptes fonamentals: característiques locals i arquitectures profundes. De forma similar a les xarxes convolucionals, Local-DNN restringeix l'aprenentatge a regions locals de la imatge d'entrada. La xarxa neuronal pretén classificar cada característica local amb l'etiqueta de la imatge a la qual pertany, i, finalment, totes aquestes contribucions es fusionen durant la predicció utilitzant un senzill sistema de votació. Els mètodes proposats al llarg de la tesi han estat àmpliament avaluats en diversos experiments utilitzant diferents bases de dades, principalment en problemes de visió per computador. Els resultats obtinguts mostren el bon funcionament d'aquests mètodes, i serveixen per validar les estratègies plantejades. Entre d'ells, destaquen els resultats obtinguts aplicant el model Local-DNN al problema del reconeixement de gènere utilitzant imatges facials, on s'han millorat els resultats publicats de l'estat de l'art.
Mansanet Sandín, J. (2016). Contributions to Deep Learning Models [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61296
TESIS
Kendall, Alex Guy. "Geometry and uncertainty in deep learning for computer vision." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287944.
Full textWeideman, Ryan. "Robot Navigation in Cluttered Environments with Deep Reinforcement Learning." DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2011.
Full textJanagam, Anirudh, and Saddam Hossen. "Analysis of Network Intrusion Detection System with Machine Learning Algorithms (Deep Reinforcement Learning Algorithm)." Thesis, Blekinge Tekniska Högskola, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17126.
Full textMukhtar, Hind. "Machine Learning Enabled-Localization in 5G and LTE Using Image Classification and Deep Learning." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42449.
Full textMoosavi, Seyedeh Samira. "Fingerprint-based localization in massive MIMO systems using machine learning and deep learning methods." Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/69511.
Full textAs wireless communication networks are growing into 5G, an enormous amount of data will be produced and shared on the new platform, which can be employed in promoting new services. Location information of mobile terminals (MTs) is remarkably useful among them, which can be used in different use cases of inquiry and information services, community services, personal tracking, as well as location-aware communications. Nowadays, although the Global Positioning System (GPS) offers the possibility to localize MTs, it has poor performance in urban areas where a direct line-of-sight (LoS) to the satellites is blocked by many tall buildings. Besides, GPS has a high power consumption. Consequently, the ranging based localization techniques, which are based on radio signal information received from MTs such as time-of-arrival (ToA), angle-of-arrival (AoA), and received signal strength (RSS), are not able to provide satisfactory localization accuracy. Therefore, it is a notably challenging problem to provide precise and reliable location information of MTs in complex environments with rich scattering and multipath propagation. Fingerprinting (FP)-based machine learning methods are widely used for localization in complex areas due to their high reliability, cost-efficiency, and accuracy and they are flexible to be used in many systems. In 5G networks, besides accommodating more users at higher data rates with better reliability while consuming less power, high accuracy localization is also required in 5G networks. To meet such a challenge, massive multiple-input multiple-output (MIMO) systems have been introduced in 5G as a powerful and potential technology to not only improve spectral and energy efficiency using relatively simple processing but also provide an accurate locations of MTs using a very large number of antennas combined with high carrier frequencies. There are two types of massive MIMO (M-MIMO), distributed and collocated. Here, we aim to use the FP-based method in M-MIMO systems to provide an accurate and reliable localization system in a 5G wireless network. We mainly focus on the two extremes of the M-MIMO paradigm. A large collocated antenna array (i.e., collocated M-MIMO ) and a large geographically distributed antenna array (i.e., distributed M-MIMO). Then, we extract signal and channel features from the received signal in M-MIMO systems as fingerprints and propose FP-based models using clustering and regression to estimate MT's location. Through this procedure, we are able to improve localization performance significantly and reduce the computational complexity of the FP-based method.
Cabrera, Dalmazzo David. "Machine learning and deep neural networks approach to modelling musical gestures." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/670399.
Full textEls gestos es poden definir com una forma de comunicació no verbal associada a una intenció o a l’articulació d’un estat emocional. No només formen part intrínsecament del llenguatge humà, sinó que també expliquen detalls específics de l’execució del coneixement del cos. Els gestos són objecte d’estudi no només en el camp de la recerca lingüística, sinó també en la dansa, l’esport, la rehabilitació i la música; on el terme s’entén com a “tècnica apresa del cos”. Per tant, en l’educació musical, els gestos s’assumeixen com a habilitats automomotrius apreses mitjançant la pràctica repetitiva, per aprendre i ajustar les accions motrius de manera ptima. En conseqüència, aquests gestos estan destinats a formar part del repertori tècnic de l’intèrpret per prendre accions/decisions ràpides en temps real durant la interpretació, suposant que no només són rellevants en les capacitats expressives de la música, sinó que també ho són com a mètode per a un correcte desenvolupament d’hàbits (“çonsum d’energia”) per evitar lesions. En aquesta tesi, hem aplicat tècniques de Machine Learning (ML) d’última generació per modelar els gestos de proa de violí en músics professionals. Concretament, hem enregistrat una base de dades d’intèrprets experts i d’estudiants de diferents nivells i hem desenvolupat tres estratègies per classificar i reconèixer aquests gestos en temps real: a) Primer, hem desenvolupar un sistema de sincronització multimodal per enregistrar dades de sensors d’àudio, vídeo i IMU amb una referència de tamps unificada. Hem programat una aplicació C++ per visualitzar els resultats dels models ML. Hem implementat un Hidden Markov Model per detectar la disposició dels dits i la realització de gestos de l’arc. b) Un segon enfocament aplicatés un sistema que extreu les característiques generals de les seqüències de dades de les mostres de gestos, creant un conjunt de dades d’àudio i de dades de moviment d’intèrprets experts implementant un algoritme de Deep Neural Networks. Per fer-ho, hem aplicat el model híbrid d’arquitectura CNN-LSTM. c) A més, s’ha fet una anàlisi basada en l’espectrograma Mel que pot llegir i extreure patrons només de dades d’àudio, obrint l’opció de reconèixer informació rellevant dels enregistraments d’àudio sense necessitat de sensors externs per obtenir resultats similars. Totes aquestes tècniques són complementàries i s’han incorporat a una aplicació d’educació com a assistent d’ordinador per millorar la pràctica dels aprenents de música proporcionant comentaris útils en temps real. Aquesta aplicació serà provada en una institució d’educació professional.
Los gestos pueden definirse como una forma de comunicación no verbal asociada con una intención o una articulación del estado emocional. No solo forman parte intrínsec del lenguaje humano, sino que también explican detalles específicos de la ejecución del conocimiento corporal. Los gestos se están estudiando no solo en el campo de la investigación del lenguaje, sino también en danza, deportes, rehabilitación y música; donde el término se entiende como una “técnica aprendida del cuerpo”. Por tanto, en la educación musical, los gestos se asumen como habilidades motoras automáticas aprendidas mediante la práctica repetitiva, para aprender y afinar las acciones motoras de forma óptima. Por lo tanto, esos gestos están destinados a ser parte del repertorio técnico del intérprete para tomar acciones/decisiones rápidas en tiempo real, asumiendo que no solo son relevantes en las capacidades expresivas de la música sino también, como un método para desarrollar hábitos correctos de 'consumo de energía’ para evitar lesiones. En esta tesis, aplicamos técnicas de Machine Learning (ML) de última generación para modelar los gestos de arco de violín en interpretes profesionales. Concretamente, creamos una base de datos con músicos expertos y también con diferentes niveles de estudiantes, desarrollando tres estrategias para clasificar y reconocer esos gestos en tiempo real: a) Primero, desarrollamos un sistema de sincronización multimodal para grabar audio, video y datos de sensores IMU con una referencia de tiempo unificada. Programamos una aplicación C++ personalizada para visualizar el resultado de los modelos ML. Implementamos un Hidden Markov Model para detectar la disposición de los dedos y la ejecución del gestos del arco. b) Desarrollamos un sistema que extrae características de tiempo generales en todas las muestras de gestos, creando un conjunto de datos de audio y datos de movimiento de músicos expertos implementando un algoritmo Deep neural Networks; particularmente, el modelo híbrido CNN-LSTM. c) Además, un análisis basado en espectrograma Mel que puede leer y extraer patrones únicamente usando datos de audio, abriendo la opción de reconocer información relevante usando las grabaciones de audio sin la necesidad de sensores externos para lograr resultados similares. Todas estas técnicas son complementarias y también se incorporan en una aplicación educativa como asistente computacional para mejorar la práctica de los estudiantes de música, al proporcionar información útil en tiempo real. La aplicación se probará en una institución de educación profesional.
Valeriana, Riccardo. "Deep Learning: Algoritmo di Classificazione Immagini." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17557/.
Full textPotuaud, Sylvain. "Human Grasp Synthesis with Deep Learning." Thesis, KTH, Robotik, perception och lärande, RPL, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229915.
Full textDen mänskliga handen är en av de mest komplexa organen i människokroppen. Eftersom våra händer gör det möjligt för oss att hantera olika föremål på många olika sätt, har de spelat en avgörande roll i människans utveckling. Att kunna styra händer är ett viktigt steg mot interaktion mellan människor och robotar, samt skapa realistiska simuleringar av virtuella människor. Virtualla handgrepp har tidigare mest studerats för att generera fysiskt stabila grepp. I detta papper behandlas en annan aspekt: hur man genererar realistiska grepp som liknar en människas grepp. För att förenkla problemet antas att handledspositionen är känd och endast fingerkonfigurationen genereras. Eftersom hur realistiskt ett grepp är inte är lätt att beskriva i ekvationer, används istället data-driven maskininlärningsteknik. Detta papper undersöker tillämpningen av djupa neurala nätverken (Deep Neural Networks) för att generera grepp. Två olika representationer av former i 3D (punktmoln och bilder med djupinformation) och flera alternativa nätverksarkitekturer utvärderas med hjälp av en databas av mänskliga grepp samlad i en virtuell verklighetsmiljö. De resulterande genererade greppen är mycket realistiska och mänskliga. Även om det ibland förekommer något finger som penetrerar objektet, liknar den allmänna positioneringen av fingrarna den insamlade mänskliga datan. Denna goda prestanda gäller även för föremål i kategorier som aldrig tidigare setts av nätverket. I arbetet valideras också effektiviteten av ett data-drivet tillvägagångssätt baserat på djupa neurala nätverk för människoliknande syntes av grepp
Halle, Alex, and Alexander Hasse. "Topologieoptimierung mittels Deep Learning." Technische Universität Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A34343.
Full textYan, Jie Lu. "Development and validation of deep learning classifiers for antimicrobial peptide prediction." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3881886.
Full textHesamifard, Ehsan. "Privacy Preserving Machine Learning as a Service." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703277/.
Full textSolenne, Andrea. "Machine Learning nell'era del Digital Marketing." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20476/.
Full textBerry, Jeffrey James. "Machine Learning Methods for Articulatory Data." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/223348.
Full textAdams, William A. "Analysis of Robustness in Lane Detection using Machine Learning Models." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1449167611.
Full textRidolfi, Federico. "Applicazioni di deep learning per CAD mammografico." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12264/.
Full textBearzotti, Riccardo. "Structural damage detection using deep learning networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textWang, Qianlong. "Blockchain-Empowered Secure Machine Learning and Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1625183576139299.
Full textZhang, Yi. "NOVEL APPLICATIONS OF MACHINE LEARNING IN BIOINFORMATICS." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/83.
Full textIshaq, Omer. "Image Analysis and Deep Learning for Applications in Microscopy." Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-283846.
Full textAirola, Rasmus, and Kristoffer Hager. "Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-55129.
Full textWallis, David. "A study of machine learning and deep learning methods and their application to medical imaging." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST057.
Full textWe first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models. We first use Convolutional Neural Networks (CNNs) to automate mediastinal lymph node detection using FDG-PET/CT scans. We build a fully automated model to go directly from whole-body FDG-PET/CT scans to node localisation. The results show a comparable performance to an experienced physician. In the second half of the thesis we experimentally test the performance, interpretability, and stability of radiomic and CNN models on three datasets (2D brain MRI scans, 3D CT lung scans, 3D FDG-PET/CT mediastinal scans). We compare how the models improve as more data is available and examine whether there are patterns common to the different problems. We question whether current methods for model interpretation are satisfactory. We also investigate how precise segmentation affects the performance of the models
Houmadi, Sherri F. "THE APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS TO CLASSIFY PAINT DEFECTS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1807.
Full textLi, Zheng. "Assessing Structure–Property Relationships of Crystal Materials using Deep Learning." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99488.
Full textMaster of Science
Machine learning technologies, particularly deep learning, have demonstrated remarkable progress in facilitating the high-throughput materials discovery process. In essence, machine learning algorithms have the ability to uncover the hidden patterns of data and make appropriate decisions without being explicitly programmed. Nevertheless, implementing machine learning models in the field of material design remains a challenging task. One of the biggest limitations is our insufficient knowledge about the structure-property relationships for material systems. As the performance of machine learning models is to a large degree determined by the underlying material representation method, which typically requires the experts to have in-depth knowledge of the material systems. Thus, designing effective feature representation methods is always the most crucial aspect for machine learning model development and the process takes a significant amount of manual effort. Even though tremendous efforts have been made in recent years, the research process for robust feature representation methods is still slow. In this regard, we attempt to automate the feature engineering process with the assistance of advanced deep learning algorithms. Unlike the conventional machine learning models, our deep learning models (i.e., convolutional neural networks, graph neural networks) are capable of processing massive amounts of structured data such as spectrum and crystal graphs. Specifically, the deep learning models are explicitly designed to learn the hidden latent variables that are contained in crystal structures in an automatic fashion and provide accurate prediction results. We believe the deep learning models have huge potential to simplify the machine learning modeling process and facilitate the discovery of promising functional materials.
Conciatori, Marco. "tecniche di deep learning applicate a giochi atari." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19132/.
Full textMancevo, del Castillo Ayala Diego. "Compressing Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217316.
Full textHussain, Jabbar. "Deep Learning Black Box Problem." Thesis, Uppsala universitet, Institutionen för informatik och media, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393479.
Full textCastaño-Candamil, Sebastián [Verfasser], and Michael W. [Akademischer Betreuer] Tangermann. "Machine learning methods for motor performance decoding in adaptive deep brain stimulation." Freiburg : Universität, 2020. http://d-nb.info/1224808762/34.
Full text