Academic literature on the topic 'Machine Learning Bayésien'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine Learning Bayésien.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Machine Learning Bayésien"

1

Rajaoui, Nordine. "BAYÉSIEN VERSUS CMA-ES : OPTIMISATION DES HYPERPARAMÈTRES ML." Management & Data Science, 2023. http://dx.doi.org/10.36863/mds.a.24309.

Full text
Abstract:
L'optimisation des hyperparamètres est une étape cruciale dans le processus de développement de modèles de machine learning performants. Parmi les approches d'optimisation les plus populaires, on retrouve l'optimisation bayésienne et le CMA-ES (Covariance Matrix Adaptation Evolution Strategy), deux méthodes puissantes qui visent à explorer efficacement l'espace des hyperparamètres et à identifier les combinaisons optimales. Dans cet article, nous nous pencherons sur la comparaison entre l'optimisation bayésienne et le CMA-ES dans le cadre de l'optimisation des hyperparamètres en machine learni
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Machine Learning Bayésien"

1

Zecchin, Matteo. "Robust Machine Learning Approaches to Wireless Communication Networks." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS397.pdf.

Full text
Abstract:
L'intelligence artificielle est largement considérée comme un élément clé des systèmes sans fil de sixième génération. Dans cette thèse, nous nous focalisons sur les problèmes fondamentaux résultant de l'interaction entre ces deux technologies dans le but d'ouvrir la voie à l'adoption d'une IA fiable dans les futurs réseaux sans fil. Nous développons des algorithmes distribués qui permettent l'apprentissage collaboratif à la périphérie des réseaux sans fil malgré les problèmes de communication, le manque de fiabilité des travailleurs et l'hétérogénéité des données. Nous examinons ensuite d'un
APA, Harvard, Vancouver, ISO, and other styles
2

Huix, Tom. "Variational Inference : theory and large scale applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX071.

Full text
Abstract:
Cette thèse développe des méthodes d'Inférence Variationnelle pour l'apprentissage bayésien en grande dimension. L'approche bayésienne en machine learning permet de gérer l'incertitude épistémique des modèles et ainsi de mieux quantifier l'incertitude de ces modèles, ce qui est nécessaire dans de nombreuses applications de machine learning. Cependant, l'inférence bayésienne n'est souvent pas réalisable car la distribution à posteriori des paramètres du modèle n'est pas calculable en général. L'Inférence Variationnelle (VI) est une approche qui permet de contourner ce problème en approximant la
APA, Harvard, Vancouver, ISO, and other styles
3

Jarraya, Siala Aida. "Nouvelles paramétrisations de réseaux bayésiens et leur estimation implicite : famille exponentielle naturelle et mélange infini de Gaussiennes." Phd thesis, Nantes, 2013. https://archive.bu.univ-nantes.fr/pollux/show/show?id=aef89743-c009-457d-8c27-a888655a4e58.

Full text
Abstract:
L’apprentissage d’un réseau Bayésien consiste à estimer le graphe (la structure) et les paramètres des distributions de probabilités conditionnelles associées à ce graphe. Les algorithmes d’apprentissage de réseaux Bayésiens utilisent en pratique une approche Bayésienne classique d’estimation a posteriori dont les paramètres sont souvent déterminés par un expert ou définis de manière uniforme Le coeur de cette thèse concerne l’application aux réseaux Bayésiens de plusieurs avancées dans le domaine des Statistiques comme l’estimation implicite, les familles exponentielles naturelles ou les méla
APA, Harvard, Vancouver, ISO, and other styles
4

Jarraya, Siala Aida. "Nouvelles paramétrisations de réseaux Bayésiens et leur estimation implicite - Famille exponentielle naturelle et mélange infini de Gaussiennes." Phd thesis, Université de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00932447.

Full text
Abstract:
L'apprentissage d'un réseau Bayésien consiste à estimer le graphe (la structure) et les paramètres des distributions de probabilités conditionnelles associées à ce graphe. Les algorithmes d'apprentissage de réseaux Bayésiens utilisent en pratique une approche Bayésienne classique d'estimation a posteriori dont les paramètres sont souvent déterminés par un expert ou définis de manière uniforme Le coeur de cette thèse concerne l'application aux réseaux Bayésiens de plusieurs avancées dans le domaine des Statistiques comme l'estimation implicite, les familles exponentielles naturelles ou les méla
APA, Harvard, Vancouver, ISO, and other styles
5

Synnaeve, Gabriel. "Programmation et apprentissage bayésien pour les jeux vidéo multi-joueurs, application à l'intelligence artificielle de jeux de stratégies temps-réel." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00780635.

Full text
Abstract:
Cette thèse explore l'utilisation des modèles bayésiens dans les IA de jeux vidéo multi-joueurs, particulièrement l'IA des jeux de stratégie en temps réel (STR). Les jeux vidéo se situent entre la robotique et la simulation totale, car les autres joueurs ne sont pas simulés, et l'IA n'a pas de contrôle sur la simulation. Les jeux de STR demandent simultanément d'effectuer des actions reactives (contrôle d'unités) et de prendre des décisions stratégiques (technologiques, économiques) et tactiques (spatiales, temporelles). Nous avons utilisé la modélisation bayésienne comme une alternative à la
APA, Harvard, Vancouver, ISO, and other styles
6

Grappin, Edwin. "Model Averaging in Large Scale Learning." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLG001/document.

Full text
Abstract:
Les travaux de cette thèse explorent les propriétés de procédures d'estimation par agrégation appliquées aux problèmes de régressions en grande dimension. Les estimateurs par agrégation à poids exponentiels bénéficient de résultats théoriques optimaux sous une approche PAC-Bayésienne. Cependant, le comportement théorique de l'agrégat avec extit{prior} de Laplace n'est guère connu. Ce dernier est l'analogue du Lasso dans le cadre pseudo-bayésien. Le Chapitre 2 explicite une borne du risque de prédiction de cet estimateur. Le Chapitre 3 prouve qu'une méthode de simulation s'appuyant sur un proce
APA, Harvard, Vancouver, ISO, and other styles
7

Grappin, Edwin. "Model Averaging in Large Scale Learning." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLG001.

Full text
Abstract:
Les travaux de cette thèse explorent les propriétés de procédures d'estimation par agrégation appliquées aux problèmes de régressions en grande dimension. Les estimateurs par agrégation à poids exponentiels bénéficient de résultats théoriques optimaux sous une approche PAC-Bayésienne. Cependant, le comportement théorique de l'agrégat avec extit{prior} de Laplace n'est guère connu. Ce dernier est l'analogue du Lasso dans le cadre pseudo-bayésien. Le Chapitre 2 explicite une borne du risque de prédiction de cet estimateur. Le Chapitre 3 prouve qu'une méthode de simulation s'appuyant sur un proce
APA, Harvard, Vancouver, ISO, and other styles
8

Araya-López, Mauricio. "Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0002.

Full text
Abstract:
Cette thèse s'intéresse à des problèmes de prise de décision séquentielle dans lesquels l'acquisition d'information est une fin en soi. Plus précisément, elle cherche d'abord à savoir comment modifier le formalisme des POMDP pour exprimer des problèmes de collecte d'information et à proposer des algorithmes pour résoudre ces problèmes. Cette approche est alors étendue à des tâches d'apprentissage par renforcement consistant à apprendre activement le modèle d'un système. De plus, cette thèse propose un nouvel algorithme d'apprentissage par renforcement bayésien, lequel utilise des transitions l
APA, Harvard, Vancouver, ISO, and other styles
9

Araya-López, Mauricio. "Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00943513.

Full text
Abstract:
Le formalisme des MDP, comme ses variantes, sert typiquement à contrôler l'état d'un système par l'intermédiaire d'un agent et de sa politique. Lorsque l'agent fait face à des informations incomplètes, sa politique peut eff ectuer des actions pour acquérir de l'information typiquement (1) dans le cas d'une observabilité partielle, ou (2) dans le cas de l'apprentissage par renforcement. Toutefois cette information ne constitue qu'un moyen pour contrôler au mieux l'état du système, de sorte que la collecte d'informations n'est qu'une conséquence de la maximisation de la performance escomptée. Ce
APA, Harvard, Vancouver, ISO, and other styles
10

Rahier, Thibaud. "Réseaux Bayésiens pour fusion de données statiques et temporelles." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM083/document.

Full text
Abstract:
La prédiction et l'inférence sur des données temporelles sont très souvent effectuées en utilisant uniquement les séries temporelles. Nous sommes convaincus que ces tâches pourraient tirer parti de l'utilisation des métadonnées contextuelles associées aux séries temporelles, telles que l'emplacement, le type, etc. Réciproquement, les tâches de prédiction et d'inférence sur les métadonnées pourraient bénéficier des informations contenues dans les séries temporelles. Cependant, il n'existe pas de méthode standard pour modéliser conjointement les données de séries temporelles et les métadonnées d
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Machine Learning Bayésien"

1

E, Nicholson Ann, ed. Bayesian artificial intelligence. Chapman & Hall/CRC, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

E, Nicholson Ann, ed. Bayesian artificial intelligence. 2nd ed. CRC Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Korb, Kevin B., and Ann E. Nicholson. Bayesian Artificial Intelligence. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bayesian Artificial Intelligence. Taylor & Francis Group, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nielsen, Thomas D., and Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer New York, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!