Academic literature on the topic 'Machine learning. Data mining. Software measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine learning. Data mining. Software measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine learning. Data mining. Software measurement"
Bagriyanik, Selami, and Adem Karahoca. "Using Data Mining to Identify COSMIC Function Point Measurement Competence." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (December 1, 2018): 5253. http://dx.doi.org/10.11591/ijece.v8i6.pp5253-5259.
Full textParasich, Andrey, Victor Parasich, and Irina Parasich. "Training set formation in machine learning problems (review)." Information and Control Systems, no. 4 (September 13, 2021): 61–70. http://dx.doi.org/10.31799/1684-8853-2021-4-61-70.
Full textGunarathna, M. H. J. P., Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii, and M. K. N. Kumari. "Machine Learning Approaches to Develop Pedotransfer Functions for Tropical Sri Lankan Soils." Water 11, no. 9 (September 18, 2019): 1940. http://dx.doi.org/10.3390/w11091940.
Full textWilkening, Jan. "Towards Spatial Data Science: Bridging the Gap between GIS, Cartography and Data Science." Abstracts of the ICA 1 (July 15, 2019): 1–2. http://dx.doi.org/10.5194/ica-abs-1-403-2019.
Full textMakhlouf Shabou, Basma, Julien Tièche, Julien Knafou, and Arnaud Gaudinat. "Algorithmic methods to explore the automation of the appraisal of structured and unstructured digital data." Records Management Journal 30, no. 2 (July 3, 2020): 175–200. http://dx.doi.org/10.1108/rmj-09-2019-0049.
Full textAló, Richard, and Vladik Kreinovich. "Selected Papers from InTech'04." Journal of Advanced Computational Intelligence and Intelligent Informatics 10, no. 3 (May 20, 2006): 243–44. http://dx.doi.org/10.20965/jaciii.2006.p0243.
Full textJiao, Changyi. "Big Data Mining Optimization Algorithm Based on Machine Learning Model." Revue d'Intelligence Artificielle 34, no. 1 (February 29, 2020): 51–57. http://dx.doi.org/10.18280/ria.340107.
Full textMastoi, Qurat-ul-ain, Muhammad Suleman Memon, Abdullah Lakhan, Mazin Abed Mohammed, Mumtaz Qabulio, Fadi Al-Turjman, and Karrar Hameed Abdulkareem. "Machine learning-data mining integrated approach for premature ventricular contraction prediction." Neural Computing and Applications 33, no. 18 (March 14, 2021): 11703–19. http://dx.doi.org/10.1007/s00521-021-05820-2.
Full textGhaffarian, Seyed Mohammad, and Hamid Reza Shahriari. "Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques." ACM Computing Surveys 50, no. 4 (November 8, 2017): 1–36. http://dx.doi.org/10.1145/3092566.
Full textMallikharjuna, L. K., and V. S. K. Reddy. "An adaptive correlation based video data mining using machine learning." International Journal of Knowledge-based and Intelligent Engineering Systems 24, no. 1 (April 9, 2020): 1–9. http://dx.doi.org/10.3233/kes-200023.
Full textDissertations / Theses on the topic "Machine learning. Data mining. Software measurement"
Ammar, Kareem. "Multi-heuristic theory assessment with iterative selection." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3701.
Full textTitle from document title page. Document formatted into pages; contains viii, 106 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 105-106).
Badayos, Noah Garcia. "Machine Learning-Based Parameter Validation." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/47675.
Full textPh. D.
Thun, Julia, and Rebin Kadouri. "Automating debugging through data mining." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203244.
Full textDagens system genererar stora mängder av loggmeddelanden. Dessa meddelanden kan effektivt lagras, sökas och visualiseras genom att använda sig av logghanteringsverktyg. Analys av loggmeddelanden ger insikt i systemets beteende såsom prestanda, serverstatus och exekveringsfel som kan uppkomma i webbapplikationer. iStone AB vill undersöka möjligheten att automatisera felsökning. Eftersom iStone till mestadels utför deras felsökning manuellt så tar det tid att hitta fel inom systemet. Syftet var att därför att finna olika lösningar som reducerar tiden det tar att felsöka. En analys av loggmeddelanden inom access – och konsolloggar utfördes för att välja de mest lämpade data mining tekniker för iStone’s system. Data mining algoritmer och logghanteringsverktyg jämfördes. Resultatet av jämförelserna visade att ELK Stacken samt en blandning av Eclat och en hybrid algoritm (Eclat och Apriori) var de lämpligaste valen. För att visa att så är fallet så implementerades ELK Stacken och Eclat. De framställda resultaten visar att data mining och användning av en plattform för logganalys kan underlätta och minska den tid det tar för att felsöka.
Tierno, Ivan Alexandre Paiz. "Assessment of data-driven bayesian networks in software effort prediction." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/71952.
Full textSun, Boya. "PRECISION IMPROVEMENT AND COST REDUCTION FOR DEFECT MINING AND TESTING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1321827962.
Full textParisi, Luca. "A Knowledge Flow as a Software Product Line." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12217/.
Full textSivrioglu, Damla. "A Method For Product Defectiveness Prediction With Process Enactment Data In A Small Software Organization." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614516/index.pdf.
Full textIs process enactment data beneficial for defect prediction?&rdquo
, &ldquo
How can we use process enactment data?&rdquo
and &ldquo
Which approaches and analysis methods can our method support?&rdquo
questions. We used multiple case study design and conducted case studies including with and without process enactment data in a small software development company. We preferred machine learning approaches rather than statistical ones, in order to cluster the data which includes process enactment informationsince we believed that they are convenient with the pattern oriented nature of the data. By the case studies performed, we obtained promising results. We evaluated performance values of prediction models to demonstrate the advantage of using process enactment data for the prediction of defect open duration value. When we have enough data points to apply machine learning methods and the data can be clusteredhomogeneously, we observed approximately 3% (ranging from -10% to %17) more accurate results from analyses including with process enactment data than the without ones. Keywords:
Artchounin, Daniel. "Tuning of machine learning algorithms for automatic bug assignment." Thesis, Linköpings universitet, Programvara och system, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139230.
Full textKrüger, Franz David, and Mohamad Nabeel. "Hyperparameter Tuning Using Genetic Algorithms : A study of genetic algorithms impact and performance for optimization of ML algorithms." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42404.
Full textAs machine learning (ML) is being more and more frequent in the business world, information gathering through Data mining (DM) is on the rise, and DM-practitioners are generally using several thumb rules to avoid having to spend a decent amount of time to tune the hyperparameters (parameters that control the learning process) of an ML algorithm to gain a high accuracy score. The proposal in this report is to conduct an approach that systematically optimizes the ML algorithms using genetic algorithms (GA) and to evaluate if and how the model should be constructed to find global solutions for a specific data set. By implementing a GA approach on two ML-algorithms, K-nearest neighbors, and Random Forest, on two numerical data sets, Iris data set and Wisconsin breast cancer data set, the model is evaluated by its accuracy scores as well as the computational time which then is compared towards a search method, specifically exhaustive search. The results have shown that it is assumed that GA works well in finding great accuracy scores in a reasonable amount of time. There are some limitations as the parameter’s significance towards an ML algorithm may vary.
Chu, Justin. "CONTEXT-AWARE DEBUGGING FOR CONCURRENT PROGRAMS." UKnowledge, 2017. https://uknowledge.uky.edu/cs_etds/61.
Full textBooks on the topic "Machine learning. Data mining. Software measurement"
Mining software specifications: Methodologies and applications. Boca Raton, FL: CRC Press, 2011.
Find full textS, Chen Peter P., Wong Leah Y, and International Conference on Conceptual Modeling (25th : 2006 : Tucson, Ariz.), eds. Active conceptual modeling of learning: Next generation learning-base system development. Berlin: Springer, 2007.
Find full textDeRiggi, Ritchie Marylyn, Giacobini Mario, and SpringerLink (Online service), eds. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 9th European Conference, EvoBIO 2011, Torino, Italy, April 27-29, 2011. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Find full textVanneschi, Leonardo. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics: 11th European Conference, EvoBIO 2013, Vienna, Austria, April 3-5, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textStützle, Thomas. Learning and Intelligent Optimization: Third International Conference, LION 3, Trento, Italy, January 14-18, 2009. Selected Papers. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Find full textF, Costa José A., Barreto Guilherme, and SpringerLink (Online service), eds. Intelligent Data Engineering and Automated Learning - IDEAL 2012: 13th International Conference, Natal, Brazil, August 29-31, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textSansone, Carlo. Multiple Classifier Systems: 10th International Workshop, MCS 2011, Naples, Italy, June 15-17, 2011. Proceedings. Berlin, Heidelberg: Springer-Verlag GmbH Berlin Heidelberg, 2011.
Find full textGayar, Neamat El. Multiple Classifier Systems: 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010. Proceedings. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textPhilippe, Lenca, Petit Jean-Marc, and SpringerLink (Online service), eds. Discovery Science: 15th International Conference, DS 2012, Lyon, France, October 29-31, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textBook chapters on the topic "Machine learning. Data mining. Software measurement"
Yang, Ying. "Measurement Scales." In Encyclopedia of Machine Learning and Data Mining, 808–9. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_529.
Full textShirabad, Jelber Sayyad. "Predictive Techniques in Software Engineering." In Encyclopedia of Machine Learning and Data Mining, 992–1000. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_661.
Full textYuan, Xiaobu, Manpreet Kaler, and Vijaya Mulpuri. "Personalized Visualization Based upon Wavelet Transform for Interactive Software Customization." In Machine Learning and Data Mining in Pattern Recognition, 361–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62416-7_26.
Full textGrechanik, Mark, Nitin Prabhu, Daniel Graham, Denys Poshyvanyk, and Mohak Shah. "Can Software Project Maturity Be Accurately Predicted Using Internal Source Code Metrics?" In Machine Learning and Data Mining in Pattern Recognition, 774–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41920-6_59.
Full text"Predictive Software Models." In Encyclopedia of Machine Learning and Data Mining, 992. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_100372.
Full textOzturk Kiyak, Elife. "Data Mining and Machine Learning for Software Engineering." In Data Mining - Methods, Applications and Systems [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91448.
Full textMeziane, Farid, and Sunil Vadera. "Artificial Intelligence in Software Engineering." In Machine Learning, 1215–36. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch504.
Full textRodrigues, Anisha P., Niranjan N. Chiplunkar, and Roshan Fernandes. "Social Big Data Mining." In Handbook of Research on Emerging Trends and Applications of Machine Learning, 528–49. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9643-1.ch025.
Full textCatal, Cagatay, and Soumya Banerjee. "Application of Artificial Immune Systems Paradigm for Developing Software Fault Prediction Models." In Machine Learning, 371–87. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch302.
Full textNarayanapppa, Manjunath Thimmasandra, T. P. Puneeth Kumar, and Ravindra S. Hegadi. "Essentiality of Machine Learning Algorithms for Big Data Computation." In Advances in Data Mining and Database Management, 156–67. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9767-6.ch011.
Full textConference papers on the topic "Machine learning. Data mining. Software measurement"
Gao, Zheng-Ming, Juan Zhao, and Yu-Rong Hu. "Data Mining of Agricultural Software and Suggestions." In MLMI '20: 2020 The 3rd International Conference on Machine Learning and Machine Intelligence. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3426826.3426841.
Full textPafka, Szilárd. "Machine Learning Software in Practice." In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3106683.
Full textSilva, Raniel. "Development of an Automated Machine Learning Solution for Educational Data Mining (S)." In The 33rd International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc., 2021. http://dx.doi.org/10.18293/seke2021-068.
Full textBin Liu, Shu-Gui Cao, Dong-Fang Cao, Quing-Chun Li, Hai-Tao Liu, and Shao-Nan Shi. "An ontology based semantic heterogeneity measurement framework for optimization in distributed data mining." In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6358897.
Full textYe, Hanmin, Ziyi Zhong, and Shiming Huang. "Research on Insulator Creepage Distance Measurement Based on Different Photographic Equipment." In ICDMML 2019: 2019 International Conference on Data Mining and Machine Learning. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3335656.3335702.
Full textLin, Chih-Jen. "Experiences and lessons in developing industry-strength machine learning and data mining software." In the 18th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2339530.2339714.
Full textFachrina, Zulva, and Dwi H. Widyantoro. "Aspect-sentiment classification in opinion mining using the combination of rule-based and machine learning." In 2017 International Conference on Data and Software Engineering (ICoDSE). IEEE, 2017. http://dx.doi.org/10.1109/icodse.2017.8285850.
Full textGabrielyan, Diana, Jaan Masso, and Lenno Uusküla. "Mining News Data for the Measurement and Prediction of Inflation Expectations." In CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics. Valencia: Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/carma2020.2020.11322.
Full textKarlstetter, Roman, Robert Widhopf-Fenk, Jakob Hermann, Driek Rouwenhorst, Amir Raoofy, Carsten Trinitis, and Martin Schulz. "Turning Dynamic Sensor Measurements From Gas Turbines Into Insights: A Big Data Approach." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91259.
Full textBorozdin, Sergey Olegovich, Anatoly Nikolaevich Dmitrievsky, Nikolai Alexandrovich Eremin, Alexey Igorevich Arkhipov, Alexander Georgievich Sboev, Olga Kimovna Chashchina-Semenova, and Leonid Konstantinovich Fitzner. "Drilling Problems Forecast Based on Neural Network." In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/30984-ms.
Full text