Academic literature on the topic 'Machine learning, Global Optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine learning, Global Optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine learning, Global Optimization"
Cassioli, A., D. Di Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone. "Machine learning for global optimization." Computational Optimization and Applications 51, no. 1 (2010): 279–303. http://dx.doi.org/10.1007/s10589-010-9330-x.
Full textKudyshev, Zhaxylyk A., Alexander V. Kildishev, Vladimir M. Shalaev, and Alexandra Boltasseva. "Machine learning–assisted global optimization of photonic devices." Nanophotonics 10, no. 1 (2020): 371–83. http://dx.doi.org/10.1515/nanoph-2020-0376.
Full textAbdul Salam, Mustafa, Ahmad Taher Azar, and Rana Hussien. "Swarm-Based Extreme Learning Machine Models for Global Optimization." Computers, Materials & Continua 70, no. 3 (2022): 6339–63. http://dx.doi.org/10.32604/cmc.2022.020583.
Full textTAKAMATSU, Ryosuke, and Wataru YAMAZAKI. "Global topology optimization of supersonic airfoil using machine learning technologies." Proceedings of The Computational Mechanics Conference 2021.34 (2021): 112. http://dx.doi.org/10.1299/jsmecmd.2021.34.112.
Full textTsoulos, Ioannis G., Alexandros Tzallas, Evangelos Karvounis, and Dimitrios Tsalikakis. "NeuralMinimizer: A Novel Method for Global Optimization." Information 14, no. 2 (2023): 66. http://dx.doi.org/10.3390/info14020066.
Full textHonda, M., and E. Narita. "Machine-learning assisted steady-state profile predictions using global optimization techniques." Physics of Plasmas 26, no. 10 (2019): 102307. http://dx.doi.org/10.1063/1.5117846.
Full textWu, Shaohua, Yong Hu, Wei Wang, Xinyong Feng, and Wanneng Shu. "Application of Global Optimization Methods for Feature Selection and Machine Learning." Mathematical Problems in Engineering 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/241517.
Full textMa, Sicong, Cheng Shang, Chuan-Ming Wang, and Zhi-Pan Liu. "Thermodynamic rules for zeolite formation from machine learning based global optimization." Chemical Science 11, no. 37 (2020): 10113–18. http://dx.doi.org/10.1039/d0sc03918g.
Full textHuang, Si-Da, Cheng Shang, Pei-Lin Kang, and Zhi-Pan Liu. "Atomic structure of boron resolved using machine learning and global sampling." Chemical Science 9, no. 46 (2018): 8644–55. http://dx.doi.org/10.1039/c8sc03427c.
Full textBarkalov, Konstantin, Ilya Lebedev, and Evgeny Kozinov. "Acceleration of Global Optimization Algorithm by Detecting Local Extrema Based on Machine Learning." Entropy 23, no. 10 (2021): 1272. http://dx.doi.org/10.3390/e23101272.
Full textDissertations / Theses on the topic "Machine learning, Global Optimization"
Nowak, Hans II(Hans Antoon). "Strategic capacity planning using data science, optimization, and machine learning." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126914.
Full textVeluscek, Marco. "Global supply chain optimization : a machine learning perspective to improve caterpillar's logistics operations." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13050.
Full textSchweidtmann, Artur M. [Verfasser], Alexander [Akademischer Betreuer] Mitsos, and Andreas [Akademischer Betreuer] Schuppert. "Global optimization of processes through machine learning / Artur M. Schweidtmann ; Alexander Mitsos, Andreas Schuppert." Aachen : Universitätsbibliothek der RWTH Aachen, 2021. http://d-nb.info/1240690924/34.
Full textTaheri, Mehdi. "Machine Learning from Computer Simulations with Applications in Rail Vehicle Dynamics and System Identification." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81417.
Full textGabere, Musa Nur. "Prediction of antimicrobial peptides using hyperparameter optimized support vector machines." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7345_1330684697.
Full textBelkhir, Nacim. "Per Instance Algorithm Configuration for Continuous Black Box Optimization." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS455/document.
Full textLiu, Liu. "Stochastic Optimization in Machine Learning." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/19982.
Full textLeblond, Rémi. "Asynchronous optimization for machine learning." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE057/document.
Full textBai, Hao. "Machine learning assisted probabilistic prediction of long-term fatigue damage and vibration reduction of wind turbine tower using active damping system." Thesis, Normandie, 2021. http://www.theses.fr/2021NORMIR01.
Full textChang, Allison An. "Integer optimization methods for machine learning." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72643.
Full textBooks on the topic "Machine learning, Global Optimization"
Lin, Zhouchen, Huan Li, and Cong Fang. Accelerated Optimization for Machine Learning. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2910-8.
Full textAgrawal, Tanay. Hyperparameter Optimization in Machine Learning. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6579-6.
Full textFazelnia, Ghazal. Optimization for Probabilistic Machine Learning. [publisher not identified], 2019.
Find full textNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, et al., eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3.
Full textNicosia, Giuseppe, Varun Ojha, Emanuele La Malfa, et al., eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95467-3.
Full textJiang, Jiawei, Bin Cui, and Ce Zhang. Distributed Machine Learning and Gradient Optimization. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Full textPardalos, Panos, Mario Pavone, Giovanni Maria Farinella, and Vincenzo Cutello, eds. Machine Learning, Optimization, and Big Data. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27926-8.
Full textNicosia, Giuseppe, Panos Pardalos, Renato Umeton, Giovanni Giuffrida, and Vincenzo Sciacca, eds. Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7.
Full textKulkarni, Anand J., and Suresh Chandra Satapathy, eds. Optimization in Machine Learning and Applications. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0994-0.
Full textBook chapters on the topic "Machine learning, Global Optimization"
Kearfott, Ralph Baker. "Mathematically Rigorous Global Optimization and Fuzzy Optimization." In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66515-9_7.
Full textde Winter, Roy, Bas van Stein, Matthys Dijkman, and Thomas Bäck. "Designing Ships Using Constrained Multi-objective Efficient Global Optimization." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13709-0_16.
Full textCocola, Jorio, and Paul Hand. "Global Convergence of Sobolev Training for Overparameterized Neural Networks." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_51.
Full textZabinsky, Zelda B., Giulia Pedrielli, and Hao Huang. "A Framework for Multi-fidelity Modeling in Global Optimization Approaches." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_28.
Full textGriewank, Andreas, and Ángel Rojas. "Treating Artificial Neural Net Training as a Nonsmooth Global Optimization Problem." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37599-7_64.
Full textIssa, Mohamed, Aboul Ella Hassanien, and Ibrahim Ziedan. "Performance Evaluation of Sine-Cosine Optimization Versus Particle Swarm Optimization for Global Sequence Alignment Problem." In Machine Learning Paradigms: Theory and Application. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02357-7_18.
Full textWang, Yong-Jun, Jiang-She Zhang, and Yu-Fen Zhang. "An Effective and Efficient Two Stage Algorithm for Global Optimization." In Advances in Machine Learning and Cybernetics. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11739685_51.
Full textKiranyaz, Serkan, Turker Ince, and Moncef Gabbouj. "Improving Global Convergence." In Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37846-1_5.
Full textConsoli, Sergio, Luca Tiozzo Pezzoli, and Elisa Tosetti. "Using the GDELT Dataset to Analyse the Italian Sovereign Bond Market." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_18.
Full textRodrigues, Douglas, Gustavo Henrique de Rosa, Leandro Aparecido Passos, and João Paulo Papa. "Adaptive Improved Flower Pollination Algorithm for Global Optimization." In Nature-Inspired Computation in Data Mining and Machine Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28553-1_1.
Full textConference papers on the topic "Machine learning, Global Optimization"
He, Yi-chao, and Kun-qi Liu. "A Modified Particle Swarm Optimization for Solving Global Optimization Problems." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258615.
Full textTamura, Kenichi, and Keiichiro Yasuda. "Spiral Multipoint Search for Global Optimization." In 2011 Tenth International Conference on Machine Learning and Applications (ICMLA). IEEE, 2011. http://dx.doi.org/10.1109/icmla.2011.131.
Full textYong-Jun Wang, Jiang-She Zhang, and Yu-Fen Zhang. "A fast hybrid algorithm for global optimization." In Proceedings of 2005 International Conference on Machine Learning and Cybernetics. IEEE, 2005. http://dx.doi.org/10.1109/icmlc.2005.1527462.
Full textSun, Gao-Ji. "A new evolutionary algorithm for global numerical optimization." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580961.
Full textNacef, Abdelhakim, Miloud Bagaa, Youcef Aklouf, Abdellah Kaci, Diego Leonel Cadette Dutra, and Adlen Ksentini. "Self-optimized network: When Machine Learning Meets Optimization." In GLOBECOM 2021 - 2021 IEEE Global Communications Conference. IEEE, 2021. http://dx.doi.org/10.1109/globecom46510.2021.9685681.
Full textLi, Xue-Qiang, Zhi-Feng Hao, and Han Huang. "An evolutionary algorithm with sorted race mechanism for global optimization." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5580810.
Full textInjadat, MohammadNoor, Fadi Salo, Ali Bou Nassif, Aleksander Essex, and Abdallah Shami. "Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647714.
Full textCandelieri, Antonio, and Francesco Archetti. "Sequential model based optimization with black-box constraints: Feasibility determination via machine learning." In PROCEEDINGS LEGO – 14TH INTERNATIONAL GLOBAL OPTIMIZATION WORKSHOP. Author(s), 2019. http://dx.doi.org/10.1063/1.5089977.
Full textChen, Chang-Huang. "Bare bone particle swarm optimization with integration of global and local learning strategies." In 2011 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2011. http://dx.doi.org/10.1109/icmlc.2011.6016781.
Full textSoroush, H. M. "Bicriteria single machine scheduling with setup times and learning effects." In PROCEEDINGS OF THE SIXTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION. AIP, 2012. http://dx.doi.org/10.1063/1.4769005.
Full textReports on the topic "Machine learning, Global Optimization"
Saenz, Juan Antonio, Ismael Djibrilla Boureima, Vitaliy Gyrya, and Susan Kurien. Machine-Learning for Rapid Optimization of Turbulence Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638623.
Full textGu, Xiaofeng, A. Fedotov, and D. Kayran. Application of a machine learning algorithm (XGBoost) to offline RHIC luminosity optimization. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1777441.
Full textRolf, Esther, Jonathan Proctor, Tamma Carleton, et al. A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery. National Bureau of Economic Research, 2020. http://dx.doi.org/10.3386/w28045.
Full textScheinberg, Katya. Derivative Free Optimization of Complex Systems with the Use of Statistical Machine Learning Models. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada622645.
Full textGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek, and Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1463529.
Full textBao, Jie, Chao Wang, Zhijie Xu, and Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569289.
Full textGabelmann, Jeffrey, and Eduardo Gildin. A Machine Learning-Based Geothermal Drilling Optimization System Using EM Short-Hop Bit Dynamics Measurements. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1842454.
Full textQi, Fei, Zhaohui Xia, Gaoyang Tang, et al. A Graph-based Evolutionary Algorithm for Automated Machine Learning. Web of Open Science, 2020. http://dx.doi.org/10.37686/ser.v1i2.77.
Full textVittorio, Alan, and Kate Calvin. Using machine learning to improve land use/cover characterization and projection for scenario-based global modeling. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769796.
Full textWu, S. Boiler Optimization Using Advance Machine Learning Techniques. Final Report for period September 30, 1995 - September 29, 2000. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/877237.
Full text