Academic literature on the topic 'Machine Learning Informé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Machine Learning Informé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Machine Learning Informé"
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Full textPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (2023): 6892. http://dx.doi.org/10.3390/app13126892.
Full textMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Full textXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Full textZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Full textSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Full textArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Full textKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Full textZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Full textLiu, Yang, Ruo Jia, Jieping Ye, and Xiaobo Qu. "How machine learning informs ride-hailing services: A survey." Communications in Transportation Research 2 (December 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Full textDissertations / Theses on the topic "Machine Learning Informé"
Guimbaud, Jean-Baptiste. "Enhancing Environmental Risk Scores with Informed Machine Learning and Explainable AI." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10188.
Full textMack, Jonas. "Physics Informed Machine Learning of Nonlinear Partial Differential Equations." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Full textLeung, Jason W. "Application of machine learning : automated trading informed by event driven data." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105982.
Full textWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Full textReichert, Nils. "CORRELATION BETWEEN COMPUTER RECOGNIZED FACIAL EMOTIONS AND INFORMED EMOTIONS DURING A CASINO COMPUTER GAME." Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44596.
Full textWang, Jianxun. "Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Full textCedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Full textEmerson, Guy Edward Toh. "Functional distributional semantics : learning linguistically informed representations from a precisely annotated corpus." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284882.
Full textGiuliani, Luca. "Extending the Moving Targets Method for Injecting Constraints in Machine Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Full textAugustin, Lefèvre. "Méthodes d'apprentissage appliquées à la séparation de sources mono-canal." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764546.
Full textBooks on the topic "Machine Learning Informé"
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure. Elsevier Science & Technology, 2023.
Find full textMadhu, G., Sandeep Kautish, A. Govardhan, and Avinash Sharma, eds. Emerging Computational Approaches in Telehealth and Telemedicine: A Look at The Post-COVID-19 Landscape. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150792721220101.
Full textSmith, Gary, and Jay Cordes. The 9 Pitfalls of Data Science. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844396.001.0001.
Full textAnderson, Raymond A. Credit Intelligence & Modelling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.001.0001.
Full textEl-Nasr, Magy Seif, Alessandro Canossa, Truong-Huy D. Nguyen, and Anders Drachen. Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.001.0001.
Full textDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Full textOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes, eds. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Full textGiudici, Paolo, and Giulio Mignola. Big Data & Advanced Analytics per il Risk Management. AIFIRM, 2022. http://dx.doi.org/10.47473/2016ppa00035.
Full textDobson, James E. Critical Digital Humanities. University of Illinois Press, 2019. http://dx.doi.org/10.5622/illinois/9780252042270.001.0001.
Full textBook chapters on the topic "Machine Learning Informé"
Neuer, Marcus J. "Physics-Informed Learning." In Machine Learning for Engineers. Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69995-9_6.
Full textBraga-Neto, Ulisses. "Physics-Informed Machine Learning." In Fundamentals of Pattern Recognition and Machine Learning. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-60950-3_12.
Full textWang, Sifan, and Paris Perdikaris. "Adaptive Training Strategies for Physics-Informed Neural Networks." In Knowledge-Guided Machine Learning. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Full textSimm, Jaak, Adam Arany, Edward De Brouwer, and Yves Moreau. "Expressive Graph Informer Networks." In Machine Learning, Optimization, and Data Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_15.
Full textAfroze, Lameya, Silke Merkelbach, Sebastian von Enzberg, and Roman Dumitrescu. "Domain Knowledge Injection Guidance for Predictive Maintenance." In Machine Learning for Cyber-Physical Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47062-2_8.
Full textSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih, and Zhi Zhong. "Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey." In Knowledge-Guided Machine Learning. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Full textDani, Harsh, Jundong Li, and Huan Liu. "Sentiment Informed Cyberbullying Detection in Social Media." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_4.
Full textMumtaz, Zahid. "Machine Learning-Based Approach for Exploring the Household Survey Data." In Informal Social Protection and Poverty. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6474-9_7.
Full textCross, Elizabeth J., S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang, and T. J. Rogers. "Physics-Informed Machine Learning for Structural Health Monitoring." In Structural Integrity. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_17.
Full textSudarshan, Viswanath P., K. Pavan Kumar Reddy, Mohana Singh, Jayavardhana Gubbi, and Arpan Pal. "Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior." In Machine Learning for Medical Image Reconstruction. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_15.
Full textConference papers on the topic "Machine Learning Informé"
Oneto, Luca, Nicolò Navarin, Alessio Micheli, et al. "Informed Machine Learning for Complex Data." In ESANN 2024. Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-1.
Full textOneto, Luca, Davide Anguita, and Sandro Ridella. "Informed Machine Learning: Excess Risk and Generalization." In ESANN 2024. Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-20.
Full textFarlessyost, William, and Shweta Singh. "Improving Mechanistic Model Accuracy with Machine Learning Informed Physics." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.121371.
Full textZhu, Shijie, Hao Li, Yejie Jiang, and Yingjun Deng. "Inner Defect Detection via Physics-Informed Machine Learning." In 2024 6th International Conference on System Reliability and Safety Engineering (SRSE). IEEE, 2024. https://doi.org/10.1109/srse63568.2024.10772527.
Full textYu, Yue, Jiageng Tong, Jinhui Xia, Jinya Su, and Shihua Li. "PMSM System Identification by Knowledge-informed Machine Learning." In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN). IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774223.
Full textZhang, Tianren, Yuanbin Wang, Ruizhe Dong, Wenhu Wang, Zhongxue Yang, and Mingzhu Zhu. "Informed Machine Learning for Real-time Grinding Force Prediction." In 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746047.
Full textSurner, Martin, and Abdelmajid Khelil. "CIML-R: Causally Informed Machine Learning Based on Feature Relevance." In 2024 11th IEEE Swiss Conference on Data Science (SDS). IEEE, 2024. http://dx.doi.org/10.1109/sds60720.2024.00018.
Full textFilipovic, Lado, Tobias Reiter, Julius Piso, and Roman Kostal. "Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model." In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10733099.
Full textIto, Rikuto, Yasuhiro Oikawa, and Kenji Ishikawa. "Tomographic Reconstruction of Sound Field From Optical Projections Using Physics-Informed Neural Networks." In 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2024. http://dx.doi.org/10.1109/mlsp58920.2024.10734743.
Full textWade, Daniel, Hieu Ngo, Frances Love, et al. "Measurement of Vibration Transfer Functions to Inform Machine Learning Based HUMS Diagnostics." In Vertical Flight Society 72nd Annual Forum & Technology Display. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11479.
Full textReports on the topic "Machine Learning Informé"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706217.
Full textMcDermott, Jason, Song Feng, Christine Chang, Darren Schmidt, and Vincent Danna. Structural- and Functional-Informed Machine Learning for Protein Function Prediction. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1988630.
Full textGuthrie, George Drake Jr, and Hari S. Viswanathan. Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1614818.
Full textWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino, and Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1562229.
Full textBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, 2024. http://dx.doi.org/10.17760/d20680141.
Full textMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769743.
Full textAthon, Matthew, Danielle Ciesielski, Jordan Corbey, et al. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2338176.
Full textUllrich, Paul, Tapio Schneider, and Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1769762.
Full textGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek, and Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1463529.
Full textBao, Jie, Chao Wang, Zhijie Xu, and Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569289.
Full text