Journal articles on the topic 'Macrophage activation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Macrophage activation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sharma, Preeti, Shailza Shreshtha, Pradeep Kumar, Rachna Sharma, and T. K. Mahapatra. "A Review on Macrophage Activation Syndrome." Journal of Pure and Applied Microbiology 13, no. 1 (2019): 183–91. http://dx.doi.org/10.22207/jpam.13.1.19.
Full textGilbreath, M. J., C. A. Nacy, D. L. Hoover, C. R. Alving, G. M. Swartz, and M. S. Meltzer. "Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes." Journal of Immunology 134, no. 5 (1985): 3420–25. http://dx.doi.org/10.4049/jimmunol.134.5.3420.
Full textVan Epps, Heather L. "Macrophage activation unveiled." Journal of Experimental Medicine 202, no. 7 (2005): 884. http://dx.doi.org/10.1084/jem.2027fta.
Full textHeidenreich, S., M. Weyers, J. H. Gong, H. Sprenger, M. Nain, and D. Gemsa. "Potentiation of lymphokine-induced macrophage activation by tumor necrosis factor-alpha." Journal of Immunology 140, no. 5 (1988): 1511–18. http://dx.doi.org/10.4049/jimmunol.140.5.1511.
Full textZhao, Yu, Yuteng Jiang, Fengmei Wang, et al. "High glucose promotes macrophage switching to the M1 phenotype via the downregulation of STAT-3 mediated autophagy." PLOS ONE 19, no. 12 (2024): e0314974. https://doi.org/10.1371/journal.pone.0314974.
Full textMcGee, MP, R. Wallin, FB Wheeler, and H. Rothberger. "Initiation of the extrinsic pathway of coagulation by human and rabbit alveolar macrophages: a kinetic study." Blood 74, no. 5 (1989): 1583–90. http://dx.doi.org/10.1182/blood.v74.5.1583.1583.
Full textMcGee, MP, R. Wallin, FB Wheeler, and H. Rothberger. "Initiation of the extrinsic pathway of coagulation by human and rabbit alveolar macrophages: a kinetic study." Blood 74, no. 5 (1989): 1583–90. http://dx.doi.org/10.1182/blood.v74.5.1583.bloodjournal7451583.
Full textLewis, Brandon W., Sonika Patial, and Yogesh Saini. "In Vitro Screening Method for Characterization of Macrophage Activation Responses." Methods and Protocols 5, no. 5 (2022): 68. http://dx.doi.org/10.3390/mps5050068.
Full textRios, Francisco J., Marianna M. Koga, Mateus Pecenin, Matheus Ferracini, Magnus Gidlund, and S. Jancar. "Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR." Mediators of Inflammation 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/198193.
Full textValledor, Annabel F., Luís Arpa, Ester Sánchez-Tilló та ін. "IFN-γ–mediated inhibition of MAPK phosphatase expression results in prolonged MAPK activity in response to M-CSF and inhibition of proliferation". Blood 112, № 8 (2008): 3274–82. http://dx.doi.org/10.1182/blood-2007-11-123604.
Full textDavis, Spring, Aiko M. Cirone, Janet Menzie, et al. "Phagocytosis-mediated M1 activation by chitin but not by chitosan." American Journal of Physiology-Cell Physiology 315, no. 1 (2018): C62—C72. http://dx.doi.org/10.1152/ajpcell.00268.2017.
Full textLeopold Wager, Chrissy M., Camaron R. Hole, Karen L. Wozniak, Michal A. Olszewski, Mathias Mueller, and Floyd L. Wormley. "STAT1 Signaling within Macrophages Is Required for Antifungal Activity against Cryptococcus neoformans." Infection and Immunity 83, no. 12 (2015): 4513–27. http://dx.doi.org/10.1128/iai.00935-15.
Full textONOZAKI, Kikuo. "Macrophage activation by macrophage activation factor, macrophage migration inhibitory factor." Nippon Saikingaku Zasshi 40, no. 5 (1985): 811–17. http://dx.doi.org/10.3412/jsb.40.811.
Full textTimmer, Anjuli M., та Victor Nizet. "IKKβ/NF-κB and the miscreant macrophage". Journal of Experimental Medicine 205, № 6 (2008): 1255–59. http://dx.doi.org/10.1084/jem.20081056.
Full textHuang, Wei, Itsuko Ishii, Wei-Yang Zhang, Miyahiko Sonobe, and Howard S. Kruth. "PMA activation of macrophages alters macrophage metabolism of aggregated LDL." Journal of Lipid Research 43, no. 8 (2002): 1275–82. http://dx.doi.org/10.1194/jlr.m100436-jlr200.
Full textWyler, D. J., D. I. Beller, and J. P. Sypek. "Macrophage activation for antileishmanial defense by an apparently novel mechanism." Journal of Immunology 138, no. 4 (1987): 1246–49. http://dx.doi.org/10.4049/jimmunol.138.4.1246.
Full textStout, R. D., J. Suttles, J. Xu, I. S. Grewal, and R. A. Flavell. "Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice." Journal of Immunology 156, no. 1 (1996): 8–11. http://dx.doi.org/10.4049/jimmunol.156.1.8.
Full textYu, Tingting, Yong Zuo, Rong Cai та ін. "SENP1 regulates IFN-γ−STAT1 signaling through STAT3−SOCS3 negative feedback loop". Journal of Molecular Cell Biology 9, № 2 (2016): 144–53. http://dx.doi.org/10.1093/jmcb/mjw042.
Full textZhang, Ronghua, Tienan Wang, and Qing Lin. "847 Inflammasome activation in M2 macrophage restrain the immune suppressive function." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A900. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0847.
Full textOppong-Nonterah, Gertrude O., Omar Lakhdari, Asami Yamamura, Hal M. Hoffman, and Lawrence S. Prince. "TLR Activation Alters Bone Marrow-Derived Macrophage Differentiation." Journal of Innate Immunity 11, no. 1 (2018): 99–108. http://dx.doi.org/10.1159/000494070.
Full textHardbower, Dana M., Mohammad Asim, Paula B. Luis, et al. "Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications." Proceedings of the National Academy of Sciences 114, no. 5 (2017): E751—E760. http://dx.doi.org/10.1073/pnas.1614958114.
Full textSerraj Andaloussi, Meriem, Hayat Midyani, Chadia Khalloufi, et al. "Macrophage Activation Syndrome Discovered During Pregnancy: Case Report." Obstetrics Gynecology and Reproductive Sciences 5, no. 7 (2021): 01–04. http://dx.doi.org/10.31579/2578-8965/081.
Full textSeljelid, R. "Macrophage Activation." Scandinavian Journal of Rheumatology 17, sup76 (1988): 67–72. http://dx.doi.org/10.3109/03009748809102954.
Full textPetit, J. F., and G. Lemaire. "Macrophage activation." Annales de l'Institut Pasteur / Immunologie 137 (January 1986): 191–92. http://dx.doi.org/10.1016/s0771-050x(86)80024-9.
Full textPinder, M. "Macrophage activation." Veterinary Immunology and Immunopathology 14, no. 2 (1987): 205–6. http://dx.doi.org/10.1016/0165-2427(87)90055-9.
Full textPedicillo, Maria Carmela, Ilenia Sara De Stefano, Rosanna Zamparese, et al. "The Role of Toll-like Receptor-4 in Macrophage Imbalance in Lethal COVID-19 Lung Disease, and Its Correlation with Galectin-3." International Journal of Molecular Sciences 24, no. 17 (2023): 13259. http://dx.doi.org/10.3390/ijms241713259.
Full textChen, L., Y. Suzuki, and E. F. Wheelock. "Interferon-gamma synergizes with tumor necrosis factor and with interleukin 1 and requires the presence of both monokines to induce antitumor cytotoxic activity in macrophages." Journal of Immunology 139, no. 12 (1987): 4096–101. http://dx.doi.org/10.4049/jimmunol.139.12.4096.
Full textMantuano, Elisabetta, Pardis Azmoon, Coralie Brifault, et al. "Tissue-type plasminogen activator regulates macrophage activation and innate immunity." Blood 130, no. 11 (2017): 1364–74. http://dx.doi.org/10.1182/blood-2017-04-780205.
Full textLiang, Yan, Xiaoli Sun, Mingjie Wang та ін. "PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production". Cell Death & Differentiation 28, № 9 (2021): 2728–44. http://dx.doi.org/10.1038/s41418-021-00780-5.
Full textYamamoto, N., VR Naraparaju, and PJ Orchard. "Defective lymphocyte glycosidases in the macrophage activation cascade of juvenile osteopetrosis." Blood 88, no. 4 (1996): 1473–78. http://dx.doi.org/10.1182/blood.v88.4.1473.bloodjournal8841473.
Full textVieira, Pedro, Angela Castoldi, Pratik Aryal, et al. "CTLA4-Ig treatment improves RBP4-induced adipose tissue inflammation and insulin resistance triggered by MyD88, JNK, ERK and p38 pathways (IRC8P.443)." Journal of Immunology 194, no. 1_Supplement (2015): 129.7. http://dx.doi.org/10.4049/jimmunol.194.supp.129.7.
Full textJAWOROWSKI, Anthony, Elizabeth CHRISTY, Permeen YUSOFF, Robert BYRNE, and John A. HAMILTON. "Differences in the kinetics of activation of protein kinases and extracellular signal-related protein kinase 1 in colony-stimulating factor 1-stimulated and lipopolysaccharide-stimulated macrophages." Biochemical Journal 320, no. 3 (1996): 1011–16. http://dx.doi.org/10.1042/bj3201011.
Full textBian, Zhen, Lei Shi та Yuan Liu. "Phagocytic plasticity of macrophage towards healthy self cells: inflammatory activation elicit self-attacking phenotype in macrophages lacking SIRPα-CD47 restraint". Journal of Immunology 198, № 1_Supplement (2017): 154.7. http://dx.doi.org/10.4049/jimmunol.198.supp.154.7.
Full textEsparza, I., D. Mannel, A. Ruppel, W. Falk та PH Krammer. "Interferon γ and lymphotoxin or tumor necrosis factor act synergistically to induce macrophage killing of tumor cells and schistosomula of schistosoma mansoni". Journal of Experimental Medicine 166, № 2 (1987): 589–94. http://dx.doi.org/10.1084/jem.166.2.589.
Full textLlauradó Maury, Gabriel, Humberto J. Morris-Quevedo, Annick Heykers, et al. "Differential Induction Pattern Towards Classically Activated Macrophages in Response to an Immunomodulatory Extract from Pleurotus ostreatus Mycelium." Journal of Fungi 7, no. 3 (2021): 206. http://dx.doi.org/10.3390/jof7030206.
Full textLeu, R. W., A. Q. Zhou, B. J. Shannon, and M. J. Herriott. "Inhibitors of C1q biosynthesis suppress activation of murine macrophages for both antibody-independent and antibody-dependent tumor cytotoxicity." Journal of Immunology 144, no. 6 (1990): 2281–86. http://dx.doi.org/10.4049/jimmunol.144.6.2281.
Full textZhao, Yong, Hao Wang, Ming Lu, et al. "Pancreatic Acinar Cells Employ miRNAs as Mediators of Intercellular Communication to Participate in the Regulation of Pancreatitis-Associated Macrophage Activation." Mediators of Inflammation 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/6340457.
Full textTekin, Cansu, Hella L. Aberson, Cynthia Waasdorp, et al. "Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation." Cellular Oncology 43, no. 6 (2020): 1161–74. http://dx.doi.org/10.1007/s13402-020-00549-x.
Full textNedvetzki, Shlomo, Stefanie Sowinski, Robert A. Eagle, et al. "Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses." Blood 109, no. 9 (2007): 3776–85. http://dx.doi.org/10.1182/blood-2006-10-052977.
Full textManiecki, Maciej Bogdan, Mette Munk Lauridsen, Troels Bygum Knudsen, et al. "A Macrophage Activation Switch (MAcS)-Index for Assessment of Monocyte/Macrophage Activation." Blood 112, no. 11 (2008): 3550. http://dx.doi.org/10.1182/blood.v112.11.3550.3550.
Full textRoa-Vidal, Natalia, Adriana S. Rodríguez-Aponte, José A. Lasalde-Dominicci, Coral M. Capó-Vélez, and Manuel Delgado-Vélez. "Cholinergic Polarization of Human Macrophages." International Journal of Molecular Sciences 24, no. 21 (2023): 15732. http://dx.doi.org/10.3390/ijms242115732.
Full textYamamoto, N., D. D. Lindsay, V. R. Naraparaju, R. A. Ireland, and S. N. Popoff. "A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats." Journal of Immunology 152, no. 10 (1994): 5100–5107. http://dx.doi.org/10.4049/jimmunol.152.10.5100.
Full textTAVARES, ALDO, and ANAMELIA BOCCA. "Dectin-1 restores macrophage anti-Cryptococcus neoformans activity." Journal of Immunology 196, no. 1_Supplement (2016): 60.21. http://dx.doi.org/10.4049/jimmunol.196.supp.60.21.
Full textYamamoto, N., S. Homma, and I. Millman. "Identification of the serum factor required for in vitro activation of macrophages. Role of vitamin D3-binding protein (group specific component, Gc) in lysophospholipid activation of mouse peritoneal macrophages." Journal of Immunology 147, no. 1 (1991): 273–80. http://dx.doi.org/10.4049/jimmunol.147.1.273.
Full textTang, Hong, JIn Feng, and Chao Zhang. "The innate-like T cells are required to modulate acute inflammatory response (P1050)." Journal of Immunology 190, no. 1_Supplement (2013): 65.26. http://dx.doi.org/10.4049/jimmunol.190.supp.65.26.
Full textStunault, Marion I., Gaël Bories, Rodolphe R. Guinamard, and Stoyan Ivanov. "Metabolism Plays a Key Role during Macrophage Activation." Mediators of Inflammation 2018 (December 10, 2018): 1–10. http://dx.doi.org/10.1155/2018/2426138.
Full textMaataoui-Belabbes, Hajar, Hanaa Bencharef, Bouchra Oukkache, Abdellah Madani, and Mouna Lamchahab. "Macrophage activation syndrome revealing Hodgkin lymphoma." Annales Africaines de Medecine 17, no. 3 (2024): e5728-e5733. http://dx.doi.org/10.4314/aamed.v17i3.15.
Full textJha, Aakanksha, and Erika Moore. "Collagen-derived peptide, DGEA, inhibits pro-inflammatory macrophages in biofunctional hydrogels." Journal of Materials Research 37, no. 1 (2021): 77–87. http://dx.doi.org/10.1557/s43578-021-00423-y.
Full textMurray, H. W., G. L. Spitalny, and C. F. Nathan. "Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma." Journal of Immunology 134, no. 3 (1985): 1619–22. http://dx.doi.org/10.4049/jimmunol.134.3.1619.
Full textLodyga, Monika, Elizabeth Cambridge, Henna M. Karvonen та ін. "Cadherin-11–mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β". Science Signaling 12, № 564 (2019): eaao3469. http://dx.doi.org/10.1126/scisignal.aao3469.
Full text