Journal articles on the topic 'Macrophages M2-Like'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Macrophages M2-Like.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wen, Zhifa, Hongxiang Liu, Meng Zhou, and Li-xin Wang. "Tumor released autophagosomes regulate M2-like macrophage polarization (TUM6P.974)." Journal of Immunology 194, no. 1_Supplement (2015): 141.22. http://dx.doi.org/10.4049/jimmunol.194.supp.141.22.
Full textDraijer, Christina, Patricia Robbe, Carian E. Boorsma, Machteld N. Hylkema, and Barbro N. Melgert. "Characterization of Macrophage Phenotypes in Three Murine Models of House-Dust-Mite-Induced Asthma." Mediators of Inflammation 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/632049.
Full textLalor, Richard, та Sandra O’Neill. "Bovine κ-Casein Fragment Induces Hypo-Responsive M2-Like Macrophage Phenotype". Nutrients 11, № 7 (2019): 1688. http://dx.doi.org/10.3390/nu11071688.
Full textLyu, Qingkang, Edwin J. A. Veldhuizen, Irene S. Ludwig, et al. "Characterization of polarization states of canine monocyte derived macrophages." PLOS ONE 18, no. 11 (2023): e0292757. http://dx.doi.org/10.1371/journal.pone.0292757.
Full textSánchez-Reyes, Karina, Alejandro Bravo-Cuellar, Georgina Hernández-Flores, et al. "Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/683068.
Full textZhu, Wenya, Qianqian Chen, Yi Li, Jun Wan, Jia Li та Shuai Tang. "HIF-1α-Overexpressing Mesenchymal Stem Cells Attenuate Colitis by Regulating M1-like Macrophages Polarization toward M2-like Macrophages". Biomedicines 11, № 3 (2023): 825. http://dx.doi.org/10.3390/biomedicines11030825.
Full textStrizova, Zuzana, Iva Benesova, Robin Bartolini, et al. "M1/M2 macrophages and their overlaps – myth or reality?" Clinical Science 137, no. 15 (2023): 1067–93. http://dx.doi.org/10.1042/cs20220531.
Full textLi, Dezhi, Min Yan, Fengfei Sun, et al. "miR-498 inhibits autophagy and M2-like polarization of tumor-associated macrophages in esophageal cancer via MDM2/ATF3." Epigenomics 13, no. 13 (2021): 1013–30. http://dx.doi.org/10.2217/epi-2020-0341.
Full textRonaghan, Natalie J., Mandy Soo, Uriel Pena, et al. "M1-like, but not M0- or M2-like, macrophages, reduce RSV infection of primary bronchial epithelial cells in a media-dependent fashion." PLOS ONE 17, no. 10 (2022): e0276013. http://dx.doi.org/10.1371/journal.pone.0276013.
Full textDi Martile, Marta, Valentina Farini, Francesca Maria Consonni, et al. "Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages." Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000489. http://dx.doi.org/10.1136/jitc-2019-000489.
Full textShao, Xia, Boting Wu, Pu Chen, et al. "The Role of M2 Macrophage in Primary Immune Thrombocytopenia." Blood 134, Supplement_1 (2019): 2355. http://dx.doi.org/10.1182/blood-2019-129667.
Full textVicenzi, Silvia, Trung Tran, Lara Avsharian, Joshua Hartman, Anna Rapp, and Leslie Crews. "Tuning the Innate Immune Multiple Myeloma Microenvironment By Modulating IRF4." Blood 142, Supplement 1 (2023): 6604. http://dx.doi.org/10.1182/blood-2023-187814.
Full textLaskar, Amit, Jonas Eilertsen, Wei Li, and Xi-Ming Yuan. "SPION primes THP1 derived M2 macrophages towards M1-like macrophages." Biochemical and Biophysical Research Communications 441, no. 4 (2013): 737–42. http://dx.doi.org/10.1016/j.bbrc.2013.10.115.
Full textKumar, Sudhir, Sonam Mittal, Prachi Gupta, Mona Singh, Pradeep Chaluvally-Raghavan, and Sunila Pradeep. "Metabolic Reprogramming in Tumor-Associated Macrophages in the Ovarian Tumor Microenvironment." Cancers 14, no. 21 (2022): 5224. http://dx.doi.org/10.3390/cancers14215224.
Full textGong, Xiaocheng, Yunfei Liu, Keying Liang, et al. "Cucurbitacin I Reverses Tumor-Associated Macrophage Polarization to Affect Cancer Cell Metastasis." International Journal of Molecular Sciences 24, no. 21 (2023): 15920. http://dx.doi.org/10.3390/ijms242115920.
Full textKuo, Chan-Yen, Tzu-Hsien Yang, Pei-Fang Tsai, and Chun-Hsien Yu. "Role of the Inflammatory Response of RAW 264.7 Cells in the Metastasis of Novel Cancer Stem-Like Cells." Medicina 57, no. 8 (2021): 778. http://dx.doi.org/10.3390/medicina57080778.
Full textMyers, Kayla V., Amber E. de Groot, Anna L. Gonye, Luke V. Loftus, Sarah R. Amend, and Kenneth J. Pienta. "Abstract 2546: Targeting MerTK-mediated efferocytosis in the prostate cancer TME." Cancer Research 82, no. 12_Supplement (2022): 2546. http://dx.doi.org/10.1158/1538-7445.am2022-2546.
Full textGunes, Emine Gulsen, Sung Hee Kil, Xiwei Wu та ін. "Tnfα Promotes an Immunosuppressive Microenvironment in Cutaneous T Cell Lymphoma and Regulates PD-L1 Expression". Blood 136, Supplement 1 (2020): 33–34. http://dx.doi.org/10.1182/blood-2020-141070.
Full textSchnellhardt, Sören, Ramona Erber, Maike Büttner-Herold, et al. "Accelerated Partial Breast Irradiation: Macrophage Polarisation Shift Classification Identifies High-Risk Tumours in Early Hormone Receptor-Positive Breast Cancer." Cancers 12, no. 2 (2020): 446. http://dx.doi.org/10.3390/cancers12020446.
Full textYang, Jing, Chengxian Xu, Joseph Lechner, Haley Walls, and Kai Yang. "LKB1 regulates macrophage metabolism and functional polarization in immunomodulation." Journal of Immunology 210, no. 1_Supplement (2023): 168.14. http://dx.doi.org/10.4049/jimmunol.210.supp.168.14.
Full textJanss, Thibaut J., Simon Lefevre, Martijn Vlaming, Johan Arnold, Ellen Boelen, and Sofie Pattijn. "Abstract 2120: In vitro suppressive bioassays using macrophages for the evaluation of immuno-oncology drug." Cancer Research 82, no. 12_Supplement (2022): 2120. http://dx.doi.org/10.1158/1538-7445.am2022-2120.
Full textChen, Li-Mei, Hong-Yu Tseng, Yen-An Chen, Aushia Tanzih Al Haq, Pai-An Hwang, and Hsin-Ling Hsu. "Oligo-Fucoidan Prevents M2 Macrophage Differentiation and HCT116 Tumor Progression." Cancers 12, no. 2 (2020): 421. http://dx.doi.org/10.3390/cancers12020421.
Full textJo, Wol Soon, Sohi Kang, Soo Kyung Jeong, et al. "Low Dose Rate Radiation Regulates M2-like Macrophages in an Allergic Airway Inflammation Mouse Model." Dose-Response 20, no. 3 (2022): 155932582211173. http://dx.doi.org/10.1177/15593258221117349.
Full textMazzoni, Mara, Giuseppe Mauro, Lucia Minoli, et al. "Senescent Thyrocytes, Similarly to Thyroid Tumor Cells, Elicit M2-like Macrophage Polarization In Vivo." Biology 10, no. 10 (2021): 985. http://dx.doi.org/10.3390/biology10100985.
Full textWarmink, Kelly, Michiel Siebelt, Philip S. Low, et al. "Folate Receptor Expression by Human Monocyte–Derived Macrophage Subtypes and Effects of Corticosteroids." CARTILAGE 13, no. 1 (2022): 194760352210814. http://dx.doi.org/10.1177/19476035221081469.
Full textHult, Elissa M., Stephen J. Gurczynski, and Bethany B. Moore. "M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro." American Journal of Physiology-Lung Cellular and Molecular Physiology 321, no. 3 (2021): L518—L532. http://dx.doi.org/10.1152/ajplung.00107.2021.
Full textRabani, Razieh, Allen Volchuk, Mirjana Jerkic, et al. "Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis." European Respiratory Journal 51, no. 4 (2018): 1702021. http://dx.doi.org/10.1183/13993003.02021-2017.
Full textLiu, Peng, Yahui Liu, Lanying Chen, Zeping Fan, Yingying Luo, and Yaru Cui. "Anemoside A3 Inhibits Macrophage M2-Like Polarization to Prevent Triple-Negative Breast Cancer Metastasis." Molecules 28, no. 4 (2023): 1611. http://dx.doi.org/10.3390/molecules28041611.
Full textKallemeijn, Wouter W., Sarah Spear, Josephine Walton, et al. "Abstract 439: From foe to friend: In vivo reprogramming of tumor-associated macrophages to an anti-cancer phenotype by modulating N-myristoyltransferase activity." Cancer Research 83, no. 7_Supplement (2023): 439. http://dx.doi.org/10.1158/1538-7445.am2023-439.
Full textHoruluoglu, Begum Han, Defne Bayik, Neslihan Kayraklioglu, et al. "PAM3 supports the generation of M2-like macrophages from lupus patient monocytes and improves disease outcome in murine lupus." Journal of Immunology 202, no. 1_Supplement (2019): 182.21. http://dx.doi.org/10.4049/jimmunol.202.supp.182.21.
Full textZhang, Cong, Sisi Wei, Suli Dai, et al. "The NR_109/FUBP1/c-Myc axis regulates TAM polarization and remodels the tumor microenvironment to promote cancer development." Journal for ImmunoTherapy of Cancer 11, no. 5 (2023): e006230. http://dx.doi.org/10.1136/jitc-2022-006230.
Full textNiu, Xiao-Ling, Dan Feng, Sheng Hao, et al. "The significance of M1/M2 macrophage-like monocytes in children with systemic lupus erythematosus." European Journal of Inflammation 17 (January 2019): 205873921882446. http://dx.doi.org/10.1177/2058739218824463.
Full textYun, Kun, Reona Sakemura, Truc Huynh, et al. "Abstract 6813: Immunosuppressive monocytes suppress CART19 functions through modulation of the IL-1 pathway." Cancer Research 84, no. 6_Supplement (2024): 6813. http://dx.doi.org/10.1158/1538-7445.am2024-6813.
Full textLu, Yufei, Leiming Guo, and Gaofeng Ding. "PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma." Future Oncology 15, no. 35 (2019): 4019–30. http://dx.doi.org/10.2217/fon-2019-0519.
Full textLu, Chih-Hao, Chao-Yang Lai, Da-Wei Yeh, et al. "Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation." Mediators of Inflammation 2018 (December 16, 2018): 1–14. http://dx.doi.org/10.1155/2018/3523642.
Full textTeo, Kristeen Ye Wen, Shipin Zhang, Jia Tong Loh, et al. "Mesenchymal Stromal Cell Exosomes Mediate M2-like Macrophage Polarization through CD73/Ecto-5′-Nucleotidase Activity." Pharmaceutics 15, no. 5 (2023): 1489. http://dx.doi.org/10.3390/pharmaceutics15051489.
Full textChae, Wook-Jin, Eun-Ah Sung, Brian Hur, and Min Hee Park. "The Wnt antagonist Dickkopf1(DKK1) promotes pulmonary fibrosis via M2-like macrophage polarization." Journal of Immunology 206, no. 1_Supplement (2021): 13.01. http://dx.doi.org/10.4049/jimmunol.206.supp.13.01.
Full textChen, Peiwen, Hao Zuo, Hu Xiong, et al. "Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis." Proceedings of the National Academy of Sciences 114, no. 3 (2017): 580–85. http://dx.doi.org/10.1073/pnas.1614035114.
Full textLi, Feng, Yongsheng Yang, Xiaohua Zhu, Lan Huang, and Jinhua Xu. "Macrophage Polarization Modulates Development of Systemic Lupus Erythematosus." Cellular Physiology and Biochemistry 37, no. 4 (2015): 1279–88. http://dx.doi.org/10.1159/000430251.
Full textMohr, Annika, Manuela Besser, Sonja Broichhausen, et al. "The Influence of Apremilast-Induced Macrophage Polarization on Intestinal Wound Healing." Journal of Clinical Medicine 12, no. 10 (2023): 3359. http://dx.doi.org/10.3390/jcm12103359.
Full textNi, Ping, Yue-Qin Liu, Jin-Yu Man, et al. "C16, a novel sinomenine derivatives, promoted macrophage reprogramming toward M2-like phenotype and protected mice from endotoxemia." International Journal of Immunopathology and Pharmacology 35 (January 2021): 205873842110267. http://dx.doi.org/10.1177/20587384211026786.
Full textLiu, Shuangqing, Huilei Zhang, Yanan Li та ін. "S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation". Journal for ImmunoTherapy of Cancer 9, № 6 (2021): e002548. http://dx.doi.org/10.1136/jitc-2021-002548.
Full textRajput, Charu, Megan P. Walsh, Breanna N. Eder, Ediri E. Metitiri, Antonia P. Popova, and Marc B. Hershenson. "Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages." Physiological Genomics 50, no. 5 (2018): 299–312. http://dx.doi.org/10.1152/physiolgenomics.00122.2017.
Full textMeiliana, Anna, and Andi Wijaya. "Macrophage Polarization in Metabolism and Metabolic Disease." Indonesian Biomedical Journal 5, no. 2 (2013): 81. http://dx.doi.org/10.18585/inabj.v5i2.56.
Full textLoureiro, J. Pedro, Mariana S. Cruz, Ana P. Cardoso, Maria J. Oliveira, and M. Fátima Macedo. "Human iNKT Cells Modulate Macrophage Survival and Phenotype." Biomedicines 10, no. 7 (2022): 1723. http://dx.doi.org/10.3390/biomedicines10071723.
Full textCourtney, Amy N., Gengwen Tian, Daofeng Liu, et al. "Cross-talk between NKT cells and tumor associated macrophages in the tumor microenvironment." Journal of Immunology 196, no. 1_Supplement (2016): 142.7. http://dx.doi.org/10.4049/jimmunol.196.supp.142.7.
Full textMyers, Kayla V., Kenneth J. Pienta, and Sarah R. Amend. "Cancer Cells and M2 Macrophages: Cooperative Invasive Ecosystem Engineers." Cancer Control 27, no. 1 (2020): 107327482091105. http://dx.doi.org/10.1177/1073274820911058.
Full textCornice, Jessica, Daniela Verzella, Paola Arboretto та ін. "NF-κB: Governing Macrophages in Cancer". Genes 15, № 2 (2024): 197. http://dx.doi.org/10.3390/genes15020197.
Full textHan, Ik-Hwan, Chanmi Jeong, Juwon Yang, Seung-Hyeok Park, Deok-Sang Hwang, and Hyunsu Bae. "Therapeutic Effect of Melittin–dKLA Targeting Tumor-Associated Macrophages in Melanoma." International Journal of Molecular Sciences 23, no. 6 (2022): 3094. http://dx.doi.org/10.3390/ijms23063094.
Full textMinopoli, Michele, Sabrina Sarno, Lucia Cannella, et al. "Crosstalk between Macrophages and Myxoid Liposarcoma Cells Increases Spreading and Invasiveness of Tumor Cells." Cancers 13, no. 13 (2021): 3298. http://dx.doi.org/10.3390/cancers13133298.
Full text