Academic literature on the topic 'Magmatic Volatiles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magmatic Volatiles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magmatic Volatiles"
De Vivo, B., A. Lima, and J. D. Webster. "Volatiles in Magmatic-Volcanic Systems." Elements 1, no. 1 (January 1, 2005): 19–24. http://dx.doi.org/10.2113/gselements.1.1.19.
Full textDegruyter, Wim, Andrea Parmigiani, Christian Huber, and Olivier Bachmann. "How do volatiles escape their shallow magmatic hearth?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2139 (January 7, 2019): 20180017. http://dx.doi.org/10.1098/rsta.2018.0017.
Full textDay, James M. D., Frédéric Moynier, and Charles K. Shearer. "Late-stage magmatic outgassing from a volatile-depleted Moon." Proceedings of the National Academy of Sciences 114, no. 36 (August 21, 2017): 9547–51. http://dx.doi.org/10.1073/pnas.1708236114.
Full textPersikov, Edward S., Vilen A. Zharikov, and Pavel G. Bukhtiyarov. "The effect of volatiles on the properties of magmatic melts." European Journal of Mineralogy 2, no. 5 (October 4, 1990): 621–42. http://dx.doi.org/10.1127/ejm/2/5/0621.
Full textKusakabe, Minoru, and Hiroshi Shinohara. "Matsuo Memorial Issue: Magmatic Volatiles and Volcanic Discharges Preface." GEOCHEMICAL JOURNAL 27, no. 4-5 (1993): 181–83. http://dx.doi.org/10.2343/geochemj.27.181.
Full textZolotov, Mikhail Yu. "On the chemistry of mantle and magmatic volatiles on Mercury." Icarus 212, no. 1 (March 2011): 24–41. http://dx.doi.org/10.1016/j.icarus.2010.12.014.
Full textZhao, Rongsheng, Xuanlong Shan, Jian Yi, Ye Liang, Chunlong Li, and Cuiying Qiu. "Understanding fluid behavior through ion and isotope data from the Yitong Basin, Northeast China." Canadian Journal of Earth Sciences 55, no. 3 (March 2018): 308–20. http://dx.doi.org/10.1139/cjes-2017-0154.
Full textBarnes, Jessica J., Mahesh Anand, and Ian A. Franchi. "Investigating the History of Magmatic Volatiles in the Moon Using NanoSIMS." Microscopy and Microanalysis 22, S3 (July 2016): 1804–5. http://dx.doi.org/10.1017/s1431927616009867.
Full textSchiavi, F., N. Bolfan-Casanova, R. Buso, M. Laumonier, D. Laporte, K. Medjoubi, S. Venugopal, A. Gómez-Ulla, N. Cluzel, and M. Hardiagon. "Quantifying magmatic volatiles by Raman microtomography of glass inclusion-hosted bubbles." Geochemical Perspectives Letters 16 (December 2020): 17–24. http://dx.doi.org/10.7185/geochemlet.2038.
Full textMikhailova, Julia A., Yakov A. Pakhomovsky, Olga F. Goychuk, Andrey O. Kalashnikov, Ayya V. Bazai, and Victor N. Yakovenchuk. "Pre-Pegmatite Stage in Peralkaline Magmatic Process: Insights from Poikilitic Syenites from the Lovozero Massif, Kola Peninsula, Russia." Minerals 11, no. 9 (September 7, 2021): 974. http://dx.doi.org/10.3390/min11090974.
Full textDissertations / Theses on the topic "Magmatic Volatiles"
Blower, Jonathan David. "Degassing processes in volcanic eruptions." Thesis, University of Bristol, 2001. http://hdl.handle.net/1983/30b2bc8c-2956-4a7a-a801-cdbef473ee1a.
Full textBerg, Sylvia. "Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits: an Experimental Approach." Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160266.
Full textBégué, Florence. "Magmatic volatiles: A melt inclusion study of Taupo Volcanic Zone rhyolites,New Zealand." Thesis, University of Canterbury. Geological Sciences, 2014. http://hdl.handle.net/10092/9319.
Full textSalem, Lois Claire. "Magmatic processes at basaltic volcanoes : insights from the crystal cargo." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277726.
Full textAtlas, Zachary D. "Volatiles in Melt Inclusions from Mexican and Nicaraguan Volcanoes: Implications for Complex Degassing Processes." Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/142.
Full textWalowski, Kristina. "From Cinder Cones to Subduction Zones: Volatile Recycling and Magma Formation beneath the Southern Cascade Arc." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19310.
Full textRuscitto, Daniel M. 1981. "Magmatic volatile contents and explosive cinder cone eruptions in the High Cascades: Recent volcanism in Central Oregon and Northern California." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11262.
Full textVolatile components (H 2 O, CO 2 , S, Cl) dissolved in magmas influence all aspects of volcanic activity from magma formation to eruption explosivity. Understanding the behavior of volatiles is critical for both mitigating volcanic hazards and attaining a deeper understanding of large-scale geodynamic processes. This work relates the dissolved volatile contents in olivine-hosted melt inclusions from young volcanics in the Central Oregon and Northern California Cascades to inferred magmatic processes at depth and subsequent eruptive activity at the surface. Cinder cone eruptions are the dominant form of Holocene volcanism in the Central Oregon segment of the High Cascades. Detailed field study of deposits from three cinder cones in Central Oregon reveals physical and compositional similarities to explosive historic eruptions characterized as violent strombolian. This work has important implications for future hazard assessments in the region. Based on melt inclusion data, pre-eruptive volatile contents for seven calc-alkaline cinder cones vary from 1.7-3.6 wt.% H 2 O, 1200-2100 ppm S, and 500-1200 ppm Cl. Subarc mantle temperatures inferred from H 2 O and trace elements are similar to or slightly warmer than temperatures in other arcs, consistent with a young and hot incoming plate. High-magnesium andesites (HMA) are relatively rare but potentially important in the formation of continental crust. Melt inclusions from a well-studied example of HMA from near Mt. Shasta, CA were examined because petrographic evidence for magma mixing has stimulated a recent debate over the origin of HMA magmas. High volatile contents (3.5-5.6 wt.% H 2 O, 830-2900 ppm S, 1590-2580 ppm Cl), primitive host crystals, and compositional similarities with experiments suggest that these inclusions represent mantle-derived magmas. The Cascades arc is the global end member, warm-slab subduction zone. Primitive magma compositions from the Cascades are compared to data for arcs spanning the global range in slab thermal state to examine systematic differences in slab-derived components added to the mantle wedge. H 2 O/Ce, Cl/Nb, and Ba/La ratios negatively correlate with inferred slab surface temperatures predicted by geodynamic models. Slab components become increasingly solute-rich as slab surface temperatures increase from ∼550 to 950°C at 120 km depth. This dissertation includes previously published and unpublished co-authored material.
Committee in charge: Dr. Paul J. Wallace, Chair and Advisor; Dr. Katharine Cashman, Member; Dr. Ilya Bindeman, Member; Dr. Richard Taylor, Outside Member
Khadhem, Laith. "Volatilernas påverkan på marina vulkanutbrott." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328231.
Full textKap Verde är en arkipelag, situerad cirka 2000 km öster om den mittatlantiska spridningsryggen och 500 km väster om det afrikanska fastlandet. Arkipelagens platå har en genomsnittlig höjd på 2 km, vilket gör den till en av världens högsta oceaniska platåer. Arkipelagen har uppkommit av hetfläcksbildning, ett geologiskt fenomen baserad på att magma erupteras till ytan där jordskorpan är förtunnad och inte har någon anknytning till de tektoniska plattgränserna. Det som undersöks i detta kandidatarbete är vulkaniskt material, taget från den vulkaniska undervattensön Charles Darwin vulkanfält som ligger i den västra del Kap Verdes norra ö-grupp på över 3000 meterdjup. Materialet består av ett agglomerat och fyra stenstuffer av basaltisk komposition. Agglomeratet tyder på att explosiva vulkanutbrott förekommer, vilket även bekräftas av stenstufferna som har rikligt förekomst av luftbubblor. Explosiva vulkanutbrott är generellt inte förekomliga vid höga vattendjup, därav undersöks materialet för att kunna reda ut orsakerna som ger upphov till förekomsten av explosiva vulkanutbrott. Undersökningen baseras på att kvantifiera luftbubblor hos stenstufferna för att kunna räkna ut arean som upptas och analysera vattenhalten i klinopyroxenkristaller i agglomeratet med hjälp av FTIR spektroskopi. Vatten tillhör de flyktiga beståndsdelar i magmas sammansättning som kallas för volatiler och utgör en viktig parameter för magmans uppträdande vid eruption. Resultatet kvantifiering av luftbubblor visar att arean som upptas av luftbubblor varierar mellan 7–54 % av stenstufferna total area, vilket understryker att magmatiska produkter med hög andel luftbubblor är förkomliga. FTIR analysen visar att det finns tillräckliga höga vattenhalter för ett övermättat magmasystem som ger upphov till vulkanutbrott med explosiva förlopp, baserat på vattenhalten 3,87 ± 0,77 % av en klinopyroxenkristall. Andra möjliga orsaker till uppkomsten av magmatiska produkter med hög andel luftbubblor är koldioxidhalten i magman och storleken på vulkanrören.
Esposito, Rosario. "Studies of volatile evolution in magmatic systems using melt inclusions." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28287.
Full textPh. D.
Crandall, Jake Rauch. "Magma-Sediment Interaction on Mars: Detectability and Habitability as Constrained by Terrestrial Analogs." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1944.
Full textBooks on the topic "Magmatic Volatiles"
Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems" (1991 Kagoshima-shi, Japan, and Ebino-shi, Japan). Magmatic contributions to hydrothermal systems: Extended abstracts of the Japan-U.S. Seminar on "Magmatic Contributions to Hydrothermal Systems", held at Kagoshima and Ebino, November, 1991 and The behavior of volatiles in magma : abstracts of the 4th Symposium on Deep-crustal Fluids "The behavior of Volatiles in Magma", held at Tsukuba, November, 1991. Tsukuba-shi: Geological Survey of Japan, 1992.
Find full textR, Carroll Michael, and Holloway John R, eds. Volatiles in magmas. Washington, D.C: Mineralogical Society of America, 1994.
Find full textVolaties in Magmas (Reviews in Mineralogy,). Mineralogical Society of America, 1994.
Find full textBook chapters on the topic "Magmatic Volatiles"
Cashman, Katharine V., and Margaret T. Mangan. "Chapter 11b. PHYSICAL ASPECTS OF MAGMATIC DEGASSING II. Constraints on vesiculation processes from textural studies of eruptive products." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 447–78. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-018.
Full textTaylor, Bruce E. "Chapter 7. MAGMATIC VOLATILES: ISOTOPIC VARIATION of C, H, and S." In Stable Isotopes in High Temperature Geological Processes, edited by John W. Valley, Hugh P. Taylor, and James R. O’Neil, 185–226. Berlin, Boston: De Gruyter, 1986. http://dx.doi.org/10.1515/9781501508936-012.
Full textYang, Kaihui, and Steven D. Scott. "Magmatic sources of volatiles and metals for volcanogenic massive sulfide deposits on modern and ancient seafloors: Evidence from melt inclusions." In Mineral Deposit Research: Meeting the Global Challenge, 715–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27946-6_182.
Full textMartínez-Cruz, María, Manfred J. van Bergen, Bokuichiro Takano, Erick Fernández-Soto, and Jorge Barquero-Hernández. "Behaviour of Polythionates in the Acid Lake of Poás Volcano: Insights into Changes in the Magmatic-Hydrothermal Regime and Subaqueous Input of Volatiles." In Poás Volcano, 155–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-02156-0_7.
Full textMcHone, J. Gregory. "Volatile emissions from Central Atlantic Magmatic Province Basalts: Mass assumptions and environmental consequences." In The Central Atlantic Magmatic Province: Insights From Fragments of Pangea, 241–54. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/136gm013.
Full textDunbar, Nelia W., Katharine V. Cashman, and Roslyn Dupré. "Crystallization processes of anorthoclase phenocrysts in the Mount Erebus magmatic system: Evidence from crystal composition, crystal size distributions, and volatile contents of melt inclusions." In Antarctic Research Series, 129–46. Washington, D. C.: American Geophysical Union, 1994. http://dx.doi.org/10.1029/ar066p0129.
Full textWallace, Paul J. "Magmatic Volatiles." In Encyclopedia of Geology, 301–12. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-08-102908-4.00097-7.
Full textMysen, Bjorn O. "Volatiles in magmatic liquids." In Progress in Metamorphic and Magmatic Petrology, 435–76. Cambridge University Press, 1991. http://dx.doi.org/10.1017/cbo9780511564444.019.
Full text"Magmatic Volatiles and Fluids." In Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions, 34–49. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781108235617.004.
Full textWebster, James D., Benedetto De Vivo, and Christine Tappen. "Volatiles, magmatic degassing and eruptions of Mt. Somma-Vesuvius: Constraints from silicate melt inclusions, Cl and H2O solubility experiments and modeling." In Melt Inclusions in Volcanic Systems - Methods, Applications and Problems, 207–26. Elsevier, 2003. http://dx.doi.org/10.1016/s1871-644x(03)80031-1.
Full textConference papers on the topic "Magmatic Volatiles"
Edmonds, Marie. "Volcanic Outgassing and Magmatic Volatiles." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.644.
Full textBodnar, Robert J. "Magmatic Volatiles: No Longer Maxwell’s Demon." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.211.
Full textWebster, James D., Christian Huber, and Olivier Bachmann. "INSIGHTS ON MAGMATIC FLUID EXSOLUTION AND EVOLUTION FROM CHLORINE THE UNDER-APPRECIATED MAGMATIC VOLATILE COMPONENT." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302941.
Full textSaal, Alberto, Erik H. Hauri, Malcolm Rutherford, and James Van Orman. "MAGMATIC DEGASSING, ORIGIN AND BUDGET OF HIGHLY VOLATILE ELEMENTS OF THE MOON." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-302255.
Full textSaal, Alberto, Erik Hauri, James Van Orman, and Malcolm Rutherford. "Magmatic Degassing and the Volatile Budget of the Moon, Contributions by Malcolm J. Rutherford." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2255.
Full textShapley, Sarah, Joshua J. Ehlich, Mark R. Frank, and R. J. Bodnar. "GOLD AND COPPER IN MAGMATIC VOLATILE PHASES: IMPLICATIONS FOR PORPHYRY AND EPITHERMAL ORE DEPOSITS." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-323124.
Full textMcGee, Lucy E., Mark Reagan, Heather Handley, Simon Turner, and Steve Sparks. "U-Series Histories of Magmatic Volatile Phases and Enclave Development at Soufrière Hills Volcano, Montserrat." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1760.
Full textUkstins, Ingrid, Tanner Hartsock, Ben Simons, and Shane J. Cronin. "Magmatic Evolution, P–T Conditions, and Volatile Degassing of a Steady-State Volcano: Yasur, Vanuatu." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2648.
Full textKontak, Daniel J. "BREACHING OF VOLATILE-RICH FELSIC MAGMAS: A KEY STAGE IN THE FORMATION OF MAGMATIC-HYDROTHERMAL ORE SYSTEMS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-358797.
Full textRosera, Joshua M., Drew S. Coleman, and Sean Gaynor. "TIMING THE ONSET OF VOLATILE-RICH, HIGH-SILICA MAGMATISM IN THE CENTRAL COLORADO MINERAL BELT: NEW INSIGHTS FROM CHEMICAL ABRASION ID-TIMS U/PB ZIRCON GEOCHRONOLOGY." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-334482.
Full text