To see the other types of publications on this topic, follow the link: Magmatic Volatiles.

Dissertations / Theses on the topic 'Magmatic Volatiles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Magmatic Volatiles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Blower, Jonathan David. "Degassing processes in volcanic eruptions." Thesis, University of Bristol, 2001. http://hdl.handle.net/1983/30b2bc8c-2956-4a7a-a801-cdbef473ee1a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berg, Sylvia. "Disintegration and Devolatilisation of Sandstone Xenolith in Magmatic Conduits: an Experimental Approach." Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160266.

Full text
Abstract:
Xenoliths preserve evidence of magma-crust interactions in magmatic reservoirs and conduits. They reveal processes of partial melting of country rock, and disintegration into magma. Widespread evidence for frothy xenoliths in volcanic deposits exists, and these evidently indicate processes of gas liberation, bubble nucleation and bubble growth. This report focuses on textural analysis of frothy sandstone xenoliths from Krakatau in Indonesia, Cerro Negro in Nicaragua, Cerro Quemado in El Salvador and from Gran Canaria, Canary Islands, and involves attempts to experimentally reproduce xenolith textures. To achieve this, magmatic conditions acting upon country rock in volcanoes are simulated by subjecting sandstones to elevated temperature and pressure in closed system-autoclaves. Subsequent decompression imitates magma ascent following xenolith entrainment, and is largely responsible for the formation of frothy xenolith textures. The experiments show a range of successive features, such as partial melting, gas-pressure build up, bubble nucleation, growth and development of bubble networks. The experiments closely reproduced textures of natural xenoliths and help to assess the controlling P-T parameters that encourage efficient bubble growth. Conditions proved ideal between 850˚C and 870˚C and pressure release from 1 kbar. Such conditions limit bubble overprinting by secondary crystallization and melt infilling. Country rock lithology proved vital regarding gas pressure build-up and resulting bubble nucleation during decompression. In particular, increased water content and relict crystals in the melt produced appear to ease and promote gas liberation by enabling early and effective bubble nucleation. Moreover, experiments confirm a decisive role for bubble coalescence. These results attest to the great potential of country rock to develop interconnected bubble networks upon magma contact, exsolving large amounts of crustal volatiles into the magma. Volatile input involves a change in magma viscosity and thus an accompanied change in disruptive behaviour, and may hence be responsible for increased potential to cause explosive volcanic eruptions. Moreover, H2O and CO2 vapour are severe greenhouse gases, which seems to be added to the atmosphere from crustal rocks via recycling by volcanic activity, and may have yet underappreciated effects on Earth’s climate.
APA, Harvard, Vancouver, ISO, and other styles
3

Bégué, Florence. "Magmatic volatiles: A melt inclusion study of Taupo Volcanic Zone rhyolites,New Zealand." Thesis, University of Canterbury. Geological Sciences, 2014. http://hdl.handle.net/10092/9319.

Full text
Abstract:
The central segment of the Taupo Volcanic Zone (TVZ) is one of the world’s most productive areas of silicic volcanism and geothermal activity. Rhyolites largely predominate the eruptive output in the central TVZ, with only minor basalts, andesites and dacites. The rhyolites show diversity in composition, and form a compositional continuum between two end-member types (R1 and R2), as suggested in previous studies. In this thesis I present results from a quartz- (and rare plagioclase-) hosted melt inclusions study, focussing on the volatile concentration (i.e. H2O, Cl, F, CO2) and their relative distribution between R1 and R2 rhyolites. The main objective is to add further constraints on the magmatic systems with regard to their contribution to the hydrothermal systems in the central TVZ. A comparative study between R1 and R2 melt inclusions show distinct volatile, fluid-mobile, and highly incompatible element compositions. Differences in the bulk volatile concentration of the parental magmas (i.e. basalts intruding the lower crust) are suggested to be at the origin of these volatile disparities. Further analysis on the volatile exsolution of R1 and R2 melts lead to the observation that the two rhyolite types exsolve a volatile phase at different stages in their magmatic history. From Cl and H2O concentrations, it is suggested that R1 magmas exsolve a vapour phase first, whereas R2 rhyolites more likely exsolve a hydrosaline fluid phase. These results have considerable implications for the magmatic contribution into the hydrothermal systems in the central TVZ, as differences in the composition of the resulting volatile phase may be expected. The hydrothermal systems in the central TVZ are subdivided into two groups based on their gas and fluid chemistry; and the current model suggests that there are two distinct contributions: a typical ‘arc’ system, with geochemical affinity with andesitic fluids, located along the eastern margin of the TVZ, and a typical ‘rift’ system, with geochemical affinity with rhyolitic/basaltic fluids, located along the central and/or western region of the TVZ. The addition of the new data on the rhyolitic melt inclusions, leads to a re-evaluation of the magmatic contribution into the hydrothermal systems, with a particular focus on B and Cl. The results indicate a more diverse variety of contributions to the meteoric water in the hydrothermal systems, and also show that the east-west distribution of ‘arc’ and ‘rift’ fluids is not a viable model for the central TVZ. This work emphasises that melt inclusion data and their volatile degassing history cannot be underestimated when characterising and quantifying the magmatic component in hydrothermal fluids. The melt inclusion data also provide further insight into the pre-eruptive magmatic plumbing systems and are particularly important from a hazard perspective. Included in the thesis is a detailed petrological analysis of rhyolite melt inclusions across the central TVZ and an interpretation that large silicic magma systems (in the TVZ) are typically comprised of multiple batches of magma emplaced at some of the shallowest depths on Earth. Tectonic activity is suggested to play an important role in triggering large caldera-forming eruptions as the evacuation of one magma batch could cause a regional-scale readjustment that is sufficient enough to trigger and allow simultaneous eruption of an adjacent melt batch.
APA, Harvard, Vancouver, ISO, and other styles
4

Salem, Lois Claire. "Magmatic processes at basaltic volcanoes : insights from the crystal cargo." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277726.

Full text
Abstract:
A plethora of magmatic processing occurs in magma reservoirs, where melts are stored prior to eruption. Magma reservoirs are complex, open systems, and often multiple reservoirs are partially inter-connected from source to surface, giving rise to the term 'volcanic plumbing system'. Parental melts feeding these reservoirs can have diverse and distinct geochemical and petrological characteristics, and be variably evolved or enriched. These melts can also bring with them a crystal cargo that may remain in equilibrium in the magma reservoir, but may also be modified by reaction, resorption, crystallisation and diffusion. Melts and crystals can be transported between reservoirs, from the upper mantle and through the crust, leading to melt mixing, reactions and volatile exsolution. Basaltic volcanic systems are fed by primitive melts, and due to the rapid ascent of melts and short magma storage times, these volcanoes provide the best means of unravelling the mantle and crustal contribution to geochemical heterogeneity observed in erupted samples. Despite the potential chemical complexity of a magma reservoir, evidence for magma processing and reaction can be preserved in melt inclusion suites and the compositional structure of their host crystals. Magmatic processes during storage and transport at two basaltic volcanoes are investigated using two carefully selected eruptions: the 1669 eruption at Mt. Etna, and the 2007 Father's Day eruption at Kīlauea. A suite of diverse geochemical, petrological and petrographical observations, made at a range of length-scales, are combined and interpreted in tandem with geophysical monitoring data. The conclusions of these studies shed light on the architecture of each volcano's plumbing systems and basaltic plumbing systems in general. This thesis is divided into two parts. The first study unravels the crustal and mantle processes controlling melt geochemical heterogeneity at Mt. Etna, Sicily, during the 1669 eruption, the largest eruption in historical times. The 1669 melt inclusion suite arises from the mixing of two basaltic melts with similar major element compositions but very different trace and volatile element compositions. The melt geochemistry suggests that at least one end-member melt has been heavily influenced by assimilation of carbonate in the crust. The elevation in alkalis, caused by carbonate assimilation, enhances carbon and sulfur solubility in one end member. The melt inclusion suite indicates that mixing of these melts occurred in the shallow crust shortly before eruption and this mixing may be the cause of the enhanced $CO_{2}$ fluxes prior to eruptions at Mt. Etna. The second study is split into two parts. Each uses the eruptive products of the Father's Day eruption at Kīlauea and aims to unravel the connectivity of the plumbing system between the summit and East Rift Zone, with a focus on timescales of storage and transport. The first part investigates the melt geochemistry in terms of heterogeneity and volatile composition, and the second investigates the crystal cargo in terms of features of the macro-scale crystal cargo distribution and the micro-scale geochemical zoning of individual crystals. The integration of observations and models from these two studies constrains the pressure, temperature and composition of source magma feeding the Father's Day eruption. The eruption is investigated in the context of the "magma surge'' event that preceded the intrusion, as well as within the context of the longer-term trends in Kīlauea geochemistry at the summit and East Rift Zone. Melt inclusion and matrix glass volatile systematics provide insights into the degassing path of the magma and the duration of magma transport to the surface is constrained by diffusion modelling. Estimated timescales for ascent by diffusion modelling of macrocryst major element composition, melt inclusion water content and the melt Fe$^{3+}$/Fe$_{tot}$ ratio are in agreement with timescales observed from the geophysical data of $< $8 hours from reservoir depth to eruption. Both studies emphasise how petrological observations can supplement geophysical monitoring datasets collected at the surface to aid our interpretation of volcanic behaviour and eruption forecasting.
APA, Harvard, Vancouver, ISO, and other styles
5

Atlas, Zachary D. "Volatiles in Melt Inclusions from Mexican and Nicaraguan Volcanoes: Implications for Complex Degassing Processes." Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/142.

Full text
Abstract:
The first section of this work examines melt inclusions in phenocrysts from Volcán Popocatépetl and Volcán de Colima within the Trans Mexican Volcanic Belt (TMVB). These inclusions are dacitic to rhyolitic. Trends in melt inclusion major element and water concentrations form the evolved extension of other Mexican volcanics including those presumably derived directly from primitive melts. Water concentrations in Popocatépetl and Colima melt inclusions are similar (0.3 to 3.4 weight percent Hsub2O). Melt-vapor equilibration pressures calculated from dissolved Hsub2O and COsub2 (Popocatépetl) or Hsub2O (Colima) in melt inclusions correspond to depths of entrapment of 12 km or less. Water and carbon dioxide concentrations correlate negatively with SiOsub2 and potassium. Normalized olivine-augite-quartz compositions are consistent with near cotectic crystallization under vapor-saturated conditions at pressures of 1.5 kb or less. Our results show that Popocatépetl and Colima magmas have undergone vapor-saturated crystallization during ascent in conjunction with varying degrees of mixing between degassed rhyo-dacitic and less degassed, mafic melts in the upper portions of the crust. These data suggest melt evolution occurred in conduits or inter-fingered dikes rather than a large stratified magma chamber. Part II looks at the Masaya caldera in Nicaragua. This volcano has erupted frequently in recorded history, producing lava lakes and very high gas emissions. Melt inclusions from Masaya are basaltic, with low Hsub2O (below 0.5 wt. %), low S (less than 300 ppm) and high COsub2 concentrations (up to approximately 6000 ppm). Relationships between water, sulfur, Cl and F in combination with Masaya's high COsub2 and Ba/Zr and Ba/Nb ratios suggest that Masaya has undergone a multi stage degassing process involving 1) shallow degassing, 2) recycling of magma into a deeper reservoir, and 3) fluxing of previously degassed magma with a nearly pure COsub2 vapor. Trace element signatures of melt inclusions are consistent with contributions that have been variably metasomatized by fluids generated by dehydration of subducted sediments and/or altered oceanic crust.
APA, Harvard, Vancouver, ISO, and other styles
6

Walowski, Kristina. "From Cinder Cones to Subduction Zones: Volatile Recycling and Magma Formation beneath the Southern Cascade Arc." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19310.

Full text
Abstract:
Volatiles (H2O, CO2, S, Cl) play a key role in magmatic processes at subduction zones. In this study, the dissolved volatile contents of olivine-hosted melt inclusions from cinder cones in the Lassen segment of the Cascade arc are used to investigate dehydration of subducted oceanic lithosphere, magma formation in the sub-arc mantle wedge, and mafic magma storage and evolution in the crust. Relatively young, hot oceanic lithosphere subducts beneath the Cascade arc. The hydrogen-isotope and trace-element compositions of melt inclusions, when integrated with thermo-petrologic modeling, demonstrate that fluids in Cascade magmas are sourced from hydrated peridotite in the deep slab interior and that the oceanic crustal part of the slab extensively dehydrates beneath the forearc. In contrast to their slab-derived H, the melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), requiring little to no slab contribution of B, which is also consistent with extensive dehydration of the downgoing plate before it reaches sub-arc depths. Correlations of volatile and trace element ratios in the melt inclusions (H2O/Ce, Cl/Nb, Sr/Nd) demonstrate that geochemical variability in the magmas is the result of variable amounts of addition of a hydrous subduction component to the mantle wedge. Radiogenic isotope ratios require that the subduction component has less radiogenic Sr and Pb and more radiogenic Nd than the Lassen sub-arc mantle and is therefore likely to be a partial melt of subducted Gorda MORB. These results provide evidence that chlorite-derived fluids from the deep slab interior flux-melt the oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting. The basaltic magmas that erupted at Cinder Cone near Mt. Lassen trapped melt inclusions during olivine crystallization at ~7-15 km depth. The melt inclusion compositions require that two different mantle-derived magmas were involved in the eruption, and temporal changes show that arrival of the two batches correlates with two explosive phases of activity. Both magmas experienced rapid crustal contamination before erupting, illustrating the complexities of cinder cone eruptions. This dissertation includes previously published and unpublished co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
7

Ruscitto, Daniel M. 1981. "Magmatic volatile contents and explosive cinder cone eruptions in the High Cascades: Recent volcanism in Central Oregon and Northern California." Thesis, University of Oregon, 2011. http://hdl.handle.net/1794/11262.

Full text
Abstract:
xvi, 182 p. : col. ill.
Volatile components (H 2 O, CO 2 , S, Cl) dissolved in magmas influence all aspects of volcanic activity from magma formation to eruption explosivity. Understanding the behavior of volatiles is critical for both mitigating volcanic hazards and attaining a deeper understanding of large-scale geodynamic processes. This work relates the dissolved volatile contents in olivine-hosted melt inclusions from young volcanics in the Central Oregon and Northern California Cascades to inferred magmatic processes at depth and subsequent eruptive activity at the surface. Cinder cone eruptions are the dominant form of Holocene volcanism in the Central Oregon segment of the High Cascades. Detailed field study of deposits from three cinder cones in Central Oregon reveals physical and compositional similarities to explosive historic eruptions characterized as violent strombolian. This work has important implications for future hazard assessments in the region. Based on melt inclusion data, pre-eruptive volatile contents for seven calc-alkaline cinder cones vary from 1.7-3.6 wt.% H 2 O, 1200-2100 ppm S, and 500-1200 ppm Cl. Subarc mantle temperatures inferred from H 2 O and trace elements are similar to or slightly warmer than temperatures in other arcs, consistent with a young and hot incoming plate. High-magnesium andesites (HMA) are relatively rare but potentially important in the formation of continental crust. Melt inclusions from a well-studied example of HMA from near Mt. Shasta, CA were examined because petrographic evidence for magma mixing has stimulated a recent debate over the origin of HMA magmas. High volatile contents (3.5-5.6 wt.% H 2 O, 830-2900 ppm S, 1590-2580 ppm Cl), primitive host crystals, and compositional similarities with experiments suggest that these inclusions represent mantle-derived magmas. The Cascades arc is the global end member, warm-slab subduction zone. Primitive magma compositions from the Cascades are compared to data for arcs spanning the global range in slab thermal state to examine systematic differences in slab-derived components added to the mantle wedge. H 2 O/Ce, Cl/Nb, and Ba/La ratios negatively correlate with inferred slab surface temperatures predicted by geodynamic models. Slab components become increasingly solute-rich as slab surface temperatures increase from ∼550 to 950°C at 120 km depth. This dissertation includes previously published and unpublished co-authored material.
Committee in charge: Dr. Paul J. Wallace, Chair and Advisor; Dr. Katharine Cashman, Member; Dr. Ilya Bindeman, Member; Dr. Richard Taylor, Outside Member
APA, Harvard, Vancouver, ISO, and other styles
8

Khadhem, Laith. "Volatilernas påverkan på marina vulkanutbrott." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328231.

Full text
Abstract:
The Cape Verde archipelago is located 2000 km east of the Atlantic oceanic ridge and 500 km west of the western part of Africa. The plateau of the archipelago rises on average 2 km above the seafloor, which makes it one of the highest oceanic plateaus on Earth. Cape Verde originates from hotspot formation, a geological phenomenon which takes place beyond the tectonic plate boundaries where magma rises to the surface. In this thesis, volcanic material taken from the Charles Darwin volcanic field at a depth of more than 3000 meter and made up by four basaltic rocks and one agglomerate will be investigated. The agglomerate and vesicles in the rock shows that explosive volcanism occurs in high water depths, which is generally not common. Therefore, the material will be investigated to find out how explosive volcanism can occur at high water depths. The investigation will be based on quantifying the number of vesicles to able to calculate their area and analyze the magmatic water content in clinopyroxene crystals taken from the agglomerate by FTIR spectroscopy. Water is a volatile substance in the composition of magma and has a huge effect on its behavior at eruption. The results of quantification show that the area taken by vesicles varies from 7- 54 % which shows that magmatic products with high number of vesicles are common. The FTIR analysis shows that the magmatic water content can be high enough to cause an oversaturated magma system, which creates explosive eruptions. This statement is based on only one clinopyroxene crystal that had a magmatic water content of 3,87 ± 0,77 %. Other possible reasons for explosive eruptions at high water depth are the CO2 content in the magma and the size of volcanic vent.
Kap Verde är en arkipelag, situerad cirka 2000 km öster om den mittatlantiska spridningsryggen och 500 km väster om det afrikanska fastlandet. Arkipelagens platå har en genomsnittlig höjd på 2 km, vilket gör den till en av världens högsta oceaniska platåer. Arkipelagen har uppkommit av hetfläcksbildning, ett geologiskt fenomen baserad på att magma erupteras till ytan där jordskorpan är förtunnad och inte har någon anknytning till de tektoniska plattgränserna. Det som undersöks i detta kandidatarbete är vulkaniskt material, taget från den vulkaniska undervattensön Charles Darwin vulkanfält som ligger i den västra del Kap Verdes norra ö-grupp på över 3000 meterdjup. Materialet består av ett agglomerat och fyra stenstuffer av basaltisk komposition. Agglomeratet tyder på att explosiva vulkanutbrott förekommer, vilket även bekräftas av stenstufferna som har rikligt förekomst av luftbubblor. Explosiva vulkanutbrott är generellt inte förekomliga vid höga vattendjup, därav undersöks materialet för att kunna reda ut orsakerna som ger upphov till förekomsten av explosiva vulkanutbrott. Undersökningen baseras på att kvantifiera luftbubblor hos stenstufferna för att kunna räkna ut arean som upptas och analysera vattenhalten i klinopyroxenkristaller i agglomeratet med hjälp av FTIR spektroskopi. Vatten tillhör de flyktiga beståndsdelar i magmas sammansättning som kallas för volatiler och utgör en viktig parameter för magmans uppträdande vid eruption. Resultatet kvantifiering av luftbubblor visar att arean som upptas av luftbubblor varierar mellan 7–54 % av stenstufferna total area, vilket understryker att magmatiska produkter med hög andel luftbubblor är förkomliga. FTIR analysen visar att det finns tillräckliga höga vattenhalter för ett övermättat magmasystem som ger upphov till vulkanutbrott med explosiva förlopp, baserat på vattenhalten 3,87 ± 0,77 % av en klinopyroxenkristall. Andra möjliga orsaker till uppkomsten av magmatiska produkter med hög andel luftbubblor är koldioxidhalten i magman och storleken på vulkanrören.
APA, Harvard, Vancouver, ISO, and other styles
9

Esposito, Rosario. "Studies of volatile evolution in magmatic systems using melt inclusions." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28287.

Full text
Abstract:
Understanding volatile evolution associated with active volcanic magmatic systems is of paramount importance because volatiles control and determine the magnitude of an eruption owing to the large change in molar volume that volatile species show depending on their physical state (volatiles dissolved in silicate melts vs. volatiles exsolved as vapor). For active volcanic systems studying the volatile evolution can help to assess the potential hazard associated to a certain locality. Also, volatile evolution in magmatic system controls the formation of certain ore deposits. Despite the importance of understanding volatile evolution of magmatic systems, concentrations of volatiles of evolving magmas are not easily available especially for magmas originated in the deep crust. Fortunately, sample of melts can be entrapped as melt inclusion (MI) into growing igneous minerals in crystalizing magma chamber. After the entrapment, the crystal works as an insulating capsule from the external magmatic environment. Researchers have started to use MI because they provide some advantages in respect to the classical whole rock approach to petrological studies. One of the most important advantages is that MI often represent sample of a deep and non-degassed melt (glass) available at Earth's surface. In fact, with the exception of deep ocean basalts, igneous whole rocks found at the Earth's surface are degassed magmas. This dissertation is a compilation of four publications produced during six years of research and is addressed to give a contribution in understanding the volatile evolution in magmatic systems and also to improve the present understanding of information that can be obtained using the melt inclusions technique. In the first chapter, I present an alternative interpretation of H₂O-CO₂ trends obtained from MI. In this study, we demonstrate that these trends can be due to post entrapment crystallization on the wall of the MI and not to magma ascent. This alternative view is more realistic especially for cases where in the same phenocrysts MI show strongly different CO₂ concentrations. In the second chapter, I present a study to test for the MI reliability in recording volatile concentrations. We used the approach of the melt inclusion assemblage (MIA) that consists of analyzing groups of MI presumably entrapped at the same time and, thus, at same chemical and physical conditions. The results show that most of the MIA studied show consistent volatile concentrations corroborating the reliability of the MI technique. CO₂ shows the highest degrees of variability and we have assessed this behavior mostly to C-contamination in the surface of the sample. The third chapter is a study case (the Solchiaro eruption in Southern Italy) that shows the potential uses of MI to understanding the volatile evolution. I present a model showing the dynamic of the magma based on MI. This study also discusses the origin of anomalous MI and which MI provide the best information. The final chapter is dedicated to test the applicability of the new Linkam TS1400XY heating stage. I was able to show how this new microthermometric tool is capable of homogenizing MI at high temperature and to quench MI to a homogeneous glass state.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Crandall, Jake Rauch. "Magma-Sediment Interaction on Mars: Detectability and Habitability as Constrained by Terrestrial Analogs." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/dissertations/1944.

Full text
Abstract:
Magmatism is a critical process throughout the geological history of Earth and Mars, and one of the few processes capable of producing significant changes in the Martian surface and subsurface past the Noachian. The interaction between mafic magmatism and host rock has the potential to contribute to the surface volatile species, chief among which is sulfur. On Earth, mafic magmas intruding sulfur-rich sediments are rare; however, sulfur–rich soils exist with a near global extent on Mars, and evidence exists for both recent and ancient mafic magmatism. The intrusion of mafic magmas into sulfur-rich sediments is therefore expected on Mars, and is especially pertinent concerning proposed landing site for the ESA ExoMars mission, and the landing site of the NASA Mars 2020 mission, both of which are in proximity to a potential volcanic capping unit in direct contact with sulfate bearing sediments. Here we investigate a terrestrial analog in the San Rafael Swell on the Colorado Plateau in which numerous mafic dikes intrude, alter, and bake sulfur-rich sediments. Mafic dikes intruding the Curtis, Entrada Sandstone, and Carmel Formations act as analogs for volcanic/sediment interaction on Mars, specifically for Jezero Crater, Mawrth Vallis, and N-E Syrtis Major. Using Mars relevant instruments, mineralogical changes with respect to distance from the magmatic intrusion, as well as the spatial resolution necessary to detect these changes, are constrained. The investigated analogs are discovered to be dynamic, and similar systems on Mars will likely require both orbital and in-situ measurements to be detected due to resolution constraints.
APA, Harvard, Vancouver, ISO, and other styles
11

Berg, Sylvia. "Constraining Crustal Volatile Release in Magmatic Conduits by Synchrotron X-ray μ-CT." Thesis, Uppsala universitet, Berggrundsgeologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-160230.

Full text
Abstract:
Magma-crust interaction in magma reservoirs and conduits is a crucial process during magma evolution and ascent. This interaction is recorded by crustal xenoliths that frequently show partial melting, inflation and disintegration textures. Frothy xenoliths are widespread in volcanic deposits from all types of geological settings and indicate crustal gas liberation. To unravel the observed phenomena of frothy xenolith formation we experimentally simulated the behaviour of crustal lithologies in volcanic conduits. We subjected various sedimentary lithologies to elevated temperature (maximum 916 °C) and pressure (maximum 160 MPa) in closed-system autoclaves. Experimental conditions were held constant between 24h and 5 days. Controlled decompression to atmospheric pressure then simulated xenolith ascent. Pressure release was a function of temperature decline in our setup. Temperature lapse rate proceeded exponentially; the mean rate during the first 30 minutes was 17.8 ˚C/min and the mean decompression rate during the same interval was 3.0 MPa/min, eventually reaching room temperature after approximately 5.5 hours of slow cooling. The experimental products have been analysed for internal textures by synchrotron X-ray μ-CT at a resolution of 3.4 – 9 microns/pixel. This method permits visualisation and quantification of vesicle volumes, -networks and-connectivity in 3D without destroying the sample. Experimental products closely reproduced textures of natural frothy xenoliths in 3D and define anevolutionary sequence from partial melting to gas exsolution and bubble nucleation that eventually leads to the development of three-dimensional bubble networks. Experimental P-T-t conditions and especially rock lithology proved decisive for degassing behaviour and ensuing bubble nucleation during decompression. Progressive bubble nucleation leads to subsequent bubble coalescence to form interconnected bubble networks. This, in turn, enables efficient gas liberation and release. Our results attest to significant potential of even very common crustal rock types to release volatiles and develop interconnected bubble networks upon heating and decompression in magmatic systems. Crustal volatile input from xenoliths affects magma rheology and may drive magmas to sudden explosive eruptions. Our experiments offer insight into the mechanism of how such crustal volatile liberation is accomplished.
APA, Harvard, Vancouver, ISO, and other styles
12

Zajacz, Zoltán. "Mass transfer during volatile exsolution in magmatic systems : insights trough methodological developments in melt and fluid inclusion analysis /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Small, James Alexander. "Magmatic evolution and the behaviour of volatile species prior to explosive volcanism at Mt. Somma-Vesuvius, Southern Italy." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.687264.

Full text
Abstract:
This thesis examines contrasting styles of magmatic differentiation, inferred magma storage conditions and the behaviour of volatile species prior to explosive Plinian and subplinian eruptions at Mt Somma-Vesuvius, southern Italy, Two case-study events are compared: the Plinian eruption of ~3,55 kaBP ('Avellino') and the smaller, more recent subplinian eruption of 472 AD ('Pollena'), These represent opposite end members within the scheme of violently explosive major eruptions at Somma-Vesuvius, in terms of their pre-eruptive repose times, eruptive scenarios, geochemistry and stratigraphic zoning of their juvenile clasts within their fall deposits, The study employs detailed microanalysis of melt inclusions (MI) and their host crystals from the eruptive products of these two events, and compares these new data and observations with published MI and whole-rock data from these and other key eruptions of Somma-Vesuvius, Chapter 2 compares SIMS, Micro-Raman and EPMA measurements of H20 concentration in the same MI and documents the pitfalls of these approaches and the efforts made to mitigate them, In Chapter 3, new and already-published major and trace element data for MI and their host crystals are used to account for clear differences in the degree and style of magmatic (whole-rock) differentiation prior to the two case-study eruptions in terms of differing crystallising assemblages controlling liquid evolution, differing degrees of total fractional crystallisation and relative volumes of the most evolved liquid compositions in the storage system, Chapter 4 reveals that the most evolved magmatic liquids in the Avellino system apparently had higher dissolved water contents than those from Pollena. Relationships between MI H₂0 and CI contents and major and trace elements indicate that magmatic liquids reached saturation with both vapour and brine phases prior to both eruptions and that significant isobaric magmatic differentiation occurred under these volatile-saturated conditions, Maximum H₂O contents and the stability of leucite in Pollena magmas, compared with its total absence from A vellino, are both consistent with shallower storage of the most evolved magmas at around ~ 1 kbar total pressure, compared to ~ 2 kbar for Avellino. A detailed study of sanidine-hyalophane crystals, complex zoning in highly Baand Sr-rich variants, and the relationship between entrapped MI and host-crystal compositions reveals drastic differences in the crystallisation environments recorded by Pollena versus Avellino crystals (Chapter 5). These differences, together with those in bulk-magmatic differentiation and dissolved volatile contents, are interpreted as indications of a relatively mature, deeper and larger volume storage system of highly evolved phonolitic magmas in the case of Avellino, compared to a relatively immature, shallower, complex and smaller volume equivalent for Pollena, Finally an exploratory study (Chapter 5) of sector zoning of Ca, Sr, Ba and Fe in Pollena sanidine-hyalophane crystals implies that, far from being a kinetically controlled disequilibrium feature, there is an intrinsic thermodynamic system control on the strength of apparent intersector partitioning. Temperature is proposed as the most likely control in this case, and the possibility is raised of using this phenomenon for single-crystal thermometry in the future.
APA, Harvard, Vancouver, ISO, and other styles
14

Kunrat, Syegi Lenarahmi. "Soputan Volcano, Indonesia: Petrological Systematics of Volatiles and Magmas and their Bearing on Explosive Eruptions of a Basalt Volcano." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3828.

Full text
Abstract:
Soputan volcano is one of the few basaltic volcanoes among 127 active volcanoes in Indonesia. It is part of the Sempu-Soputan volcanic complex located south of Tondano Caldera, North Sulawesi and commonly produces both explosive eruptions with VEI 2-3 and effusive lava dome and flow eruptions. Over the last two decades, Soputan had thirteen eruptions, the most recent in 2016. Most eruptions started explosively, followed by dome growth and in some cases pyroclastic flows. Our study focuses on understanding the magmatic system of Soputan and what processes are responsible for its highly explosive eruptions, which are typically uncommon for a basaltic magma composition. Our study includes tephra samples predating the 1911 eruptions, lava flow samples from the 2015 eruption, and ash from a 2015 fallout deposit. Our whole rock major and trace element composition are virtually identical to lava flow and select pyroclastic deposit compositions of Kushendratno et al. (2012) for the 1911-1912 and 1991-2007 eruptions. Bulk rocks contain 49 to 51 wt.% SiO2, whereas 2015 ash samples are slightly more silicic with 53 wt.% SiO2, consistent with segregation of groundmass from phenocrysts in the eruption cloud. Mantle normalized incompatible trace elements indicate strongly depleted HFSE (High Field Strength Elements) and REE (Rare Earth Elements) signatures but with spikes at Pb and Sr and mild enrichment of Rb and Ba. In comparison of data of this study with what was reported by Kushendratno et al. (2012), Fo68-79 olivine-hosted melt inclusions range from basaltic (48-52 wt.% SiO2) to basaltic andesite (54-55 wt.%) as compared to 54 - 65 wt.% SiO2 glass in Fo68-74 olivines. The compositional range of melt inclusions is consistent with 50% fractionation of multiple minerals including observed phenocrysts of olivine, plagioclase, pyroxene and oxides. Compositional trends with an inflection point likely reflect a change in the crystallizing assemblage, where early crystallization includes clinopyroxene and plagioclase, while later crystallization is dominated by plagioclase. New volatile concentration data from melt inclusions (S max. 0.35 wt.%, Cl max. 0.17%, H2O max. 5.2 wt.% from FTIR analyses) are higher than previously reported from younger samples (S max. ~0.07 wt.%, Cl max. 0.2%, H2O max. ~1 wt.%). H2O is relatively constant (~1-4 wt.%) for individual tephra samples (data by FTIR and water by difference method). Our inclusion data suggest that more volatile-rich magmas exist at depth and this is consistent with a model whereby recharge of deep, volatile-rich magmas into a more degassed and crystal-rich magma initiates a new, highly explosive eruption.
APA, Harvard, Vancouver, ISO, and other styles
15

Roberge, Julie. "Use of volatile and trace elements to infer geodynamic and magmatic processes : Ontong Java Plateau (Western Pacific) and Bishop Tuff (Eastern California) /." view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3201697.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2005.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 143-153). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
16

Lloyd, Alexander. "Timescales of magma ascent during explosive eruptions: Insights from the re-equilibration of magmatic volatiles." Thesis, 2014. https://doi.org/10.7916/D8F769QW.

Full text
Abstract:
The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the timescales of eruptive processes can be exceedingly fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. As an exception to this principle, magmatic volatiles can re-equilibrate on timescales relevant to explosive eruptions, producing evidence for diffusion that can be assessed by various micro-beam techniques. Because the solubility of water and other magmatic volatiles decreases substantially at lower pressures, magmas erupt with a minute fraction of that which was initially dissolved. Melt inclusions, melt embayments, and trace amounts of H2O incorporated into the structure of nominally anhydrous minerals have the potential to retain information about the initial concentrations of magmatic volatiles prior to degassing. In this thesis, I present an assessment of the viability of these hydrous inclusions and mineral phases in preserving initial magmatic conditions in light of post-eruptive cooling effects. In addition, I also present an investigation of the potential of utilizing this volatile loss to estimate time scales of magma ascent during the 1974 sub-plinian eruption of Volcán de Fuego in Guatemala. To test the possibility of systematic H2O re-equilibration in olivine-hosted melt inclusions, I designed a natural experiment using ash, lapilli, and bomb samples that cooled at different rates owing to their different sizes. Ion microprobe, laser ablation-ICPMS, and electron probe analyses show that melt inclusions from ash and lapilli record the highest H2O contents, up to 4.4 wt%. On the other hand, MIs from bombs indicate up to 30% lower H2O contents (loss of ~ 1 wt% H2O) and 10% post-entrapment crystallization of olivine. This evidence is consistent with the longer cooling time available for a bomb-sized clast, up to 10 minutes for a 3-4 cm radius bomb, assuming conductive cooling and the fastest H+ diffusivities measured in olivine (D ~ 10-9 to 10-10 m2/s). On the other hand, several lines of evidence point to some water loss prior to eruption, possibly during magma ascent and degassing in the conduit. The duration of magma ascent that could account for the measured H2O loss was calculated to range from 10 to 30 minutes for the fast mechanism of H+ diffusion and 3.7 to 12.3 hours for the slow mechanism of H+ diffusion. Thus, results point to both slower post-eruptive cooling and slower magma ascent affecting MIs from bombs, leading to H2O loss over the timescale of minutes to hours. Utilizing an established method for assessing magma ascent rates, concentration gradients of volatile species along open melt embayments within olivine crystals were measured for use as a chronometer. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focused on four 100-200 micron, olivine-hosted embayments which exhibit decreases in H2O, CO2, and S towards the embayment outlet bubble. Compared to the extensive melt inclusion suite also presented in this thesis, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentration as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~10 km depth. A two-stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05 - 0.3 MPa/s) at high pressure ( > 145 MPa), with similar decompression rates to the single-stage model for the shallower stage. The magma ascent rates reported here are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. I investigated the utility of clinopyroxene as a recorder of the initial water and magma ascent rate using natural phenocrysts erupted during the 1974 eruption of Volcán de Fuego and the 1977 eruption on Seguam Island. The partitioning of water between clinopyroxene and melt was determined by analyzing melt inclusions and the adjacent clinopyroxene host by ion microprobe. For 10 Cpx-hosted MIs from Seguam, the partition coefficient is best predicted by the temperature-dependent parameterization by O'Leary et al. (2010). The diffusivity of H2O in clinopyroxene exhibits a four order of magnitude range in previous experimental studies that prevents a direct interpretation of concentration profiles as a chronometer. To constrain the diffusivity in magmatic phenocrysts, H2O concentration profiles were measured in Cpx from Fuego by ion microprobe and exhibit characteristics that are consistent with diffusive re-equilibration during magma ascent. Using the duration of ascent calculated from the melt inclusions and embayments (10 to 30 minutes), a range of H+ diffusivity was determined that would satisfy these timescales (10-9.20 to 10-10.45 m2/s). The calculated DH+ values are on the same order as the highest diffusivities for H+ in Cpx measured in the laboratory. A comparison of H2O concentrations measured in Cpx from lava and tephra samples from the Seguam eruption demonstrated that Cpx from lava retains less H2O in comparison to the H2O measured in the tephra. Using the DH+ values obtained from the Fuego Cpx, I showed that the difference in H2O between the lava and tephra Cpx can be attributed to post-eruption H2O loss during the estimated ~ 13 minute emplacement of the lava flow. The results from this work indicate that iron-rich clinopyroxene from slowly-cooled basaltic lavas should not be used to reconstruct initial magmatic water contents. The novel findings reported in this thesis are two-fold. Based on evidence from olivine-hosted melt inclusions in volcanic bombs and clinopyroxene in a pahoehoe lava flow, it is unlikely that the initial concentration of water can be preserved if a volcanic product undergoes slow post-eruptive cooling. This fact implies that a portion of the published data on H2O concentrations in olivine-hosted melt inclusions and clinopyroxene may reflect unrecognized H2O loss via diffusion and highlights the importance of reporting the type of volcanic deposit or the clast size from which a sample is extracted. The second novel finding of this thesis concerns the convergence in magma ascent rate estimates from three independent chronometers. In one of the first studies of this magma type, I report relatively fast time scales for magma ascent (~10 minutes from mid-crustal depths) for a basaltic, sub-plinian eruption. Furthermore, the similarity of the estimated timescales from melt inclusions, embayments, and clinopyroxene indicate the validity of any of these chronometers in tracking magma ascent rate. This further expansion of the methods for assessing time scales of volcanic eruptions enables researchers to pursue the complicated relationship between magmatic volatiles, ascent rate, and volcanic explosivity.
APA, Harvard, Vancouver, ISO, and other styles
17

Blaine, Fredrick Allan. "The Effect of Volatiles (H2O, Cl and CO2) on the Solubility and Partitioning of Platinum and Iridium in Fluid-Melt Systems." Thesis, 2010. http://hdl.handle.net/10012/5465.

Full text
Abstract:
Volatiles are a fundamental component of the Magmatic-Hydrothermal model of platinum group element (PGE) ore deposition for PGE deposits in layered mafic intrusions such as Bushveld and Stillwater. Volatiles have the potential to complex with PGEs in silicate melts and hydrothermal fluids, increasing PGE solubility; in order to assess the models of PGE ore deposition reliable estimates on the solubilities in the various magmatic phases must be known. However, experimental studies on the solubility and partitioning behaviour of PGEs in mafic magmatic-hydrothermal systems under relevant conditions are sparse, and the data that do exist produce conflicting results and new or adapted experimental methods must be applied to investigate these systems. Experimental results are presented here, investigating the effect of volatiles (i.e. H2O, Cl and CO2) on Pt and Ir solubility in a haplobasaltic melt and fluid-melt partitioning of Pt between an aqueous fluid and a haplobasaltic melt under magmatic conditions using a sealed-capsule technique. Also included are the details of the development of a novel experimental technique to observe fluid-melt partitioning in mafic systems and application of the method to the fluid-melt partition of Pt. Solubility experiments were conducted to assess the effect of volatiles on Pt and Ir solubility in a haplobasaltic melt of dry diopside-anorthite eutectic composition at 1523K and 0.2GPa. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42-Di58) haplobasalt composition was sealed in a platinum or platinum-iridium alloy capsule and was allowed to equilibrate with the noble metal capsule and a source of volatiles (i.e. H2O, H2O-Cl or H2O-CO2) at experimental conditions. All experiments were run in an internally-heated pressure vessel equipped with a rapid quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). The resultant crystal- and bubble-free run product glasses were analyzed using a combination of laser ablation ICP-MS and bulk solution isotope-dilution ICP-MS to determine equilibrium solubilities of Pt and Ir and investigate the formation and contribution of micronuggets to overall bulk determined concentrations. In water-bearing experiments, it was determined that water content did not have an intrinsic effect on Pt or Ir solubility for water contents between 0.9 wt. % and 4.4 wt. % (saturation). Water content controlled the oxygen fugacity of the experiment and the resulting variations in oxygen fugacity, and the corresponding solubilities of Pt and Ir, indicate that over geologically relevant conditions both Pt and Ir are dissolved primarily in the 2+ valence state. Pt data suggest minor influence of Pt4+ at higher oxygen fugacities; however, there is no evidence of higher valence states for Ir. The ability of the sealed capsule technique to produce micronugget-free run product glasses in water-only experiments, allowed the solubility of Pt to be determined in hydrous haplobasalt at lower oxygen fugacities (and concentrations) then was previously observed. Pt and Ir solubility can be represented as a function of oxygen fugacity (bars) by the following equations: [Pt](ppb)= 1389(fO-sub-2)+7531(fO-sub-2)^(1/2) [Ir](ppb)=17140(fO-sub-2)^(1/2) In Cl-bearing experiments, experimental products from short run duration (<96hrs) experiments contained numerous micronuggets, preventing accurate determination of platinum and iridium solubility. Longer run duration experiments showed decreasing amounts of micronuggets, allowing accurate determination of solubility; results indicate that under the conditions studied chlorine has no discernable effect on Pt solubility in the silicate melt from 0.6 to 2.75 wt. % Cl (saturation). Over the same conditions, a systematic increase in Ir solubility is found with increasing Cl content; however, the observed increase is within the analytical variation/error and is therefore not conclusive. If there is an effect of Cl on PGE solubility the effect is minor resulting in increased Ir solubilities of 60% at chlorine saturation. However, the abundance of micronuggets in short run duration experiments, which decreases in abundance with time and increases with Cl-content, offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt and Ir under magmatic conditions. It is suggested that platinum and iridium dissolved within the Cl-bearing fluid are left behind as the fluid dissolves into the melt during the heating stages of the experiment, leaving small amounts of Pt and Ir along the former particle boundaries. With increasing run duration, the metal migrates back to the capsule walls decreasing the amount of micronuggets contained within the glass. Estimates based on this model, using mass-balance calculations on the excess amount of Pt and Ir in the run product glasses (i.e. above equilibrium solubility) in short duration experiments, indicate estimated Pt and Ir concentrations in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. Respective apparent (equilibrium has not been established) partition coefficients (D,fluid-melt) of 1x10^3 to 4x10^3 and 300-1100 were determined for Pt and Ir in Cl-bearing fluids; suggesting that Cl-bearing fluids can be highly efficient at enriching and transporting PGE in mafic magmatic-hydrothermal ore-forming systems. Platinum solubility was also determined as a function of CO2 content in a hydrous haplobasalt at controlled oxygen fugacity. Using the same sealed capsule techniques and melt composition as for H2O and Cl, a hydrous haplobasaltic melt was allowed to equilibrate with the platinum capsule and a CO2-source (CaCO3 or silver oxalate) at 1523 K and 0.2 GPa. Experiments were conducted with a water content of approximately 1 wt. %, fixing the log oxygen fugacity (bars) between -5.3 and -6.1 (log NNO = -6.95 @ 1573 K and 0.2 GPa). Carbon dioxide contents in the run product glasses ranged from 800-2500 ppm; and over these conditions, CO2 was found to have a negligible effect on Pt solubility in the silicate melt. Analogous to the Cl-bearing experiments, bulk concentrations of Pt in CO2-bearing experiments increased with increasing CO2 content due to micronugget formation. Apparent Pt concentrations in the H2O-CO2 fluid phase, prior to fluid dissolution, were calculated to be 1.6 to 42 ppm, resulting in apparent partition coefficients(D,fluid-melt) of 1.5 x 10^2 to 4.2 x 10^3, increasing with increasing mol CO2:H2O up to approximately 0.15, after which increasing CO2 content does not further increase partitioning. As well, a novel technique was developed and applied to assess the partitioning of Pt between an aqueous fluid and a hydrous diopside-anorthite melt under magmatic conditions. Building upon the sealed-capsule technique utilized for solubility studies, a method was developed by adding a seed crystal to the capsule along with a silicate melt and fluid. By generating conditions favourable to crystal growth, and growing the crystal from the fluid, it is possible to entrap fluid inclusions in the growing crystal, allowing direct sampling of the fluid phase at the conditions of the experiment. Using a diopside seed crystal with the diopside-anorthite eutectic melt, it was possible to control diopside crystallization by controlling the temperature, thus allowing control of the crystallization and fluid inclusion entrapment conditions. Subsequent laser ablation ICP-MS analysis of the fluid inclusions allowed fluid–melt partition coefficients of Pt to be determined. Synthetic glass powder of an anhydrous, 1-atm eutectic, diopside-anorthite (An42¬Di58) haplobasalt composition (with ppm levels of Ba, Cs, Sr and Rb added as internal standards), water and a diopside seed crystal were sealed in a platinum capsule and were allowed to equilibrate at experimental conditions. Water was added in amounts to maintain a free fluid phase throughout the experiment, and the diopside crystal was separated from the melt. All experiments were run in an internally heated pressure vessel equipped with a rapid-quench device, with oxygen fugacity controlled by the water activity and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Experiments were allowed to equilibrate (6-48 hrs) at experimental conditions (i.e. 1498K, 0.2 GPa, fluid+melt+diopside stable) before temperature was dropped (i.e. to 1483K) to induce crystallization. Crystals were allowed to grow for a period of 18-61 hours, prior to rapid isobaric quenching to 293K at the conclusion of the experiment. Experimental run products were a crystal- and bubble-free glass and the diopside seed crystal with a fluid-inclusion-bearing overgrowth. Analysis of fluid inclusions provides initial solubility estimates of Pt in a H2O fluid phase at 1488 K and 0.2 GPa at or near ppm levels and fluid melt partition coefficients ranging from 2 – 48. This indicates substantial metal enrichment in the fluid phase in the absence of major ligands such as carbonate or chlorine. The results of this study indicate that the volatiles studied (i.e. H2O, CO2, and Cl) do not have a significant effect on Pt and Ir solubility in a haplobasaltic melt at magmatic conditions. These results suggest that complexing of Pt and Ir by OH, Cl, and carbonate species in a haplobasaltic melt is insignificant and the presence of these volatiles will not result in significantly increased PGE contents over their dry counterparts, as has been suggested. Preliminary evidence of minor Cl-complexing of Ir is presented; however, resulting in only a slight increase (<100%) in Ir solubility at Cl-saturation. Significant partitioning of Pt and Ir into a fluid phase at magmatic conditions has been demonstrated; with estimates of fluid-haplobasaltic melt partition coefficients increasing from 1x10^1 for pure water to up to an apparent 4x10^3 with the addition of Cl or CO2 to the system. This result indicates complexing of Pt and Ir with OH< HxCOy≤ Cl. Using these estimates, Cl- or CO2-bearing magmatic fluids can be highly efficient at enriching and transporting platinum group elements (PGEs) in mafic magmatic-hydrothermal ore-forming systems.
APA, Harvard, Vancouver, ISO, and other styles
18

Berg, Sylvia E. "Silicic Magma Genesis in Basalt-dominated Oceanic Settings : Examples from Iceland and the Canary Islands." Doctoral thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-272318.

Full text
Abstract:
The origin of silicic magma in basalt-dominated oceanic settings is fundamental to our understanding of magmatic processes and formation of the earliest continental crust. Particularly significant is magma-crust interaction that can modify the composition of magma and the dynamics of volcanism. This thesis investigates silicic magma genesis on different scales in two ocean island settings. First, volcanic products from a series of voluminous Neogene silicic centres in northeast Iceland are investigated using rock and mineral geochemistry, U-Pb geochronology, and oxygen isotope analysis. Second, interfacial processes of magma-crust interaction are investigated using geochemistry and 3D X-ray computed microtomography on crustal xenoliths from the 2011-12 El Hierro eruption, Canary Islands. The results from northeast Iceland constrain a rapid outburst of silicic magmatism driven by a flare of the Iceland plume and/or by formation of a new rift zone, causing large volume injection of basaltic magma into hydrated basaltic crust. This promoted crustal recycling by partial melting of the hydrothermally altered Icelandic crust, thereby producing mixed-origin silicic melt pockets that reflect the heterogeneous nature of the crustal protolith with respect to oxygen isotopes. In particular, a previously unrecognised high-δ18O end-member on Iceland was documented, which implies potentially complex multi-component assimilation histories for magmas ascending through the Icelandic crust. Common geochemical traits between Icelandic and Hadean zircon populations strengthen the concept of Iceland as an analogue for early Earth, implying that crustal recycling in emergent rifts was pivotal in generating Earth’s earliest continental silicic crust. Crustal xenoliths from the El Hierro 2011-2012 eruption underline the role of partial melting and assimilation of pre-island sedimentary layers in the early shield-building phase of ocean islands. This phenomenon may contribute to the formation of evolved magmas, and importantly, the release of volatiles from the xenoliths may be sufficient to increase the volatile load of the magma and temporarily alter the character and intensity of an eruption. This thesis sheds new light on the generation of silicic magma in basalt-dominated oceanic settings and emphasises the relevance of magma-crust interaction for magma evolution, silicic crust formation, and eruption style from early Earth to present.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography