Academic literature on the topic 'Magmatism Geology, Stratigraphic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magmatism Geology, Stratigraphic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magmatism Geology, Stratigraphic"

1

ZHANG, ZHIYONG, WENBIN ZHU, LIANGSHU SHU, JINBAO SU, and BIHAI ZHENG. "Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia." Geological Magazine 146, no. 1 (November 27, 2008): 150–54. http://dx.doi.org/10.1017/s0016756808005839.

Full text
Abstract:
AbstractThe widely exposed Kuluketage diabase dyke swarm, Tarim Block, NW China, has been considered to have been emplaced in Permian times. New precise zircon U–Pb SHRIMP ages for two samples from the dyke swarm yield Neoproterozoic ages of 823.8±8.7 Ma and 776.8±8.9 Ma. Correlated with peaks of magmatism in South China and Australia at c. 825 Ma and c. 780 Ma, these two new ages provide significant information for palaeocontinental reconstructions. The prolonged duration of the magmatic events, combined with regional stratigraphic relationships, imply that the Tarim Block may have been affected by a mantle plume during the breakup of Rodinia.
APA, Harvard, Vancouver, ISO, and other styles
2

Rocha, Brenda C., Joshua H. F. L. Davies, Valdecir A. Janasi, Urs Schaltegger, Antônio J. R. Nardy, Nicolas D. Greber, Ana Carolina F. Lucchetti, and Liza A. Polo. "Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event." Geology 48, no. 12 (July 31, 2020): 1174–78. http://dx.doi.org/10.1130/g47766.1.

Full text
Abstract:
Abstract The Valanginian Stage is marked by a period of global positive δ13C carbon cycle perturbation and biotic crises, which are collectively referred to as the Valanginian event (VE). Many attempts have been made to link the Paraná-Etendeka large igneous province volcanism with the VE. However, currently there is no conclusive proof to support this hypothesis, since the timing and duration of the volcanic activity are not known with sufficient precision. In this study, we significantly revise the time scales of magmatism and environmental impact of the Paraná magmatic province (PMP) in Brazil with new high-precision zircon U-Pb ages from the low-Ti Palmas and high-Ti Chapecó sequences. Our data demonstrate that significant volumes of low-Ti silicic rocks from the PMP erupted rapidly at ca. 133.6 Ma within 0.12 ± 0.11 k.y. The age of the high-Ti Chapecó sequence from central PMP is constrained at ca. 132.9 Ma and thus extends the duration of magmatic activity by ∼700 k.y. Our new ages are systematically younger than previous ages and postdate the major positive carbon isotope excursion, indicating that PMP silicic magmatism did not trigger the VE but could have contributed to extending its duration. Within the framework of the stratigraphic column of the PMP, the earliest low-Ti basalts could have been responsible for the VE if they are at least 0.5 m.y. older than the low-Ti silicic rocks dated herein.
APA, Harvard, Vancouver, ISO, and other styles
3

CORFU, FERNANDO, STÉPHANE POLTEAU, SVERRE PLANKE, JAN INGE FALEIDE, HENRIK SVENSEN, ANDREW ZAYONCHECK, and NIKOLAY STOLBOV. "U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province." Geological Magazine 150, no. 6 (June 11, 2013): 1127–35. http://dx.doi.org/10.1017/s0016756813000162.

Full text
Abstract:
AbstractThe opening of the Arctic oceanic basins in the Mesozoic and Cenozoic proceeded in steps, with episodes of magmatism and sedimentation marking specific stages in this development. In addition to the stratigraphic record provided by sediments and fossils, the intrusive and extrusive rocks yield important information on this evolution. This study has determined the ages of mafic sills and a felsic tuff in Svalbard and Franz Josef Land using the isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb method on zircon, baddeleyite, titanite and rutile. The results indicate crystallization of the Diabasodden sill at 124.5 ± 0.2 Ma and the Linnévatn sill at 124.7 ± 0.3 Ma, the latter also containing slightly younger secondary titanite with an age of 123.9 ± 0.3 Ma. A bentonite in the Helvetiafjellet Formation, also on Svalbard, has an age of 123.3 ± 0.2 Ma. Zircon in mafic sills intersected by drill cores in Franz Josef Land indicate an age of 122.7 Ma for a thick sill on Severnaya Island and a single grain age of ≥122.2 ± 1.1 Ma for a thinner sill on Nagurskaya Island. These data emphasize the importance and relatively short-lived nature of the Cretaceous magmatic event in the region.
APA, Harvard, Vancouver, ISO, and other styles
4

Riggs, N. R., T. B. Sanchez, and S. J. Reynolds. "Evolution of the early Mesozoic Cordilleran arc: The detrital zircon record of back-arc basin deposits, Triassic Buckskin Formation, western Arizona and southeastern California, USA." Geosphere 16, no. 4 (June 30, 2020): 1042–57. http://dx.doi.org/10.1130/ges02193.1.

Full text
Abstract:
Abstract A shift in the depositional systems and tectonic regime along the western margin of Laurentia marked the end of the Paleozoic Era. The record of this transition and the inception and tectonic development of the Permo-Triassic Cordilleran magmatic arc is preserved in plutonic rocks in southwestern North America, in successions in the distal back-arc region on the Colorado Plateau, and in the more proximal back-arc region in the rocks of the Buckskin Formation of southeastern California and west-central Arizona (southwestern North America). The Buckskin Formation is correlated to the Lower–Middle Triassic Moenkopi and Upper Triassic Chinle Formations of the Colorado Plateau based on stratigraphic facies and position and new detrital zircon data. Calcareous, fine- to medium-grained and locally gypsiferous quartzites (quartz siltstone) of the lower and quartzite members of the Buckskin Formation were deposited in a marginal-marine environment between ca. 250 and 245 Ma, based on detrital zircon U-Pb data analysis, matching a detrital-zircon maximum depositional age of 250 Ma from the Holbrook Member of the Moenkopi Formation. An unconformity that separates the quartzite and phyllite members is inferred to be the Tr-3 unconformity that is documented across the Colorado Plateau, and marks a transition in depositional environments. Rocks of the phyllite and upper members were deposited in wholly continental depositional environments beginning at ca. 220 Ma. Lenticular bodies of pebble to cobble (meta) conglomerate and medium- to coarse-grained phyllite (subfeldspathic or quartz wacke) in the phyllite member indicate deposition in fluvial systems, whereas the fine- to medium-grained beds of quartzite (quartz arenite) in the upper member indicate deposition in fluvial and shallow-lacustrine environments. The lower and phyllite members show very strong age and Th/U overlap with grains derived from Cordilleran arc plutons. A normalized-distribution plot of Triassic ages across southwestern North America shows peak magmatism at ca. 260–250 Ma and 230–210 Ma, with relatively less activity at ca. 240 Ma, when a land bridge between the arc and the continent was established. Ages and facies of the Buckskin Formation provide insight into the tectono-magmatic evolution of early Mesozoic southwestern North America. During deposition of the lower and quartzite members, the Cordilleran arc was offshore and likely dominantly marine. Sedimentation patterns were most strongly influenced by the Sonoma orogeny in northern Nevada and Utah (USA). The Tr-3 unconformity corresponds to both a lull in magmatism and the “shoaling” of the arc. The phyllite and upper members were deposited in a sedimentary system that was still influenced by a strong contribution of detritus from headwaters far to the southeast, but more locally by a developing arc that had a far stronger effect on sedimentation than the initial phases of magmatism during deposition of the basal members.
APA, Harvard, Vancouver, ISO, and other styles
5

Mitchell, A. H. G., and J. C. Carlile. "Mineralization, antiforms and crustal extension in andesitic arcs." Geological Magazine 131, no. 2 (March 1994): 231–42. http://dx.doi.org/10.1017/s001675680001075x.

Full text
Abstract:
AbstractThe distribution and stratigraphic position of porphyry copper and epithermal gold deposits in andesitic arcs of the western Pacific and eastern Europe suggest that porphyry copper and epithermal vein deposits of adularia–sericite type develop successively under different stress regimes in an evolving arc, rather than being genetically related as commonly supposed. Absence of coeval high-level stocks in the root zones of many adularia-sericite deposits suggests that circulation of the dominantly meteoric hydrothermal fluids is not driven by shallow intrusions. The location of several world-class deposits on basement geanticlines, and on more localized antiforms of which at least one has been interpreted as a metamorphic core complex, implies that elevation of the arc, emplacement of magmatic sills at depth and adularia–sericite type gold mineralization are genetically related to subduction-induced crustal extension. Ascent of deep hydrothermal fluids, predominantly meteoric but with a metamorphic or magmatic component, may be controlled by regional low-angle structures at depth, analogous to those inferred for some mesothermal gold deposits. Mineralization at shallow (epithermal) depths in high-angle structures largely reflects the high geothermal gradient and mixing of deep fluid with cool meteoric water in or at the base of the permeable volcanic cover. Andesitic magmatism may resume following porphyry copper mineralization, adularia–sericite epithermal gold mineralization, or continued extension to form a ‘back arc’ spreading system, depending on the relative plate motion.
APA, Harvard, Vancouver, ISO, and other styles
6

Sissingh, W. "Palaeozoic and Mesozoic igneous activity in the Netherlands: a tectonomagmatic review." Netherlands Journal of Geosciences - Geologie en Mijnbouw 83, no. 2 (June 2004): 113–34. http://dx.doi.org/10.1017/s0016774600020084.

Full text
Abstract:
AbstractTo date, igneous rocks, either intrusive or extrusive, have been encountered in the Palaeozoic-Mesozoic sedimentary series of the Netherlands in some 65 exploration and production wells. Following 17 new isotopic K/Ar age determinations of the recovered rock material (amounting to a total of 28 isotopic ages from 21 different wells), analysis of the stratigraphic distribution of the penetrated igneous rock bodies showed that the timing of their emplacement was importantly controlled by orogenic phases involving intra-plate wrench and rift tectonics. Magmatism coincided with the Acadian (Late Devonian), Sudetian (early Late Carboniferous), Saalian (Early Permian), Early Kimmerian (late Late Triassic), Mid-Kimmerian (Late Jurassic), Late Kimmerian (earliest Cretaceous) and Austrian (latest Early Cretaceous) tectonic phases. This synchroneity presumably reflects (broadly) coeval structural reorganizations of respectively the Baltica/Fennoscandinavia-Laurentia/Greenland, Laurussia-Gondwana, African-Eurasia and Greenland/Rockall-Eurasia plate assemblies. Through their concomitant changes of the intra-plate tectonic stress regime, inter-plate motions induced intra-plate tectonism and magmatism. These plate-tectonics related events determined the tectonomagmatic history of the Dutch realm by inducing the formation of localized centres, as well as isolated spot occurrences, of igneous activity. Some of these centres were active at (about) the same time. At a number of centres igneous activity re-occurred after a long period of time.
APA, Harvard, Vancouver, ISO, and other styles
7

Cornell, D. H., M. Harris, B. S. Mapani, T. Malobela, D. Frei, M. Kristoffersen, K. Lehman Francko, and R. Hanson. "Dating of Guperas Formation rhyolites changes the stratigraphy of the Mesoproterozoic Sinclair Supergroup of Namibia." South African Journal of Geology 123, no. 4 (November 10, 2020): 633–48. http://dx.doi.org/10.25131/sajg.123.0040.

Full text
Abstract:
Abstract The volcanosedimentary Guperas Formation contains the youngest volcanic rocks of the Sinclair Supergroup in the Konkiep Terrane of southern Namibia. Precise U-Pb zircon microbeam dating shows that the Guperas Formation as mapped includes felsic volcanic rocks which belong to both the first (1.37 to 1.33 Ga) and the third (1.11 to 1.07 Ga) magmatic cycle of the Sinclair Supergroup. Volcanic rocks of the ‘true’ Guperas Formation are dated by three samples, with a combined age of 1108 ± 10 Ma. The sedimentary rocks mapped as Guperas Formation are also distinguished by two different detrital age spectra into the ~1 100 Ma true Guperas Formation and the Aruab Member of the ~1 217 Ma Barby Formation. Geochronology now resolves the previous stratigraphic separation of the very similar Nubib and Rooiberg (Sonntag) Granites. The two small outcrops of 1 334 ± 5 Ma Rooiberg Granite are now shown to be part of the regional 1 334 ± 8 Ma Nubib Granite batholith. The Konkiep Terrane was affected by faulting and shear zones, but was only gently folded and not involved in regional metamorphism, despite its proximity to the Namaqua-Natal Province to the southwest. This is due to the Konkiep Terrane having a thick and strong continental basement which may have formed as part of the mainly Palaeoproterozoic Rehoboth Province. However no Palaeoproterozoic rocks are exposed in the Konkiep Terrane, which is now interpreted as an unaffiliated terrane. The three cycles of extrusive and plutonic magmatism in the Sinclair Supergroup formed in chronologically distinct periods and different tectonic settings, which requires revision of the stratigraphic nomenclature. The Konkiep Group is replaced by three new groups which are separated by >100 million-year unconformities. The Betta Group, represented by the mainly volcanic Kumbis, Nagatis and Welverdiend formations in the first magmatic cycle, probably formed in a passive continental rift setting due to breakup of the Rehoboth Province between 1 374 and 1 334 Ma. The Vergenoeg Group, represented by the sedimentary Kunjas and volcanic Barby and Haiber Flats formations, formed in a subduction setting at the margin of the Konkiep Terrane. This ~1 217 to 1204 Ma magmatic cycle ended with the accretion of Namaqua-Natal terranes to the Kalahari Craton. The ~1 100 Ma Ganaams Group, represented by the volcanic Guperas Formation and sedimentary Aubures Formation, was the result of interplay between the continental-scale Umkondo mantle heating event and movements between crustal blocks following the Namaqua-Natal collisional orogeny.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhong, Yuting, Roland Mundil, Jun Chen, Dongxun Yuan, Steven W. Denyszyn, Adam B. Jost, Jonathan L. Payne, Bin He, Shuzhong Shen, and Yigang Xu. "Geochemical, biostratigraphic, and high-resolution geochronological constraints on the waning stage of Emeishan Large Igneous Province." GSA Bulletin 132, no. 9-10 (February 3, 2020): 1969–86. http://dx.doi.org/10.1130/b35464.1.

Full text
Abstract:
Abstract The initiation and peak magmatic periods of the Emeishan Large Igneous Province (LIP) are well constrained by both biostratigraphic and radioisotopic dating methods; however, the age of cessation of volcanism is poorly constrained and continues to be debated. Marine carbonates interbedded with volcanic ashes across the Guadalupian–Lopingian boundary (GLB) are widespread in south China, and these ashes provide an opportunity to study its timing, origin, and potential relationship with the Emeishan LIP. Here we present biostratigraphic constraints, mineralogical and geochemical characteristics, and high-resolution geochronology of ash layers from the Maoershan and Chaotian sections. Stratigraphic correlation, especially conodont biostratigraphy, confines these ashes to the early Wuchiapingian. Those altered ashes are geochemically akin to alkali tonsteins from the coal seams of the lower Xuanwei/Lungtan Formation in southwest China. The ashes postdating the GLB yield a coherent cluster of zircon U-Pb ages with weighted mean 206Pb/238U ages of 258.82 ± 0.61 Ma to 257.39 ± 0.68 Ma, in agreement with the ages of intrusive rocks (259.6 ± 0.5 Ma to 257.6 ± 0.5 Ma) in the central Emeishan LIP. Moreover, the ɛHf(t) values of zircons from the ashes vary from +2.5 to +10.6, a range consistent with that of the Emeishan LIP. The results collectively suggest that the early Wuchiapingian volcanic ashes are a product of extrusive alkaline magmatism and most likely mark the waning stage of the Emeishan volcanism, which may have continued until ca. 257.4 Ma in the early Wuchiapingian.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Feng-Qi, Hong-Xiang Wu, Yildirim Dilek, Wei Zhang, Kong-Yang Zhu, and Han-Lin Chen. "Guadalupian (Permian) onset of subduction zone volcanism and geodynamic turnover from passive- to active-margin tectonics in southeast China." GSA Bulletin 132, no. 1-2 (May 14, 2019): 130–48. http://dx.doi.org/10.1130/b32014.1.

Full text
Abstract:
Abstract New stratigraphic, geochemical, and geochronological data from the late Paleozoic depositional record in Anhui Province, China, signal the onset of active-margin magmatism in East Asia. Chert-shale sequences of the Gufeng Formation are part of a Carboniferous–Permian carbonate platform that developed along the passive margin of the South China block. Thin tuffaceous interlayers in these sequences represent distal ash deposits, marking discrete volcanic events. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon dating of the stratigraphically bottom and near-top tuffaceous interlayers has revealed crystallization ages of 270 Ma and 264 Ma, respectively, constraining the time span of subaerial eruptions to ∼6 m.y. during the Guadalupian Epoch. High SiO2 and Al2O3 contents, enrichments in large ion lithophile and light rare earth elements, and depletion patterns of high field strength and heavy rare earth elements indicate a calc-alkaline magma source in an arc setting for the origin of these volcanic tuff deposits. Detrital zircon geochronology of sandstones in the overlying Longtan Formation shows two prominent age populations of 290–250 Ma and 1910–1800 Ma. The former age cluster overlaps with the tightly constrained zircon ages obtained from the Gufeng Formation. The latter age group is compatible with the known magmatic-metamorphic ages from Cathaysia in the South China block, and it points to the existence of a NE-SW–trending topographic high as a major sediment source. We interpret this topographic high and silicic volcanism to represent an Andean-type active margin, developed above a north-dipping paleo-Pacific slab. Our tightly constrained Guadalupian eruption ages indicate the inception of magmatic arc construction and mark a major switch from passive- to active-margin tectonics along SE Asia.
APA, Harvard, Vancouver, ISO, and other styles
10

Van Kranendonk, M. J. "Gliding and overthrust nappe tectonics of the Barberton Greenstone Belt revisited: A review of deformation styles and processes." South African Journal of Geology 124, no. 1 (March 1, 2021): 181–210. http://dx.doi.org/10.25131/sajg.124.0017.

Full text
Abstract:
Abstract Interpretations of the structural/tectonic evolution of the Barberton Greenstone Belt (BGB) and its surrounding granitoid rocks remain controversial, with proponents for both horizontal thrust-accretion (plate tectonic) and partial convective overturn (vertical tectonic) models. Here, an area of complex folds that was used to support the operation of plate tectonic-derived gliding and overthrust nappe tectonics is re-investigated in detail and placed within the broader structural development of the BGB and surrounding granitoid domains via a re-analysis of structures, and geochronological, stratigraphic and metamorphic data across the whole of this important geological terrain. The results of detailed field mapping show that the complex folds, which occur on the northern limb of the 20 km wavelength, vertically plunging, Onverwacht Anticline, do not represent a re-folded, originally recumbent, isoclinal fold, as previously interpreted. Instead, the folds represent a moderately shallow east-plunging fold train that formed from a single episode of deformation. Fold asymmetry is consistent with formation during originally north-side-up reverse shear on bounding faults, consistent with the offset direction required to explain the fault-repeated slices of Mendon Formation + Fig Tree Group rocks that uniquely occur across the northern limb of the Onverwacht Anticline. More broadly, a review of the BGB and surrounding granitoid rocks show that formation was likely through two discrete, ~120 Ma long, episodes of mantle upwelling, or plume, magmatism, each of which led to crustal melting and partial convective overturn (PCO), a tectonic mechanism that arises from the gravity-driven interaction between dense, upper crustal greenstones and partially melted, more buoyant, granitoid-dominated middle crust. The first mantle upwelling episode, at 3 530 to 3 410 Ma, commenced with long-lived eruption of ultramafic-mafic lavas of the Sandspruit, Theespruit, Komati, and lower Hooggenoeg formations (3 530 to 3 470 Ma). Heat from this magmatic event gave rise to partial melting of the crust that, combined with fractionation of mafic magma chambers produced widespread felsic magmatism at 3 470 to 3 410 Ma (upper Hooggenoeg Formation and Buck Reef Chert), the latter parts of which were accompanied by the formation of D1 dome-and-keel structures via PCO in deeper-levels of the crust represented by the Stolzburg Domain in the far southwest part of the belt. The second mantle upwelling, or plume, episode commenced at 3 334 to 3 215 Ma with the eruption of ultramafic-mafic lavas of the Kromberg, Mendon and Weltevreden formations. Heat from this magmatic event gave rise to renewed partial melting of the crust that, combined with fractionation of mafic magma chambers, produced widespread felsic magmatism at 3 290 to 3 215 Ma. A second, longer-lived and more complex, multi-stage episode of PCO (D2-D4) accompanied deposition of the Fig Tree and Moodies groups from 3 250 to 3 215 Ma. Late D5 deformation accompanied emplacement of the Mpulizi and Piggs Peak batholiths at ca. 3.01 Ga, as previously identified. The Inyoka and Kromberg faults, which separate domains with distinct structural styles, represent neither terrane boundaries nor suture zones, but rather axial faults that separate deformed but generally inward-facing greenstone panels that sank inwards off rising granitoid domains that surround the BGB.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magmatism Geology, Stratigraphic"

1

Wong, Po-wan Kenny. "Mesozoic magmatic activity in Hong Kong." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37751773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faustino, Decibel Villarisco. "Late mesozoic magmatism along the Bangong-Nujiang suture zone, Tibet." Thesis, Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42664615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ressel, Michael W. "Igneous geology of the Carlin Trend, Nevada the importance of Eocene magmatism in gold mineralization /." abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3210296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asmerom, Yemane. "Mesozoic igneous activity in the southern Cordillera of North America: Implications for tectonics and magma genesis." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184421.

Full text
Abstract:
The first part of this dissertation deals with the timing of Mesozoic igneous activity in southern Cordillera of North America and its tectonic implications. A representative section in Santa Rita Mountains is dated using the zircon U-Th-Pb isotopic method. The oldest unit, the lower member of the Mt. Wrightson Formation, is concordantly dated at 210 ± 3 Ma. Initial basaltic andesite to andesite volcanism was followed by deposition of redbeds and associated volcanic rocks that are dated at 200 Ma. Felsic volcanism and eolian sand deposition may have spanned from 190 to 170 Ma. The Piper Gulch Granodiorite, representing the earliest Mesozoic intrusive equivalent, gives concordant dates of 188 ± 2 Ma. A second cycle of andesite and rhyolitic volcanism and sedimentation is dated at 151 ± 5 Ma using the whole-rock Rb-Sr isotopic method. The Hovatter Volcanics in the Little Harquahala Mountains, southwestern Arizona is dated at 165 Ma. Whole-rock Rb-Sr isotopic method on the same rocks gives a coherent reset isochron of 70 ± 3 Ma (Appendix III). A new stratigraphic correlation is proposed based on the dating data. Tectonic models proposed by previous workers to account for what seemed to be the lack of Triassic volcanic rocks are not necessary. This part of the Cordillera was an uplifted arc terrane during the Early Mesozoic (Appendix II) and may have provided volcanic detritus to the Late Triassic Chinle Formation in the Colorado Plateau. The second part of the dissertation deals with magma evolution and crust modification during arc magmatism. Rocks in southeastern Arizona have ƭ(N)(d) values of -3.4 to -6.4, while rocks to the west have ƭ(N)(d) values ranging from -8.5 to -9.2. An ƭ(N)(d) value of +2 for a Jurassic basalt indicates the presence of depleted mantle under the arc. Using lower crust and mantle end-members, 20 to 40% mantle input is estimated. This seems to argue for continuous growth model of the continental crust. Combined REE and isotopic data indicate that assimilation of lower crust by mantle melts followed by fractional crystallization took place. Detailed study indicates that the lower crust along sites of arc magmatism gets progressively hybridized by the mantle, becoming more mantle-like with time.
APA, Harvard, Vancouver, ISO, and other styles
5

Hart, Craig Joseph Ronald. "Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina Gold Province, Yukon and Alaska." Connect to this title online, 2004. http://theses.library.uwa.edu.au/adt-WU2005.0062/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wong, Po-wan Kenny, and 王步雲. "Mesozoic magmatic activity in Hong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37751773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hart, Craig J. R. "Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina Gold Province, Yukon and Alaska." University of Western Australia. Centre for Global Metallogeny, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0062.

Full text
Abstract:
[Truncated abstract] The Tintina Gold Province (TGP) comprises numerous (<15) gold belts and districts throughout interior Alaska and Yukon that are associated with Cretaceous plutonic rocks. With a gold endowment of ∼70Moz, most districts are defined by their placer gold contributions, which comprise greater than 30 Moz, but four districts have experience significant increases in gold exploration with notable discoveries at Fort Knox (5.4 Moz), Donlin Creek (12.3 Moz), Pogo (5.8 Moz), True North (0.79 Moz), and Brewery Creek (0.85 Moz). All significant TGP gold deposits are spatially and temporally related to reduced (ilmenite-series) and radiogenic Cretaceous intrusive rocks that intrude (meta-) sedimentary strata. The similar characteristics that these deposits share are the foundation for the development of a reduced intrusion-related gold deposit model. Associated gold deposits have a wide variety of geological and geochemical features and are categorized as intrusion-centered (includes intrusion-hosted, skarns and replacements), shear-related, and epizonal. The TGP is characterized by vast, remote under-explored areas, unglaciated regions with variable oxidation depths and discontinuous permafrost, which, in combination with a still-evolving geological model, create significant exploration challenges. Twenty-five Early and mid-Cretaceous (145-90 Ma) plutonic suites and belts are defined across Alaska and Yukon on the basis of lithological, geochemical, isotopic, and geochronometric similarities. These features, when combined with aeromagnetic characteristics, magnetic susceptibility measurements, and whole-rock ferric:ferrous ratios define the distribution of magnetite- and ilmenite-series plutonic belts. Magnetite-series plutonic belts are dominantly associated with the older parts of the plutonic episode and comprise subduction-generated metaluminous plutons that are distributed preferentially in the more seaward localities dominated by primitive tectonic elements. Ilmenite-series plutonic belts comprise slightly-younger, slightly-peraluminous plutons in more landward localities in pericratonic to continental margin settings. They were likely initiated in response to crustal thickening following terrane collision. The youngest plutonic belt forms a small, but significant, magnetite-series belt in the farthest inboard position, associated with alkalic plutons that were emplaced during weak extension. Intrusion-related metallogenic provinces with distinctive metal associations are distributed, largely in accord with classical redox-sensitive granite-series. Copper, Au and Fe mineralisation are associated with magnetite-series plutons and tungsten mineralisation associated with ilmenite-series plutons. However, there are some notable deviations from expected associations, as intrusion-related Ag-Pb-Zn deposits are few, and significant tin mineralisation is rare. Most significantly, many gold deposits and occurrences are associated with ilmenite-series plutons which form the basis for the reduced intrusion-related gold deposit model
APA, Harvard, Vancouver, ISO, and other styles
8

Ghosh, Amiya Kumar. "Reconnaissance U-Pb geochronology of Precambrian crystalline rocks from the northern Black Hills, South Dakota: Implications for regional thermotectonic history." [Kent, Ohio] : Kent State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=kent1240007954.

Full text
Abstract:
Thesis (M.S.)--Kent State University, 2009.
Title from PDF t.p. (viewed Feb. 12, 2010). Advisor: Peter Dahl. Keywords: Black Hills; Crook Mountain granite; Homestake gold mine; gold mineralization; magmatism; metamorphism; metapelite; g monazite; zircon; titanite; geochronology; thermotectonism Includes bibliographical references (p. 97-106).
APA, Harvard, Vancouver, ISO, and other styles
9

Hogan, John Patrick. "Mineralogical, chemical and isotopic diversity in plutonic rock suites from the Coastal Maine Magmatic Province : the role of source region heterogeneity, tectonic setting and magmatic processes /." This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-08082007-114045/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hogan, John Patrick. "Mineralogical, chemical and isotopic diversity in plutonic rock suites from the Coastal Maine Magmatic Province:the role of source region heterogeneity, tectonic setting and magmatic processes." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39074.

Full text
Abstract:
This dissertation represents an investigation of the mid-Paleozoic tectono-thermal and kinematic evolution of the crust in eastern coastal Maine as recorded by the plutonic rocks of this region. The first chapter describes the plutonic rocks of the Coastal Maine Magmatic Province. A tectonic model is developed in which late Ordovician-Silurian bimodal magmatism is interpreted to reflect crustal melting as a result of intraplating of mantle melts at high crustal levels during a period of tension. Large scale melting of lower crustal source regions, represented by voluminous intrusion of Devonian granites, reflects a period of transpression during which upwelling mantle melts were confined to the base of the crust. The diversity of granitic plutons reflects changes in the mineral assemblages present during partial melting, and in some instances, modification as a result of mixing/mingling with mantle melts. The second chapter examines the effect of accessory minerals on the initial Pb isotopic signature of anatectic granites. Their initial Pb isotopic composition reflects (a) the age, type, modal distribution, and heterogeneity in the initial U and Th content of the accessory phase(s) present in the source, (b) variation in melt composition and temperature during partial melting, (c) the fraction of the source melted, and (d) the extent to which the melt is homogenized prior to crystallization. It is shown that granitic plutons derived by crustal anatexis of a common source material are not required to have similar initial lead isotopic compositions. The third chapter presents the results of a Pb isotopic investigation of selected plutonic rocks from the Coastal Maine MagmaticProvince. This study was designed to test and refine petrogenetic models presented in Chapter 1. The Pb isotopic signature of the granitic plutons reveals the presence of two lithologically heterogeneous source regions beneath the Avalon Composite Terrane. The upper crustal source region has an mean V-Pb age of -2.0 Ga and the high 207Pb/204Pb-206Pb/204Pb characteristic of Avalonian crust. The lower crustal source region has an average U-Pb age of -1.3 Ga and lower 207Pb/204Pb. This source region may represent either the autochthonous basement to the Avalon platform or the eastern extension of the basement to the Gander Terrane of central Maine.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magmatism Geology, Stratigraphic"

1

Trunilina, Vera Arkadʹevna. Pozdnemezozoĭskiĭ magmatizm Selenni︠a︡khskogo kri︠a︡zha. I︠A︡kutsk: I︠A︡kutskiĭ filial SO AN SSSR, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Logachev N., and Institut zemnoĭ kory (Rossiĭskai͡a︡ akademii͡a︡ nauk), eds. Magmatizm Baĭkalʹskoĭ riftovoĭ sistemy. Novosibirsk: VO "Nauka", 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mikhaĭlovich, Sokolov I͡U︡riĭ, ed. Opyt veshchestvennoĭ variat͡s︡ionnoĭ sistematiki dokembriĭskikh intruzivnykh estestvennykh ri͡a︡dov magm. Leningrad: "Nauka," Leningradskoe otd-nie, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seckendorff, Volker von. Geologische, petrographische und geochemische Untersuchungen an permischen Magmatiten im Saarland (Blatt 6507 Lebach) =: Geological, petrographical and geochemical studies on Permian magmatites of the Saarland, SW Germany (sheet 6507 Lebach). Kiel: Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Universität Kiel, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schlaegel-Blaut, Petra. Der basische Magmatismus der nördlichen Grauwackenzone, oberostalpines Paläozoikum. Wien: Geologische Bundesanstalt, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ėvoli͡u︡t͡s︡ii͡a︡ proterozoĭskogo vulkanizma vostochnoĭ chasti Pechengsko-Varzugskogo poi͡a︡sa: Petrogeokhimicheskiĭ aspekt. Apatity: Kolʹskiĭ filial AN SSSR, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thièblemont, Denis. Le magmatisme paléozoïque en Vendée: Apport de la géochimie des éléments traces et de la pétrologie du métamorphisme à la compréhension du développement orogénique varisque. Orléans, France: Editions du BRGM, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bukharev, V. P. Ėvoli͡u︡t͡s︡ii͡a︡ dokembriĭskogo magmatizma zapadnoĭ chasti Ukrainskogo shchita. Kiev: Naukova dumka, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hildreth, Wes. Quaternary magmatism in the Cascades: Geologic perspectives. Reston, Va: U.S. Geological Survey, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leontʹevich, Dobret͡s︡ov Nikolaĭ, ed. Paleozoĭskiĭ magmatizm i geodinamika T͡S︡entralʹnogo-Aziatskogo skladchatogo poi͡a︡sa. Moskva: "Nauka", 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magmatism Geology, Stratigraphic"

1

Boniface, Nelson, and Tatsuki Tsujimori. "New tectonic model and division of the Ubendian-Usagaran Belt, Tanzania: A review and in-situ dating of eclogites." In Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.2552(08).

Full text
Abstract:
ABSTRACT Records of high-pressure/low-temperature (HP-LT) metamorphic interfaces are not common in Precambrian orogens. It should be noted that the association of HP-LT metamorphic interfaces and strongly deformed ocean plate stratigraphy that form accretionary prisms between trenches and magmatic arcs are recognized as hallmark signatures of modern plate tectonics. In East Africa (Tanzania), the Paleoproterozoic Ubendian-Usagaran Belt records a HP-LT metamorphic interface that we consider as a centerpiece in reviewing the description of tectonic units of the Ubendian-Usagaran Belt and defining a new tectonic model. Our new U-Pb zircon age and the interpretations from existing data reveal an age between 1920 and 1890 Ma from the kyanite bearing eclogites. This establishment adds to the information of already known HP-LT metamorphic events at 2000 Ma, 1890–1860 Ma, and 590–520 Ma from the Ubendian-Usagaran Belt. Arc–back-arc signatures from eclogites imply that their mafic protoliths were probably eroded from arc basalt above a subduction zone and were channeled into a subduction zone as mélanges and got metamorphosed. The Ubendian-Usagaran events also record rifting, arc and back-arc magmatism, collisional, and hydrothermal events that preceded or followed HP-LT tectonic events. Our new tectonic subdivision of the Ubendian Belt is described as: (1) the western Ubendian Corridor, mainly composed of two Proterozoic suture zones (subduction at 2000, 1920–1890, Ma and 590–500 Ma) in the Ufipa and Nyika Terranes; (2) the central Ubendian Corridor, predominated by metamorphosed mafic-ultramafic rocks in the Ubende, Mbozi, and Upangwa Terranes that include the 1890–1860 Ma eclogites with mid-ocean ridge basalt affinity in the Ubende Terrane; and (3) the eastern Ubendian Corridor (the Katuma and Lupa Terranes), characterized by reworked Archean crust.
APA, Harvard, Vancouver, ISO, and other styles
2

Datsenko, Liudmyla, and Serhii Kolomiiets. "GROUNDWATERS OF NIKOLSKOHO REGION (DONBASS): GEOLOGY, STRATIGRAPHY, HYDROGEOLOGY, TOPOGRAPHIC AND GEODESIC WORKS." In State, trends and prospects of land sciences, environment, physics, mathematics and statistics’ development (1st. ed). Primedia eLaunch LLC, 2020. http://dx.doi.org/10.36074/stplsepmad.ed-1.03.

Full text
Abstract:
Arid regions of the south of Ukraine (Donetsk, Zaporizhia, Kherson regions) are facing an acute shortage of drinking and technical water, which consumption increases from year to year. A clear understanding of the shortage not only drinking water but also water for fish breeding, cultural and recreational needs is worrying the world scientific community. Understanding of hydrogeological, hydrogeochemical processes is important for groundwater protection, especially in arid regions of the world. The study area is located within the central part of the Priazovsk highland. Administratively, it belongs to Nikolsk Region (formerly Volodarsky Region) in Donetsk Region. There are four research periods in geological mapping and study of the Eastern and North-Western Priazovia region. The most important researches of the late last century include medium-size deep geological mapping of the North-Western and Eastern Priazovia, generalization of all geological materials of the previous researchers, obtaining data from stratigraphy, magmatism, tectonics and metallogeny, hydrogeology, which allowed to significantly clarify the geological structure of the region. The only possible centralized water supply source on the most part of the territory may be an aquifer of Proterozoic crystalline rocks. In the south-eastern part of the territory can be used Sarmatian sands, sandstones and limestone horizon, for the aquifer of crystalline rocks, the most water-rich is the tectonic disturbance zone with open fracturing.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography