Academic literature on the topic 'Magnetic activity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic activity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic activity"

1

Strassmeier, K. G., T. A. Carroll, M. Weber, et al. "Binary-induced magnetic activity?" Astronomy & Astrophysics 535 (November 2011): A98. http://dx.doi.org/10.1051/0004-6361/201117167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Briand, C. "Solar activity I: aspects of magnetic activity." Astronomische Nachrichten 324, no. 4 (2003): 357–61. http://dx.doi.org/10.1002/asna.200310127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vennerstrom, S., M. Menvielle, J. M. G. Merayo, and T. V. Falkenberg. "Magnetic activity at Mars – Mars Surface Magnetic Observatory." Planetary and Space Science 73, no. 1 (2012): 364–75. http://dx.doi.org/10.1016/j.pss.2012.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kahar, Gertrudis V., Abdul Wahid, and Hadi Imam Sutaji. "ANALISIS KEJADIAN BADAI MAGNETIK BERDASARKAN DATA VARIASI HARIAN MAGNETIK DI KOTA KUPANG." Jurnal Fisika : Fisika Sains dan Aplikasinya 3, no. 1 (2018): 12–20. http://dx.doi.org/10.35508/fisa.v3i1.589.

Full text
Abstract:
ABSTRAK
 Telah dilakukan penelitian analisis kejadian badai magnetik di Kota Kupang bulan Oktober 2014 sampai bulan September 2016. Penelitian ini bertujuan untuk menentukan karateristik kejadian badai magnetik serta menentukan periode kemunculan badai magnetik di Kota Kupang. Pengolahan data dengan menggunakan Software Microsoft Excel untuk dibuat grafik data komponen magnet bumi terhadap waktu dan Software Matlab 2011 untuk penentuan periodesitas kejadian badai magnetik menggunakan transformasi fourier cepat (FFT). Berdasarkan hasil pengolahan data, karateristik kejadian badai magnetik yang terdapat di daerah penelitian untuk bulan Oktober 2014 sampai September 2016 adalah untuk tingkat aktivitas gangguan magnetik maksimum ditandai dengan nilai K indeks=8, A indeks=54.875 dan penurunan nilai Dst= -121 nT, sehingga dikategorikan badai menengah dan tingkat aktivitas gangguan magnetik minimum ditandai dengan nilai K indeks=3, A indeks=11.5 serta penurunan nilai Dst = -17 nT, sehingga dikategorikan relatif tenang. Periode kemunculan aktivitas magnetik bulan Oktober 2014-September 2016 adalah berada dalam periode satu harian sampai sepuluh harian. 
 Kata kunci : Variasi harian magnetik, badai magnetik, periodesitas, K indeks, A indeks.
 ABSTRACT 
 The research about analysis of magnetic storm events in Kupang City from October 2014 to September 2016 has been done. The purpose of this study is to determine the characteristic of storm events and the period of emergence magnetic storm from Kupang City. The data used is the daily magnetic variation data obtained from Meteorogical Climatological and Geophysical Agency in Kupang City. The data processing using by Microsoft Excel software to create graph data of the earth magnetic components against time and Matlab 2011 sofware to determining the periodicity of magnetic storm events using Fast Fourier Transform (FFT). From the results of data processing, the characteristic of magnetic storm events in the study area from October 2014 to September 2016 were for the maximum magnetic interference activity level occurring on june 22th, 2015 due to burst of CME marked by the value of K index = 8, A index = 54.875 and degradation value of DST = -121 nT, so category middle storm and minimum magnetic interference activity level occurred on February 10th, 2015 due to burst of CME and flare marked with value K index = 3, A index =11.5, and decreasing value of DST =-17 nT, thus categorized relatively quietly. The period of occurrence magnetic activity from October 2014 to September 2016 is within a period of one daily to ten daily.
 
 Keywords : Daily magnetic variation, magnetic storm, K index, A index.
APA, Harvard, Vancouver, ISO, and other styles
5

Bayraktar, V. N. "MAGNETIC FIELD EFFECT ON YEAST Saccharomyces cerevisiae ACTIVITY AT GRAPE MUST FERMENTATION." Biotechnologia Acta 6, no. 1 (2013): 125–37. http://dx.doi.org/10.15407/biotech6.01.125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baishev, Dmitry, and Georgy Makarov. "Isolated substorms according to magnetic measurements at Tixie during minimum solar activity." Solar-Terrestrial Physics 9, no. 4 (2023): 78–82. http://dx.doi.org/10.12737/stp-94202310.

Full text
Abstract:
A catalog of isolated substorms in 2016–2020 has been compiled from data on the H component of the geomagnetic field, obtained at Tixie. From the catalog data, it has been found that during this period changes in the number of substorms and the number of sunspots are well approximated by quadratic functions with minima at the end of 2017 and in the middle of 2019 respectively; during the year, disturbances more often occurred during solstice; within 24 hours, substorms more often occurred at local midnight. The intensity and duration of substorm disturbances, the duration of their expansion phase do not show a noticeable dependence on the time of occurrence; however, from average values of these parameters in hourly ranges, it has been found that the intensity takes lower values around 0–3 MLT; in the midnight sector, the duration of disturbances and the duration of their expansion phase are shorter than those in the dawn sector. Compared to the data from mid-latitude stations [Chu et al., 2015], the average duration of substorms and the duration of their expansion phase are longer.
APA, Harvard, Vancouver, ISO, and other styles
7

Hill, Colin A. "Magnetic activity of interacting binaries." Proceedings of the International Astronomical Union 12, S328 (2016): 54–60. http://dx.doi.org/10.1017/s1743921317004112.

Full text
Abstract:
AbstractInteracting binaries provide unique parameter regimes, both rapid rotation and tidal distortion, in which to test stellar dynamo theories and study the resulting magnetic activity. Close binaries such as cataclysmic variables (CVs) have been found to differentially rotate, and so can provide testbeds for tidal dissipation efficiency in stellar convective envelopes, with implications for both CV and planet-star evolution. Furthermore, CVs show evidence of preferential emergence of magnetic flux tubes towards the companion star, as well as large, long-lived prominences that form preferentially within the binary geometry. Moreover, RS CVn binaries also show clear magnetic interactions between the two components in the form of coronal X-ray emission. Here, we review several examples of magnetic interactions in different types of close binaries.
APA, Harvard, Vancouver, ISO, and other styles
8

Vidotto, A. A. "Stellar magnetic activity and exoplanets." EPJ Web of Conferences 160 (2017): 05011. http://dx.doi.org/10.1051/epjconf/201716005011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Valdivia, J. A., D. Vassiliadis, A. Klimas, A. S. Sharma, and K. Papadopoulos. "Spatiotemporal activity of magnetic storms." Journal of Geophysical Research: Space Physics 104, A6 (1999): 12239–50. http://dx.doi.org/10.1029/1999ja900152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grießmeier, J. M., M. Khodachenko, H. Lammer, J. L. Grenfell, A. Stadelmann, and U. Motschmann. "Stellar activity and magnetic shielding." Proceedings of the International Astronomical Union 5, S264 (2009): 385–94. http://dx.doi.org/10.1017/s1743921309992961.

Full text
Abstract:
AbstractStellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetic activity"

1

Hussain, Gaitee. "Magnetic activity in late-type stars." Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/14404.

Full text
Abstract:
High resolution spectroscopic techniques are used to investigate the magnetic topology of the young, rapidly rotating star, AB Dor. Doppler images of AB Dor are produced using the Li I 6708 Å line and compared to images produced using Ca I and Fe i lines. A Li abundance of 2.9±0.3 dex is measured using LTE profile synthesis. By evaluating the effects of enhanced spot Li abundances we find that starspots are unlikely to lead to an overestimation of the photospheric Li abundance. While the Li I 6708 Å line is strengthened in the presence of starspots, the extent to which the Li I line equivalent width displays rotational modulation is diluted. A Zeeman Doppler imaging code, which maps the surface magnetic flux distributions on rapid rotators, has been developed and tested in this thesis. Reliability tests indicate that this technique is robust with respect to small errors in line and stellar parameters. Spectropolarimetric observations of AB Dor from three years are presented here. The technique of least squares deconvolution, combines the signal from over 1500 lines, enhancing the S/N of the observed dataset. Brightness and magnetic maps of AB Dor are reconstructed using the deconvolved profiles and show excellent agreement with maps produced using independently developed codes by J.-F. Donati. This points to the consistency of Doppler imaging techniques. Magnetic field maps show the presence of strong radial and azimuthal fields at almost all latitudes. This non-solar like distribution of magnetic flux may indicate the presence of a distributed dynamo component operating in the convection zones of rapid rotators. By tracing the positions of absorption transients in Ha, we find prominence complexes at almost all longitudes. Footpoint locations remain difficult to ascertain. Prominences are ejected over much shorter timescales than the timescale over which differential rotation should act further observations with closer time sampling are necessary to investigate the coronal topology further.
APA, Harvard, Vancouver, ISO, and other styles
2

Blanco, Rodríguez Julián. "Magnetic activity at the poles of the sun." [Katlenburg-Lindau] Copernicus Publ, 2008. http://d-nb.info/988508125/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kiefer, René [Verfasser], and Markus [Akademischer Betreuer] Roth. "Seismic investigations of solar and stellar magnetic activity." Freiburg : Universität, 2018. http://d-nb.info/1160875421/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trauchessec, Vincent. "Local magnetic detection and stimulation of neuronal activity." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS301/document.

Full text
Abstract:
L’activité cérébrale se traduit par des courants ioniques circulant dans le réseau neuronal.La compréhension des mécanismes cérébraux implique de sonder ces courants, via des mesures électriques ou magnétiques, couvrant différentes échelles spatiales. A l’échelle cellulaire, les techniques d’électrophysiologie sont maitrisées depuis plusieurs décennies, mais il n’existe pas actuellement d’outils de mesure locale des champs magnétiques engendrés par les courants ioniques au sein du réseau neuronal. La magnéto-encéphalographie(MEG) utilise des SQUIDs(Superconducting QUantum Interference Devices)fonctionnant à très basse température, placés en surface du crâne, qui fournissent une cartographie des champs magnétiques mais dont la résolution spatiale est limitée du fait de la distance séparant les capteurs des cellules actives. Le travail présenté dans cette thèse propose de développer des capteurs magnétiques à la fois suffisamment sensibles pour être capable de détecter le champ magnétique extrêmement faible générés par les courants neuronaux (de l’ordre de 10⁻⁹ T), et dont la géométrie est adaptable aux dimensions des cellules, tout en fonctionnant à température ambiante. Ces capteurs,basés sur l’effet quantique de magnétorésistance géante (GMR, sont suffisamment miniaturisables pour être déposés à l’extrémité de sondes d’une finesse de l’ordre de 100 μm. L’utilisation de capteurs GMR pour la mesure de signaux biomagnétiques fut d’abord testée lors d’expériences in-vitro, réalisées sur le muscle soléaire de souris. Ce système biologique a été choisi pour sa simplicité,rendant la modélisation accessible, ainsi que pour sa robustesse, permettant d’avoir des résultats fiables et reproductibles. Le parfait accord entre les prédictions théoriques et les signaux magnétiques mesurés valide cette technologie. Enfin, des expériences in vivo dans le cortex visuel du chat ont permis de réaliser la toute première mesure de la signature magnétique de potentiels d’action générés par des neurones corticaux, ouvrant la voie à la magnétophysiologie<br>Information transmission in the brain occurs through ionic currents flowing inside the neuronal network. Understanding how the brain operates requires probing this electrical activity by measuring the associated electric or magnetic field. At the cellular scale, electrophysiology techniques are well mastered, but there is no tool to perform magnetophysiology. Mapping brain activity through the magnetic field generated by neuronal communication is done via magnetoencephalography (MEG). This technique is based on SQUIDs (Superconducting Quantum Interference Devices) that operate at liquid Helium temperature. This parameter implies to avoid any contact with living tissue and a shielding system that increases the distance between the neurons and the sensors, limiting spatial resolution. This thesis work aims at providing a new tool to performmagnetic recordings at the neuronal scale. The sensors developed during this thesis are based on the Giant Magneto-Resistance (GMR) effect. Operating at room temperature, they can be miniaturize and shaped according to the experiment, while exhibiting a sensitivity that allows to measure amplitude of 10⁻⁹ T. Before targeting neurons, the use of GMR-based sensors for magnetic recordings of biological activity has been validated through invitro experiments on the mouse soleus muscle. This biological system has been chosen because of its simple organization, allowing for a realistic modelling, and for its robustness, in order to get reliable and replicable results. The perfect agreement between the measurements and the theoretical predictions represents a consistent validation of the GMR technology for biological applications. Then a specially adapted needle-shaped probe carrying micron-sized GMR sensors has been developed for in-vivo experiment in cat visual cortex. The very first magnetic signature of action potentials inside the neuropil has been measured, paving the way towards magnetophysiology
APA, Harvard, Vancouver, ISO, and other styles
5

Valiulis, Vladas. "The effect of transcranial magnetic stimulation on brain bioelectrical activity." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140925_135043-14839.

Full text
Abstract:
Transcranial magnetic stimulation (TMS) is a modern non invasive method of drug resistant psychiatric disorder treatment. TMS physiology research is hindered by variable, often controversial results. In most studies main attention is being focused on immediate effects after single TMS procedure rather than the influence of a complete therapy course. It is considered that variability of results in TMS practice is caused by different stimulation parameters and imprecision of stimulated area placement in the brain. Although TMS therapy is often viewed as a milder alternative to electroconvulsive therapy (ECT), comparative physiological studies of these two methods are very rare. The aim of this study was to evaluate the effect of rTMS therapy course on bioelectrical brain activity and compare it to an ECT effect. Research included the effect of high and low frequency (10 Hz and 1 Hz) TMS on EEG band power spectrum and auditory evoked potential P300, using both standard and neuronavigated target positioning. TMS evoked EEG changes were also compared to the changes of ECT. Change dynamics after several months of TMS therapy were also measured. Results showed that after TMS therapy the most notable change in the brain occurs in the form of delta power increase. When using standard positioning 10 Hz TMS evokes more diverse and intense EEG band power spectrum changes than the 1 Hz TMS. Application of neuronavigation system decreases theta and alpha band power changes in 10 Hz TMS... [to full text]<br>Transkranijinė magnetinė stimuliacija (TMS) – tai modernus neinvazinis vaistams rezistentiškų psichiatrinių sutrikimų gydymo būdas. Fiziologiniai TMS tyrimai pasižymi įvairiais, dažnai prieštaringais rezultatais, daugeliu atvejų didžiausias dėmesys skiriamas betarpiškiems poveikiams po vienos TMS procedūros, bet ne po pilno terapinio kurso. Manoma, kad rezultatų įvairovę TMS praktikoje įtakoja skirtingi stimuliacijos parametrai ir netikslumai parenkant stimuliuojamą zoną smegenyse. Nors TMS terapija dažnai traktuojama kaip švelnesnė alternatyva elektros impulsų terapijai (EIT), palyginamųjų fiziologinių šių metodikų tyrimų labai trūksta. Darbo tikslas buvo įvertinti TMS terapijos kurso poveikį bioelektriniam galvos smegenų aktyvumui ir palyginti jį su EIT terapijos poveikiu. Buvo tirta aukšto ir žemo dažnių (10 Hz ir 1 Hz) TMS terapijos įtaka EEG dažnių galios spektrui bei sukeltiniam klausos potencialui P300, naudojant standartinį ir neuronavigacinį taikinio pozicionavimą. TMS sukelti EEG pokyčiai palyginti su EIT terapijos sukeltais EEG pokyčiais, išmatuota TMS terapijos sąlygotų pokyčių dinamika kelių mėnesių bėgyje. Rezultatai parodė, kad TMS terapijos pasekoje smegenyse ryškiausiai padidėja delta dažnio galia. Naudojant standartinį pozicionavimą 10 Hz TMS sukėlė įvairesnius ir intensyvesnius EEG galios spektro pokyčius nei 1 Hz TMS. Pritaikius neuronavigacinę sistemą 10 Hz TMS atveju sumažėjo teta ir alfa dažnių galios pokyčiai. Praėjus keliems mėnesiams nuo TMS... [toliau žr. visą tekstą]
APA, Harvard, Vancouver, ISO, and other styles
6

Mathioudakis, Mihalis. "Magnetic activity phenomena in dwarf M and K stars." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dunstone, Nicholas J. "Prominences and magnetic activity on young single and binary stars." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zic, Andrew John. "Cool Stellar Activity at Low Radio Frequencies." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24500.

Full text
Abstract:
Stellar magnetic fields drive a wide range of energetic phenomena, which have a crucial influence on their properties, evolution, and environment. In this thesis, we investigate the low-frequency radio emission from active low-mass stars. We harness this emission to constrain magnetospheric properties and processes arising from different magnetic activity paradigms. In Chapter 2, we present low-frequency observations of a sample of ultra-cool dwarfs. We show that while most ultra-cool dwarfs do not produce low-frequency emission, their magnetospheric properties can be constrained with measurements of the optically-thick side of the quiescent spectral energy distribution. In Chapter 3, we present Australian Square Kilometre Array Pathfinder (ASKAP) observations of the prototypical flare star, UV Ceti. Our observations reveal the presence of periodic, elliptically polarised radio pulses, confirming that large auroral current systems can be produced in the magneto- spheres of active M-dwarfs. In Chapter 4, we present results from one night of an 11-night multi-wavelength campaign targeting the nearest stellar neighbour, and magnetically-active planet host, Proxima Centauri. We detected a powerful flare with optical photometric and spectroscopic facilities, accompanied by a solar-like type IV radio burst. By analogy with the solar radio burst paradigm, we suggest that this event indicates a coronal mass ejection leaving the corona, and ongoing electron acceleration associated with a post-eruptive loop arcade. Together, the results presented in this thesis show the diverse forms of magnetic activity exhibited by low-mass stars. We have shown that low-frequency radio observations are sensitive to both auroral and solar-like activity. Future low-frequency radio surveys and multi-wavelength observations may reveal the role of stellar properties such as rotation, mass, and age, in driving these different forms of magnetic activity.
APA, Harvard, Vancouver, ISO, and other styles
9

Virtanen, I. (. Ilpo). "Asymmetry of the heliospheric magnetic field." Doctoral thesis, University of Oulu, 2013. http://urn.fi/urn:isbn:9789526202563.

Full text
Abstract:
Abstract This thesis studies the structure and evolution of the large scale heliospheric magnetic field. The work covers the space age, the period when satellite measurements revolutionized our knowledge about space. Now, this period is known to be the declining phase of the grand modern maximum of solar activity. The thesis addresses how the hemispherical asymmetry of solar activity is seen in the photospheric magnetic field and how it appears in the corona and in the heliosphere until the termination shock. According to geomagnetic and heliospheric observations, the heliospheric current sheet has been southward shifted around the solar minima since 1930s. Using Ulysses probe observations, we derive an accurate estimate of 2° for the southward shift of the heliospheric current sheet during two very different solar minimum in the mid 1990s and 2000s. The overall structure of the heliospheric magnetic field has changed significantly now when the grand modern maximum has come to an end. During the present low solar activity the polar fields are weaker and the heliospheric current sheet covered a wide latitudinal range during the previous minimum. When the heliospheric current sheet is wide the asymmetry is less visible at the Earth’s orbit. We extend our study to the outer heliosphere using measurements made by Voyager and Pioneer probes and show that the hemispherical asymmetry in the coronal hole evolution, and the related southward shift of the heliospheric current sheet, are seen until the termination shock. In order to understand the origin of the hemispherical asymmetry, we complete a multipole analysis of the solar magnetic field since 1976. We find that the minimum time southward shift of the heliospheric current sheet is due to the quadrupole component of the coronal magnetic field. The quadrupole term exists because the generation and transport of the magnetic flux in the Sun tends to proceed differently in the northern and southern hemispheres. During this and the following decade the Sun is most likely going to be less active than it has been since 1920s. Therefore it is probable that the hemispherical asymmetry of the heliospheric magnetic field will be less visible in the ecliptic plane in the near future. Now, when the Sun seems to be at the maximum of cycle 24, we are looking forward to see how the polar fields and the heliospheric magnetic field are formed when approaching the following solar minimum. It is possible that, as the activity rises again after the present and future low cycles, the hemispherical asymmetry will be opposite to that of the 20th century and the minimum time heliospheric current sheet would be northward shifted.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yeuk-Yue Tony. "The equatorial ionospheric anomaly in East Asia from solar minimum to solar maximum /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13597577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetic activity"

1

C, Zwaan, ed. Solar and stellar magnetic activity. Cambridge University Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sturrock, Peter A. Coronal magnetic fields produced by photospheric shear. Center for Space Science and Astrophysics, Stanford University, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andrews, William A. Magnetic and charged materials: Unit plan and student activity sheets. William A. Andrews, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carlowicz, Michael J. Storms from the sun: The emerging science of space weather. McGraw-Hill, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bracken, Robert E. Development and testing of a tensor magnetic gradiometer system with trial monitoring near the Kilauea Volcano, Hawaii. U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spiro, Antiochos, and United States. National Aeronautics and Space Administration., eds. The Solar-B mission: Final report of the Science Definition Team. National Aeronautics and Space Administration, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meeting, COSPAR Plenary. Fundamental problems in solar activity: Proceedings of Symposium E3 of the COSPAR Twenty-ninth Plenary Meeting held in Washington, D.C., USA, 28 August- 5 September, 1992. Published for the Committee on Space Research by Pergamon Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Symposium, International Astronomical Union. Physics of sun and star spots: Proceedings of the 273th [i.e. 273rd] Symposium of the International Astronomical Union held in Ventura, California, USA, August 22-26, 2010. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Douglas, Stephanie Teresa. Open Clusters as Laboratories for Stellar Spin Down and Magnetic Activity Decay. [publisher not identified], 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ruan, R. Roger. Water in foods and biological materials: A nuclear magnetic resonance approach. Technomic Pub. Co., 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetic activity"

1

Montmerle, Thierry. "Activity, Magnetic." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Montmerle, Thierry. "Activity (Magnetic)." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Montmerle, Thierry. "Activity, Magnetic." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Montmerle, Thierry. "Activity, Magnetic." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_28-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Montmerle, Thierry. "Activity, Magnetic." In Encyclopedia of Astrobiology. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_28-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Wen-Yao. "Earth's Magnetic Activity." In Space Science in China. Routledge, 2022. http://dx.doi.org/10.1201/9780203739082-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodonò, Marcello. "Magnetic Activity and Rotation." In Angular Momentum Evolution of Young Stars. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3580-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Priest, E. R. "Introduction to Solar Activity." In Solar System Magnetic Fields. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5482-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pallavicini, R. "Stellar Magnetic Activity, Activity Cycles, and Dynamos." In Magnetodynamic Phenomena in the Solar Atmosphere. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0315-9_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Forbes, T. G. "Magnetic Reconnection Models of Flares." In Activity in Cool Star Envelopes. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2951-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic activity"

1

Kobenkins, Genadijs, Marks Marinbahs, Nikita Rilevs, Anatolijs Bizans, and Olegs Sliskis. "Effect of Magnetic Traction Force on Drive Vibration Activity." In 2024 Advanced Topics on Measurement and Simulation (ATOMS). IEEE, 2024. https://doi.org/10.1109/atoms60779.2024.10921603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Yanchu, Liming Sun, and Yong Liu. "Machine Learning-Based Human Activity Recognition Using Miniature Inertial and Magnetic Sensors." In 2024 9th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, 2024. http://dx.doi.org/10.1109/icsp62122.2024.10743490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Angeli, Marco, Ermanno Cantelli, and Silvio Resteghini. "Research Activity About Environmental Low Frequency Magnetic Fields: Measurements in Case of Non Sinusoidal Source." In 1998_EMC-Europe_Roma. IEEE, 1998. https://doi.org/10.23919/emc.1998.10791674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Genov, D. A., H. Liu, D. M. Wu, et al. "Magnetic plasmon resonances and optical activity." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, M., R. T. Wakai, S. Pedron, D. L. Reid, B. Forbes, and C. B. Martin. "Magnetic monitoring of fetal heart activity." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Wakai, Pedron, Reid, Forbes, and Martin. "Magnetic Monitoring Of Fetal Heart Activity." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.592775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sunaryono, Sunaryono, Nadiya Miftachul Chusna, Nandang Mufti, Munasir Munasir, Juniastel Rajagukguk, and Ahmad Taufiq. "Investigation of magnetic properties and anti-microbial activity of Mn0.25Fe2.75O4/Ag composites." In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Basri, Gibor, and Eric Stempels. "Magnetic Activity in the Fully Convective Domain." In COOL STARS, STELLAR SYSTEMS AND THE SUN: Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. AIP, 2009. http://dx.doi.org/10.1063/1.3099093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

López-Portela, C., and X. Blanco-Cano. "Effects Of Magnetic Clouds In Geomagnetic Activity." In PLASMA AND FUSION SCIENCE: 16th IAEA Technical Meeting on Research using Small Fusion Devices; XI Latin American Workshop on Plasma Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2405954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Montgomery, D. C. "Dynamo Activity In Imposed DC Magnetic Fields." In PLASMA PHYSICS: 11th International Congress on Plasma Physics: ICPP2002. AIP, 2003. http://dx.doi.org/10.1063/1.1594046.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetic activity"

1

Coles, R. L., and J. Hruska. A new type of magnetic activity forecast. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1985. http://dx.doi.org/10.4095/315228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Antiochos, Spiro K., and C. R. DeVore. The Role of Magnetic Reconnection in Solar Activity. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada481662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radoski, Henry. Determining the Magnetic Environment in Which Solar Activity Occurs. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada383274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Forbes, Jeffrey M. Thermosphere Structure Variations during High Solar and Magnetic Activity Conditions. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada171350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baliunas, S., P. Frick, D. Moss, E. Popova, D. Sokoloff, and W. Soon. Anharmonic and Standing Dynamo Waves: Theory and Observation of Stellar Magnetic Activity. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada437382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boteler, D. H., G. Jansen van Beek, and J. Hruska. Magnetic activity in Canada during the solar- terrestrial disturbance of 24-25 March 1991. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/205060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barrett, T. W. Inverse Faraday Effect in Hemoglobin Detected by Raman Spectroscopy: An Example of Magnetic Resonance Raman Activity. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada159806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, 2021. http://dx.doi.org/10.12731/er0519.07122021.

Full text
Abstract:
The auroral activity indices AU, AL, AE, introduced into geophysics at the beginning of the space era, although they have certain drawbacks, are still widely used to monitor geomagnetic activity at high latitudes. The AU index reflects the intensity of the eastern electric jet, while the AL index is determined by the intensity of the western electric jet. There are many regression relationships linking the indices of magnetic activity with a wide range of phenomena observed in the Earth's magnetosphere and atmosphere. These relationships determine the importance of monitoring and predicting geomagnetic activity for research in various areas of solar-terrestrial physics. The most dramatic phenomena in the magnetosphere and high-latitude ionosphere occur during periods of magnetospheric substorms, a sensitive indicator of which is the time variation and value of the AL index. Currently, AL index forecasting is carried out by various methods using both dynamic systems and artificial intelligence. Forecasting is based on the close relationship between the state of the magnetosphere and the parameters of the solar wind and the interplanetary magnetic field (IMF). This application proposes an algorithm for describing the process of substorm formation using an instrument in the form of an Elman-type ANN by reconstructing the AL index using the dynamics of the new integral parameter we introduced. The use of an integral parameter at the input of the ANN makes it possible to simulate the structure and intellectual properties of the biological nervous system, since in this way an additional realization of the memory of the prehistory of the modeled process is provided.
APA, Harvard, Vancouver, ISO, and other styles
9

Upadhyay, Janardan. Electron Activity (Secondary Electron & Field Emission ) Suppression by Magnetic Field Placed on the Surface of Metals And Dielectric. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1764190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thomas, M. D. Magnetic and gravity characteristics of the Thelon and Taltson orogens, northern Canada: tectonic implications. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329250.

Full text
Abstract:
Differences of opinion concerning the relationship between the Thelon tectonic zone and the Taltson magmatic zone, as to whether they are individual tectonic elements or two independent elements, have generated various plate tectonic models explaining their creation. Magnetic and gravity signatures indicate that they are separate entities and that the Thelon tectonic zone and the Great Slave Lake shear zone form a single element. Adopting the single-element concept and available age dates, a temporally evolving plate tectonic model of Slave-Rae interaction is presented. At 2350 Ma, an Archean supercontinent rifted along the eastern and southern margins of the Slave Craton. Subsequent ocean closure, apparently diachronous, began with subduction at 2070 Ma in the northern Thelon tectonic zone, followed by subduction under the Great Slave Lake shear zone at 2051 Ma. Subduction related to closure of an ocean between the Buffalo Head terrane and the Rae Craton initiated under the Taltson magmatic zone at 1986 Ma, at which time subduction continued along the Thelon tectonic zone. At 1970 Ma, collision in the northern Thelon tectonic zone is evidenced in the Kilohigok Basin. From 1957 to 1920 Ma, plutonism was active in the Taltson magmatic zone, Great Slave Lake shear zone, and southern Thelon tectonic zone. The plutonism terminated in the northern Thelon tectonic zone at 1950 Ma, but it resumed at 1910 Ma and continued until 1880 Ma. The East Arm Basin witnessed igneous activity as early as 2046 Ma, though this took place more continuously from 1928 to 1861 Ma; some igneous rocks bear subduction-related trace element signatures. These signatures, and the presence of northwest-verging nappes, may signify collision with the Great Slave Lake shear zone as a result of southeastward subduction, completing closure between the Slave and Rae cratons.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography