Academic literature on the topic 'Magnetic anisotropy of thin films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic anisotropy of thin films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic anisotropy of thin films"

1

Maksymowicz, L. J., M. Lubecka, R. Jabłoński, and J. Sokulski. "Magnetic anisotropy of semiconductor thin films." Journal of Magnetism and Magnetic Materials 196-197 (May 1999): 418–19. http://dx.doi.org/10.1016/s0304-8853(98)00787-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Parker, Michael Andrew. "Applications of TEM to microstructure, epitaxy, and preferred orientation in magnetic thin films." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 1014–15. http://dx.doi.org/10.1017/s0424820100150903.

Full text
Abstract:
J. Kent Howard, some years ago, published an extensive review of the phenomenon of what he referred to as “grain-to-grain” or “polycrystalline” epitaxy in thin films. Of the six or so different applications of this phenomenon, from superconductors to magnetics, none has greater technological significance than applications to magnetic thin films. This derives from the magnetic anisotropy of these thin films which has such a profound influence on their magnetic properties. In particular, magnetocrystalline anisotropy is often used to engineer thin films with the desired orientation of the easy axis of magnetization for magnetic record ing media applications. Magnetocrystalline anisotropy is intimately connected to the the crystallographic preferred orientation of the grains composing the magnetic layer which can be controlled through the skillful use of epitaxy with a suitable sublayer. The techniques of AEM, especially elongated probe microdiffraction (EPMD), have proven themselves invaluable for characterizing the micro-structure of such thin films.
APA, Harvard, Vancouver, ISO, and other styles
3

YANG, T. R., G. ILONCA, A. V. POP, V. TOMA, I. MATEI, and F. BEIUŞAN. "MAGNETORESISTIVITY AND MAGNETIC PROPERTIES IN MgB2 THIN FILMS." International Journal of Modern Physics B 19, no. 24 (September 30, 2005): 3723–29. http://dx.doi.org/10.1142/s0217979205032449.

Full text
Abstract:
Magnetotransport data on MgB 2 thin films, fabricated on Al 2 O 3 substrates using electron–bean deposition and Mg diffusion method are reported for applied magnetic fields up to 9 T. The upper critical field anisotropy, lower critical field and irreversibility field versus temperature are determined. The Hall coefficient is slightly temperature-dependent and positive in the normal state. Using the extracted data, the electronic mean free path, coherence length ξ0, anisotropic coefficient γ and penetration depth λ are calculated.
APA, Harvard, Vancouver, ISO, and other styles
4

Pick, Š., and H. Dreyssé. "Magnetic anisotropy of transition-metal thin films." Physical Review B 48, no. 18 (November 1, 1993): 13588–95. http://dx.doi.org/10.1103/physrevb.48.13588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Siqian, Toshiya Hozumi, Patrick LeClair, Gary Mankey, and Takao Suzuki. "Magnetic Anisotropy of $\tau $ -MnAl Thin Films." IEEE Transactions on Magnetics 51, no. 11 (November 2015): 1–4. http://dx.doi.org/10.1109/tmag.2015.2436059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Asada, Seiichi, and Masahiro Kitada. "FexN thin films with perpendicular magnetic anisotropy." Applied Physics Letters 46, no. 8 (April 15, 1985): 792–93. http://dx.doi.org/10.1063/1.95885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nahid, M. A. I., and Takao Suzuki. "Magnetic anisotropy of Fe3Pt alloy thin films." Applied Physics Letters 85, no. 18 (November 2004): 4100–4102. http://dx.doi.org/10.1063/1.1815070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piramanayagam, S. N., M. Matsumoto, and A. Morisako. "Perpendicular magnetic anisotropy in NdFeB thin films." Journal of Applied Physics 85, no. 8 (April 15, 1999): 5898–900. http://dx.doi.org/10.1063/1.369907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Jia Li, and Jing Guo Hu. "Magnetization Reversal in Ferromagnetic Thin Films." Advanced Materials Research 399-401 (November 2011): 890–95. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.890.

Full text
Abstract:
The magnetization reversal mechanism of the magnetic films system with the different magnetic anisotropy, exchange coupling, interface coupling, etc. has been simulated by Monte-Carlo method. The results show that the decrease of magnetic anisotropy is in favor of motion of domain walls, but is not conducive to consistent rotation. The interface coupling of both the ferromagnetic film and the antiferromagnetic film are helpful to the motion of domain walls while the antiferromagnetic film coupling is the more effective. Meantime, the evolution of the microscopic magnetic domain structures has been inspected intuitively while the system is in the process of magnetization.
APA, Harvard, Vancouver, ISO, and other styles
10

Kouchiyama, A., I. Sumita, Y. Nakayama, and M. Asanuma. "Magnetic anisotropy of sputtered Co-Cr thin films." Journal of the Magnetics Society of Japan 12, no. 2 (1988): 81–84. http://dx.doi.org/10.3379/jmsjmag.12.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetic anisotropy of thin films"

1

Bali, R. "Exchange anisotropy in magnetic thin films." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596311.

Full text
Abstract:
I have studied Exchange Bias in epitaxial α-Fe2O3 and polycrystalline FeMn and CoMn antiferromagnets coupled to the ferromagnet Permalloy (Ni81Fe19). Despite the nominal magnetocrystalline anisotropy of Permalloy, surface features such as vicinal steps and roughness induced strong uniaxial anisotropy. Exchange coupling with epitaxial α-Fe2O3 led to a biaxial anisotropy component in the ferromagnet. Anisotropy axes of the biaxial component remained fixed despite applying magnetic field at elevated temperatures. The magnitude of biaxial anisotropy varied with every temperature cycle, providing implicit evidence of domains in the antiferromagnet. In polycrystalline systems, uniaxial anisotropy of the ferromagnet set-up during growth competes with exchange anisotropy. By setting up an AF/F/AF trilayer, magnetic field cooling allowed control of the net anisotropy. These findings demonstrate that the two crucial factors that impact exchange biased thin films are (1) uniaxial anisotropies in the ferromagnet from surface and growth conditions and (2) exchange coupling with domains in the antiferromagnet. Competing effect of these two factors is the key to understanding any exchange coupled system.
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Zhihong. "Magnetic anisotropy graded media and Fe-Pt alloy thin films." Thesis, [Tuscaloosa, Ala. : University of Alabama Libraries], 2009. http://purl.lib.ua.edu/99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gueye, Mouhamadou. "Magnetic thin films on flexible substrates : magnetomechanical study by ferromagnetic resonance." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCD007/document.

Full text
Abstract:
Les films minces déposés sur des substrats flexibles ont été intensivement étudiés ces dernières années en raison de leur nombreuses applications en électronique flexible. Depuis peu, l'électronique flexible est étendu aux matériaux magnétiques conduisant ainsi au domaine émergeant de la magnéto-électronique flexible actuellement à l'avant garde des sujets de recherche de la spintronique. Ce travail de thèse est dédié à l'étude des propriétés magnéto-mécaniques de films minces magnétiques (Ni, NiFe, Co2FeAl, CoFeB, FeCuNbSi) sur des substrats flexibles. Les analyses structurales ont montré que les films de Ni et de CFA sont polycristallins non-texturés ; le CFB est amorphe. Par conséquent, les propriétés élastiques et magnéto-élastiques de ces films sont considérées comme étant isotropes. Une technique basée sur une utilisation conjointe d'essai mécanique, la résonance ferromagnétique (FMR) et la corrélation d'images numériques (CIN) a été développée pour étudier les propriétés magnéto-mécaniques de films minces sur substrats flexibles. A l'aide de cette méthode, il est possible de suivre l'évolution de l'anisotropie résiduelle omniprésente dans les films magnétiques sur substrats flexibles. Cette anisotropie est liée aux propriétés mécaniques contrastées lorsqu'on dépose un film mince rigide (grand module d'Young) sur un substrat flexible (petit module d'Young). L'effet du recuit sur les propriétés élastiques et magnéto-élastiques a été soigneusement étudié dans le film CFB validant ainsi l'intérêt porté à ses alliages pour des applications en spintronique. Enfin, la résonance ferromagnétique est employé en balayage en fréquence pour suivre la variation de la direction de l'aimantation en fonction des déformations induites par l'application de tension électrique sur l'actionneur piézoélectrique. Un retournement de 90° de la direction de l'aimantation dans le film Co2FeAl sur substrat flexible de Kapton® est observé
Thin films deposited on flexible substrates have been widely studied in the last decades due to the numerous applications in flexible electronics. Recently, flexible electronics have been extended to magnetic materials leading to the so-called emerging feld of flexible magnetoelectronics which is actually at the cutting-edge of spintronics research topics.This thesis is devoted to the study magnetomechanical properties of magnetic thin films (Ni, NiFe, Co2FeAl, CoFeB, FeCuNbSi) on flexible substrates. Structural analysis have 130 Abstracts hown that the Ni and CFA films are found to be polycrystalline with no strong preferred orientations ; the CFB film is amorphous. Consequently, the elastic and magnetoelastic properties are isotropic. For the study of the magnetomechanical properties, a set-up based on a jointly use of deformation test (bending or piezoactuation), ferromagnetic resonance (FMR) and digital image correlation (DIC) have been developped. Thanks to this method, it is possible to follow the evolution of the inescapable residual anisotropy encountered in magnetic thin films on flexible substrates under deformation and to determine the effective coefficient of magnetostriction of the films (sometimes unknown).This residual anisotropy is ascribed to contrasted mechanical strength when a sti thin film is deposited on a compliant substrate. The effect of the annealing temperature on the elastic and magnetoelastic have been studied carefully in CFB validating then theinterest on such alloys for spintronics applications. Finally, we have employed FMR inits sweep frequency mode to study the effective evolution of magnetization direction as function of the voltage-induced strains. A 90-degree magnetization rotation in Co2FeAl thin film on Kapton® polyimide substrate is observed
APA, Harvard, Vancouver, ISO, and other styles
4

Yasseen, Kalim Mahmood. "The magnetic and microstructural properties of TbFeCo films." Thesis, University of Salford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stiller, Markus, Jose Barzola-Quiquia, Pablo Esquinazi, Daniel Spemann, Jan Meijer, Michael Lorenz, and Marius Grundmann. "Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-216180.

Full text
Abstract:
The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.
APA, Harvard, Vancouver, ISO, and other styles
6

Niesen, Alessia [Verfasser]. "Heusler materials with perpendicular magnetic anisotropy. Thin films for spintronics / Alessia Niesen." Bielefeld : Universitätsbibliothek Bielefeld, 2019. http://d-nb.info/1183256590/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Inglefield, Heather Elizabeth. "Misfit accomodation in thin films of Ni/Cu as measured by magnetic anisotropy." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/32659.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1995.
Includes bibliographical references (leaves 134-137).
by Heather Elizabeth Inglefield.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Efrem Yuan-Fu. "L10-Ordered Thin Films with High Perpendicular Magnetic Anisotropy for STT-MRAM Applications." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/880.

Full text
Abstract:
The objective of the research conducted herein was to develop L10-ordered materials and thin film stack structures with high perpendicular magnetic anisotropy (PMA) for spin-transfertorque magnetoresistive random access memory (STT-MRAM) applications. A systematic approach was taken in this dissertation, culminating in exchange coupled L10-FePt and L10- MnAl heterogeneous structures showing great promise for developing perpendicular magnetic tunnel junctions (pMTJs) with both high thermal stability and low critical switching current. First, using MgO underlayers on Si substrates, sputtered MnAl films were systematically optimized, ultimately producing a Si substrate/MgO (20 nm)/MnAl (30)/Ta (5) film stack with a high degree of ordering and large PMA. Next, noting the incompatibility of insulating MgO underlayers with industrial-scale CMOS processes, attention was turned to using conductive underlayers. TiN was found to excel at promoting growth of L10-MnAl, with optimized films showing improved magnetic properties over those fabricated on MgO underlayers. Although the MnAl films grown on TiN underlayers on Si substrates demonstrated good magnetic properties, it was found that the high deposition and ordering temperatures contributed to high film roughness. In an effort to reduce ordering temperature and surface roughness of L10- MnAl films, adding other materials (Ni, C, and SiOx) to the MnAl film in conjunction with various underlayers was studied. MnAl:Ni films with a fixed 3 volume% Ni content deposited on TiN underlayers revealed that PMA was reduced compared to MnAl films, and surface roughness increased dramatically below the ordering temperature. MnAl:C films with 1volume% C showed an increase in PMA, while C in excess of the solubility limit (1.7 atomic %) diffused to the grain edges, degrading PMA. MnAl:SiOx films demonstrated poor PMA. The use of different post-annealing processes was then studied as an alternative to in situ annealing. Rapid thermal annealing (RTA) was found to produce PMA in films at lower annealing temperatures than tube furnace annealing, but tube furnace annealing produced films with higher maximum PMA than RTA. While annealed samples had lower surface roughness than those ordered by high in situ deposition temperatures, relying solely on annealing to achieve L10-ordering resulted drastically reduced PMA. Since the material additions, underlayer systems, and annealing techniques studied either did not reduce film roughness or resulted in reduced PMA of thin films, attention was turned to MTJ stack structures employing heterogeneous material systems for top and bottom electrodes, which might produce film stacks with both high PMA and low surface roughness. As a way to potentially mitigate roughness issues with using MnAl-based thin films as both free and reference layers in an MTJ, exchange coupled heterogeneous structures were studied. Given the high PMA of L10-FePt and low damping of L10-MnAl, L10-FePt/MnAl heterogeneous structures were studied as a way to take advantage of STT potentially being a surface process. Unfortunately, depositing the MnAl at elevated temperatures resulted in interdiffusion between FePt and MnAl, and caused a degradation in PMA. High- and low-anisotropy thin films separated by a thin barrier were then examined in the form of in-plane hard-FePt/barrier layer/inplane soft-FePt film stacks. It was found that significant exchange coupling energy was still observed at barrier thicknesses of around 1 nm. Since scaled MTJs have tunnel barriers below 1 nm, interlayer exchange coupling between the electrodes might thus be used for partially pinning the free layer, thereby increasing effective PMA. It is suggested that pinning a low-damping free layer by a high-PMA reference layer may therefore result in an MTJ with both high effective PMA and low effective damping. Finally, heterogeneous L10-ordered FePt/MgO/MnAl film stacks were explored for pMTJs. Film stacks with MgO barrier layers thinner than 2 nm showed significant interdiffusion between the FePt and MnAl, while film stacks with thicker MgO barrier layers exhibited good ordering and high PMA in both the FePt and MnAl films. It is believed that this limitation is caused by the roughness of the underlying FePt, which was thicker than 2 nm. Unfortunately, MgO barrier layers thinner than 2 nm are needed to make good MTJs. With further study, thin, continuous barriers may be achievable for high-PMA, L10- ordered materials with more materials exploration, deposition optimization, and more advanced thin film processing techniques and fabrication equipment. Use of appropriate underlayers, capping layers, dopant elements, and improved fabrication techniques may help reduce surface roughness while preserving PMA. If smooth electrodes can be developed, the heterogeneous structures discussed have great potential in taking advantage of exchange coupling for developing pMTJs with both high thermal stability and low critical switching current.
APA, Harvard, Vancouver, ISO, and other styles
9

Steinke, Nina-Juliane. "Structure and magnetic properties of anisotropic ferromagnetic thin-film heterostructures." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Aidan Jarreau. "Engineering Magnetism in Rare Earth Garnet and Metallic Thin Film Heterostructures." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1589886138733333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetic anisotropy of thin films"

1

Hussain, T. Magnetic anisotropy studies of TbFe thin films. Salford: University of Salford, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volkerts, John P. Magnetic thin films: Properties, performance, and applications. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Federici, Francesca. Vortices and instabilities in magnetic thin films. Birmingham: University of Birmingham, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Attaran-Kakhki, Ebrahim. Magnetic, magnetic-optic and structural studies of PtMnSb thin films. Salford: University of Salford, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Optics in magnetic multilayers and nanostructures. Boca Raton, Fla: CRC/Taylor & Francis, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Symposium E on Magnetic Ultra Thin Films, Multilayers, and Surfaces (1996 Strasbourg, France). Magnetic ultra thin films, multilayers, and surfaces: Proceedings of Symposium E on Magnetic Ultra Thin Films, Multilayers, and Surfaces of the 1996 E-MRS Spring Conference, Strasbourg, France, June 4-7, 1996. Amsterdam: Elsevier, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitton, D. B. Degradation of thin metal/alloy films: For magnetic recording. Manchester: UMIST, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smithyman, John Robert Bruce. Magnetic flux noise in superconducting thin films and heterostructures. Birmingham: University of Birmingham, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

IFF-Ferienkurs (30th 1999 Forschungszentrum Jülich). Magnetische Schichtsysteme in Forschung und Anwendung: Vorlesungsmanuskripte des 30. IFF-Ferienkurses. Jülich: Forschungszentrum Jülich, Zentralbibliothek, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rijks, G. S. M. Layered thin films for sensor applications: Magnetoresistance and magnetic interactions. Eindhoven: Eindhoven University of Technology, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetic anisotropy of thin films"

1

Kulkarni, Prabhanjan, Somnath Bhattacharyya, and Prasanta Chowdhury. "Perpendicular Magnetic Anisotropy in Magnetic Thin Films." In Advances in Magnetic Materials, 581–626. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371573-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Falco, Charles M., Brad N. Engel, and J. M. Slaughter. "Magnetic Anisotropy of Ultra-Thin Films and Multilayers." In Magnetic Hysteresis in Novel Magnetic Materials, 479–83. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Qi, and H. S. Wang. "Strain and Magnetoresistance Anisotropy of PR0.7SR0.3MNO3 Ultrathin Films." In Nano-Crystalline and Thin Film Magnetic Oxides, 133–44. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4493-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krupiński, Michał, Yevhen Zabila, and Marta Marszalek. "Nanopatterned Thin Films with Perpendicular Magnetic Anisotropy – Structure and Magnetism." In NATO Science for Peace and Security Series B: Physics and Biophysics, 47–71. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2034-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sánchez, J. M., and J. L. Morán-López. "Magnetic Properties of Anisotropic Thin Films." In Springer Proceedings in Physics, 94–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75553-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dorantes-Dávila, J., and G. M. Pastor. "Magnetic Anisotropy of 3d-Transition Metal Clusters, Chains, and Thin Films." In Current Problems in Condensed Matter, 185–93. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9924-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sander, Dirk, Holger Meyerheim, Salvador Ferrer, and Jürgen Kirschner. "Stress, Strain and Magnetic Anisotropy: All Is Different in Nanometer Thin Films." In Advances in Solid State Physics, 547–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kijima-Aoki, Hanae. "High-Frequency Soft Magnetic Properties of Nano-Granular Cobalt-(Metal-Oxide, Metal-Nitride) Thin Films with Perpendicular Magnetic Anisotropy." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 247–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gutiérrez, Lucía, María del Puerto Morales, and Alejandro G. Roca. "Synthesis and Applications of Anisotropic Magnetic Iron Oxide Nanoparticles." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 65–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Újfalussy, B., L. Szunyogh, and P. Weinberger. "Alloying Aspects of the Magnetic Ground State and Anisotropy of Fe/Cu thin Film Overlayers." In Properties of Complex Inorganic Solids, 181–85. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5943-6_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic anisotropy of thin films"

1

Zhao, S., T. Hozumi, P. Leclair, G. J. Mankey, and T. Suzuki. "Magnetic anisotropy of tau-MnAl thin films." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morisako, A., X. Liu, and K. Yamasawa. "Ultra thin Nd2Fe14B films with perpendicular magnetic anisotropy." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.374952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, X., S. E. Shirsath, and K. Shindoh. "Co-ferrite thin films with perpendicular magnetic anisotropy." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Umadevi, K., J. Arout Chelvane, A. Talapatra, J. Mohanty, and V. Jayalakshmi. "Magnetic anisotropy studies in magnetostrictive Fe-Co thin films." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Navas, D., N. Soriano, F. Beron, C. T. Sousa, K. R. Pirota, C. Redondo, R. Morales, and C. A. Ross. "Reversal processes in CoCrPt thin films with perpendicular magnetic anisotropy." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8008026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sayama, J., K. Mizutani, Y. Yamashita, T. Asahi, and T. Osaka. "SmCo/sub 5/ thin films with magnetic anisotropy for perpendicular magnetic recording." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haji-Sheikh, M., Y. z. Yoo, O. Chmaissem, S. Kolesnik, and A. Ullah. "Modeling of Magnetic Anisotropy of SrRuO3 Thin Films Using Tensors." In 2006 SICE-ICASE International Joint Conference. IEEE, 2006. http://dx.doi.org/10.1109/sice.2006.315466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, T., Q. Zhang, and R. Yu. "Tuning perpendicular magnetic anisotropy in the MgO/CoFeB/Ta thin films." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

PICK, ŠTĚPÁN, and HUGUES DREYSSÉ. "MAGNETIC ANISOTROPY PROPERTIES OF TRANSITION METALS: AB-INITIO VERSUS SEMI-EMPIRICAL METHODS?" In From Atoms, Molecules and Clusters in Complex Environment to Thin Films and Multilayers. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793652_0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, G. H., H. C. Han, and J. C. Wu. "Modulating Permalloy Thin Films on Grating Structure for Anisotropy Magnetic Sensor." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479890.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetic anisotropy of thin films"

1

Hellman, Frances. Sources of Anisotropy in Amorphous Magnetic Thin Films. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hellman, Frances. Sources of Anisotropy in Amorphous Magnetic Thin Film. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada252296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hellman, F. Growth induced magnetic anisotropy in amorphous thin films. Annual progress report year 1, November 4, 1994--October 31, 1995. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/86991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laughlin, D. E., and D. N. Lambeth. The role of microstructural phenomena in magnetic thin films. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10105307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laughlin, D. E., and D. N. Lambeth. The role of microstructural phenomena in magnetic thin films. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7000162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laughlin, D. E., and D. N. Lambeth. The role of microstructural phenomena in magnetic thin films. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6114234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Camley, R. E., and D. L. Mills. Magnetic Structures and Excitations in Thin Films and Multilayers. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada244422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laughlin, D. E., and D. N. Lambeth. The role of microstructural phenomena in magnetic thin films. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5879425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

O`Keefe, T. J., and W. J. James. Magnetic thin films formed in a glow discharge. Final report. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/90228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Karamon, Hideaki. Electrostatic TEM studies of magnetic domains in thin iron films. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography