To see the other types of publications on this topic, follow the link: Magnetic Confinement.

Journal articles on the topic 'Magnetic Confinement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetic Confinement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Komarek, P., C. C. Baker, G. O. Filatov, and S. Shimamoto. "Magnetic confinement." Nuclear Fusion 30, no. 9 (September 1, 1990): 1817–62. http://dx.doi.org/10.1088/0029-5515/30/9/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ongena, J., R. Koch, R. Wolf, and H. Zohm. "Magnetic-confinement fusion." Nature Physics 12, no. 5 (May 2016): 398–410. http://dx.doi.org/10.1038/nphys3745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Furth, H. P. "Magnetic Confinement Fusion." Science 249, no. 4976 (September 28, 1990): 1522–27. http://dx.doi.org/10.1126/science.249.4976.1522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, David. "Magnetic Confinement Fusion." Europhysics News 29, no. 6 (1998): 196–201. http://dx.doi.org/10.1007/s00770-998-0196-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campbell, David. "Magnetic Confinement Fusion." Europhysics news 29, no. 6 (1998): 196. http://dx.doi.org/10.1007/s007700050091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eichler, David. "Magnetic Confinement of Jets." Astrophysical Journal 419 (December 1993): 111. http://dx.doi.org/10.1086/173464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Connor, J. W. "Magnetic confinement theory summary." Nuclear Fusion 45, no. 10 (September 26, 2005): S1—S12. http://dx.doi.org/10.1088/0029-5515/45/10/s01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dolan, T. J. "Magnetic electrostatic plasma confinement." Plasma Physics and Controlled Fusion 36, no. 10 (October 1, 1994): 1539–93. http://dx.doi.org/10.1088/0741-3335/36/10/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ongena, J., R. Koch, R. Wolf, and H. Zohm. "Erratum: Magnetic-confinement fusion." Nature Physics 12, no. 7 (June 30, 2016): 717. http://dx.doi.org/10.1038/nphys3818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Demuth, Dominik, Melanie Reuhl, Moritz Hopfenmüller, Nail Karabas, Simon Schoner, and Michael Vogel. "Confinement Effects on Glass-Forming Aqueous Dimethyl Sulfoxide Solutions." Molecules 25, no. 18 (September 9, 2020): 4127. http://dx.doi.org/10.3390/molecules25184127.

Full text
Abstract:
Combining broadband dielectric spectroscopy and nuclear magnetic resonance studies, we analyze the reorientation dynamics and the translational diffusion associated with the glassy slowdown of the eutectic aqueous dimethyl sulfoxide solution in nano-sized confinements, explicitly, in silica pores with different diameters and in ficoll and lysozyme matrices at different concentrations. We observe that both rotational and diffusive dynamics are slower and more heterogeneous in the confinements than in the bulk but the degree of these effects depends on the properties of the confinement and differs for the components of the solution. For the hard and the soft matrices, the slowdown and the heterogeneity become more prominent when the size of the confinement is reduced. In addition, the dynamics are more retarded for dimethyl sulfoxide than for water, implying specific guest-host interactions. Moreover, we find that the temperature dependence of the reorientation dynamics and of the translational diffusion differs in severe confinements, indicating a breakdown of the Stokes–Einstein–Debye relation. It is discussed to what extent these confinement effects can be rationalized in the framework of core-shell models, which assume bulk-like and slowed-down motions in central and interfacial confinement regions, respectively.
APA, Harvard, Vancouver, ISO, and other styles
11

Xiong, Hao, Ming-Hai Liu, Ming Chen, Bo Rao, Jie Chen, Zhao-Quan Chen, Jin-Shui Xiao, and Xi-Wei Hu. "Radial magnetic field in magnetic confinement device." Chinese Physics B 24, no. 9 (September 2015): 095202. http://dx.doi.org/10.1088/1674-1056/24/9/095202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Elio, F. "Revisiting the poloidal magnetic confinement." Fusion Engineering and Design 89, no. 6 (June 2014): 806–11. http://dx.doi.org/10.1016/j.fusengdes.2014.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Itoh, K. "Summary: theory of magnetic confinement." Nuclear Fusion 43, no. 12 (December 2003): 1710–19. http://dx.doi.org/10.1088/0029-5515/43/12/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

LOVELACE, R. V. E. "Integrability of Magnetic Confinement Systems." Annals of the New York Academy of Sciences 536, no. 1 Integrability (August 1988): 81–82. http://dx.doi.org/10.1111/j.1749-6632.1988.tb51564.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Katherine T. "Computers Spur Magnetic Confinement Fusion." Computers in Physics 2, no. 4 (1988): 38. http://dx.doi.org/10.1063/1.4822751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wagner, F. "Physics of magnetic confinement fusion." EPJ Web of Conferences 54 (2013): 01007. http://dx.doi.org/10.1051/epjconf/20135401007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Miao, Feng, Xianjun Zheng, Baiquan Deng, Wei Liu, Wei Ou, and Yi Huang. "Magnetic Inertial Confinement Fusion (MICF)." Plasma Science and Technology 18, no. 11 (October 28, 2016): 1055–63. http://dx.doi.org/10.1088/1009-0630/18/11/01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Brown, Robert W., and Shmaryu M. Shvartsman. "Supershielding: Confinement of Magnetic Fields." Physical Review Letters 83, no. 10 (September 6, 1999): 1946–49. http://dx.doi.org/10.1103/physrevlett.83.1946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gubankova, E. L., and Yu A. Simonov. "Magnetic confinement and screening masses." Physics Letters B 360, no. 1-2 (October 1995): 93–100. http://dx.doi.org/10.1016/0370-2693(95)01116-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kolka, E., S. Eliezer, and Y. Paiss. "Miniature magnetic bottle confined by circularly polarized laser light." Laser and Particle Beams 13, no. 1 (March 1995): 83–93. http://dx.doi.org/10.1017/s0263034600008867.

Full text
Abstract:
A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to obtain confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated. The confinement in this scheme is supported by the magnetic forces. The Lawson criterion for a DT plasma might be achieved for number density n = 5.1021 cm-3 and confinement time τ = 20 ns. The laser and plasma parameters required to obtain an energetic gain are calculated.
APA, Harvard, Vancouver, ISO, and other styles
21

Wood, Toby S. "Magnetic confinement in the solar interior." Proceedings of the International Astronomical Union 6, S271 (June 2010): 409–10. http://dx.doi.org/10.1017/s1743921311018035.

Full text
Abstract:
AbstractThe observed uniform rotation of the Sun's radiative interior can be explained by the presence of a global-scale interior magnetic field, provided that the field remains confined below the convection zone. In high latitudes, such magnetic confinement is possible by means of persistent downwelling, driven by the convection zone's turbulent stresses.
APA, Harvard, Vancouver, ISO, and other styles
22

Betti, R., P. Y. Chang, B. K. Spears, K. S. Anderson, J. Edwards, M. Fatenejad, J. D. Lindl, R. L. McCrory, R. Nora, and D. Shvarts. "Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement." Physics of Plasmas 17, no. 5 (May 2010): 058102. http://dx.doi.org/10.1063/1.3380857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Elsaid, Mohammad, Mohamoud Ali, and Ayham Shaer. "The magnetization and magnetic susceptibility of GaAs Gaussian quantum dot with donor impurity in a magnetic field." Modern Physics Letters B 33, no. 34 (December 10, 2019): 1950422. http://dx.doi.org/10.1142/s0217984919504220.

Full text
Abstract:
We present a theoretical study to investigate the effect of donor impurity on the magnetization (M) and the magnetic susceptibility [Formula: see text] of single electron quantum dot (QD) with Gaussian confinement in the presence of a magnetic field. We solve the Hamiltonian of this system, including the spin, by using the exact diagonalization method. The ground state binding energy (BE) of an electron has been shown as a function of QD radius and confinement potential depth. The behaviors of the magnetization and the magnetic susceptibility of a QD have been studied as a function of temperature, confinement potential depth, quantum radius and magnetic field. We have shown the effect of donor impurity on the magnetization and magnetic susceptibility curves of Gaussian quantum dot (GQD).
APA, Harvard, Vancouver, ISO, and other styles
24

Bertsche, W., A. Boston, P. D. Bowe, C. L. Cesar, S. Chapman, M. Charlton, M. Chartier, et al. "A magnetic trap for antihydrogen confinement." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566, no. 2 (October 2006): 746–56. http://dx.doi.org/10.1016/j.nima.2006.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ninomiya, H., K. Tobita, U. Schneider, G. Martin, W. W. Heidbrink, and Ya I. Kolesnichenko. "Energetic particles in magnetic confinement systems." Nuclear Fusion 40, no. 7 (July 2000): 1287–91. http://dx.doi.org/10.1088/0029-5515/40/7/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Günter, S. "Energetic particles in magnetic confinement systems." Nuclear Fusion 48, no. 8 (June 26, 2008): 080201. http://dx.doi.org/10.1088/0029-5515/48/8/080201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Todd, T. N., and C. G. Windsor. "Progress in magnetic confinement fusion research." Contemporary Physics 39, no. 4 (July 1998): 255–82. http://dx.doi.org/10.1080/001075198181946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Skovoroda, A., and A. Spitsyn. "Ambipolar Confinement in 3D “Magnetic Wall”." Fusion Science and Technology 47, no. 1T (January 2005): 235–37. http://dx.doi.org/10.13182/fst05-a648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brun, A. S., and J. P. Zahn. "Magnetic confinement of the solar tachocline." Astronomy & Astrophysics 457, no. 2 (September 12, 2006): 665–74. http://dx.doi.org/10.1051/0004-6361:20053908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Magyari, E., and H. Thomas. "Magnetic confinement of repelling Bloch walls." Physica Scripta T44 (January 1, 1992): 45–50. http://dx.doi.org/10.1088/0031-8949/1992/t44/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Weller, Arthur. "Diagnostics for magnetic confinement fusion research." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 623, no. 2 (November 2010): 801–5. http://dx.doi.org/10.1016/j.nima.2010.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Chuanjun, and Laifeng Li. "Magnetic confinement fusion: a brief review." Frontiers in Energy 12, no. 2 (February 16, 2018): 305–13. http://dx.doi.org/10.1007/s11708-018-0539-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Goeckner, M. J., G. D. Earle, L. J. Overzet, and J. C. Maynard. "Electron confinement on magnetic field lines." IEEE Transactions on Plasma Science 33, no. 2 (April 2005): 436–37. http://dx.doi.org/10.1109/tps.2005.844960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lovelace, R. V. E., C. Mehanian, T. J. Tommila, and D. M. Lee. "Magnetic confinement of a neutral gas." Nature 318, no. 6041 (November 1985): 30–36. http://dx.doi.org/10.1038/318030a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Patel, N. K., and M. Pepper. "Magnetic domain confinement using nonplanar substrates." Journal of Applied Physics 87, no. 6 (March 15, 2000): 3171–73. http://dx.doi.org/10.1063/1.372317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Boozer, Allen H. "Runaway electrons and magnetic island confinement." Physics of Plasmas 23, no. 8 (August 2016): 082514. http://dx.doi.org/10.1063/1.4960969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gregoire, Michel. "Controlled Thermonuclear Energy. The Magnetic Confinement." Revue Générale Nucléaire, no. 1 (January 1991): 21–29. http://dx.doi.org/10.1051/rgn/19911021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Geng Shun, Rui Hong Tong, and An Hua Zhang. "Magnetic Confinement of Plasmas Generated by Coaxial Twinned Electron Cyclotron Resonance (ECR) Discharge." Advanced Materials Research 413 (December 2011): 18–23. http://dx.doi.org/10.4028/www.scientific.net/amr.413.18.

Full text
Abstract:
Effects of the magnetic field on confinement of the coaxial twined ECR plasmas were studied using the Lanmuir probe diagnostic technique. Under the magnetic-mirror confinement, the plasma density was quite high in the vicinity of the axis of the ECR sources but it decreased rapidly with increasing radial distance; while under the cusped field confinement, the density was lower but uniform. The trend was similar for the electron temperature and the plasma potential. This property may be utilized in materials processes to meet different requirements. Key words: Electron cyclotron resonance (ECR), Plasma, Magnetic confinement, The cusped field confinement.PACS: 52.80.Pi, 52.55.-s, 52.70.-m
APA, Harvard, Vancouver, ISO, and other styles
39

BOYACIOGLU, BAHADIR, and ASHOK CHATTERJEE. "MAGNETIC PROPERTIES OF SEMICONDUCTOR QUANTUM DOTS WITH GAUSSIAN CONFINEMENT." International Journal of Modern Physics B 26, no. 04 (February 10, 2012): 1250018. http://dx.doi.org/10.1142/s021797921250018x.

Full text
Abstract:
The magnetic properties such as magnetization and magnetic susceptibility are calculated for semiconductor quantum dots with Gaussian confinement. It is shown that the magnetization and magnetic susceptibility effects are quite significant for quantum dots with deep confining potential well and the parabolic potential is only a poor approximation of the Gaussian confinement.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Steven S. L., C. Phatak, A. K. Petford-Long, and O. G. Heinonen. "Tailoring magnetic skyrmions by geometric confinement of magnetic structures." Applied Physics Letters 111, no. 24 (December 11, 2017): 242405. http://dx.doi.org/10.1063/1.5005904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bayer, M., A. A. Dremin, V. D. Kulakovskii, A. Forchel, F. Faller, P. A. Knipp, and T. L. Reinecke. "Coupling of geometric confinement and magnetic confinement inIn0.09Ga0.91As/GaAs quantum wells in magnetic fields with varying orientations." Physical Review B 52, no. 20 (November 15, 1995): 14728–38. http://dx.doi.org/10.1103/physrevb.52.14728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

KASAPOGLU, E., H. SARI, and I. SOKMEN. "EFFECTS OF MAGNETIC AND ELECTRIC FIELDS ON THE HYDROGENIC IMPURITY IN AN ELLIPSOIDAL PARABOLIC QUANTUM DOT." Surface Review and Letters 15, no. 03 (June 2008): 201–5. http://dx.doi.org/10.1142/s0218625x08010440.

Full text
Abstract:
The binding energy of a hydrogen-like impurity in an ellipsoidal parabolic quantum dot under the magnetic and electric fields have been discussed by using the effective mass approximation and the variational method. We have calculated the effects of the magnetic and electric fields on the binding energy of donor impurities in the quantum dots with different confinement potentials. We conclude that the structural confinement is very effective, and especially in the weak confinement potential case the magnetic field dependence of the donor binding energy is more pronounced.
APA, Harvard, Vancouver, ISO, and other styles
43

KONISHI, KENICHI, and LEONARDO SPANU. "NON-ABELIAN VORTEX AND CONFINEMENT." International Journal of Modern Physics A 18, no. 02 (January 20, 2003): 249–69. http://dx.doi.org/10.1142/s0217751x03011492.

Full text
Abstract:
We discuss general properties and possible types of magnetic vortices in non-Abelian gauge theories (we consider here G = SU (N), SO (N), USp (2N)) in the Higgs phase. The sources of such vortices carry "fractional" quantum numbers such as Zn charge (for SU (N)), but also full non-Abelian charges of the dual gauge group. If such a model emerges as an effective dual magnetic theory of the fundamental (electric) theory, the non-Abelian vortices can provide for the mechanism of quark confinement in the latter.
APA, Harvard, Vancouver, ISO, and other styles
44

Sato, Kohnosuke, and Mamiko Sasao. "Fusion Product Diagnostics in Magnetic Confinement System." Kakuyūgō kenkyū 53, no. 6 (1985): 435–48. http://dx.doi.org/10.1585/jspf1958.53.435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jones, R. "Plasma Confinement with Electrical and Magnetic Fields." Transactions of the Kansas Academy of Science (1903-) 95, no. 1/2 (April 1992): 122. http://dx.doi.org/10.2307/3628027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kondoh, S., and Z. Yoshida. "Toroidal magnetic confinement of non-neutral plasma." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 382, no. 3 (November 1996): 561–66. http://dx.doi.org/10.1016/s0168-9002(96)00855-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abramova, K. B., K. G. Hellblom, K. Uehara, and Y. Sadamoto. "Magnetic Trap for Confinement of Hot Plasma." Fusion Technology 35, no. 1T (January 1999): 263–67. http://dx.doi.org/10.13182/fst99-a11963864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fasoli, A., S. Brunner, W. A. Cooper, J. P. Graves, P. Ricci, O. Sauter, and L. Villard. "Computational challenges in magnetic-confinement fusion physics." Nature Physics 12, no. 5 (May 2016): 411–23. http://dx.doi.org/10.1038/nphys3744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Martins, Gabriel. "The Hamiltonian dynamics of planar magnetic confinement." Nonlinearity 30, no. 12 (November 16, 2017): 4523–33. http://dx.doi.org/10.1088/1361-6544/aa8ca4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Benka, Stephen G. "One mystery of magnetic plasma confinement solved." Physics Today 67, no. 7 (July 2014): 17. http://dx.doi.org/10.1063/pt.3.2441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography