Academic literature on the topic 'Magnetic domain wall dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic domain wall dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Magnetic domain wall dynamics"

1

Bedau, Daniel. "Domain wall dynamics in magnetic nanostructures." München Verl. Dr. Hut, 2008. http://d-nb.info/988229420/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Yuting. "Electric field control of magnetic domain wall dynamics." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS292/document.

Full text
Abstract:
Contrôle électrique du champ magnétique dans les films ferromagnétiques minces a attiré de grandes attentions comme une caractéristique prometteuse qui pourrait conduire à des appareils électroniques rapides, ultra-bas et non volatils. La clé pour réaliser de tels dispositifs est de modifier efficacement l'anisotropie magnétique. Dans cette thèse, le contrôle de l'anisotropie magnétique et de la dynamique des parois de domaine a été étudié dans diverses structures basées sur des films minces CoFeB et Pt / Co. Les propriétés magnétiques et diélectriques des films minces CoFeB / MgO avec une couche de recouvrement différente (Ta, HfO2, Al2O3) ont d'abord été étudiées pour trouver le matériau optimal de l'effet de champ électrique. La couche de coiffage montre un effet non négligeable sur l'anisotropie magnétique du film CoFeB et une constante diélectrique élevée de 45 est obtenue dans une structure MgO / HfO2.Un liquide ionique [EMI] [TFSI] a été utilisé pour promouvoir l'effet de champ électrique dans les films magnétiques. L'effet du champ électrique a été étudié dans le liquide CoFeB / MgO / ionique et les structures liquides ioniques CoFeB / MgO / HfO2 / ioniques. L'efficacité du champ électrique sur l'anisotropie magnétique pour ces deux structures est de 60 fJ / Vm et 82 fJ / Vm, respectivement. En attendant, le liquide ionique CoFeB / MgO / HfO2 / ionique présente une plus grande stabilité contre l'environnement et la tension, ce qui permet une commutation facile à l'axe de l'avion dans un avion. En outre, l'effet de champ électrique dans la structure liquide Pt / Co / ionique a été étudié. Un effet important et non volatil peut être observé<br>This thesis focused on controlling magnetic anisotropy and domain wall dynamics in magnetic thin films. Thin CoFeB/MgO Ims with different capping layers were deposited to find suitable materials to fabricate a high performing E-field effect device. The E-field effect was studied in a Ta/CoFeB/MgO stack, a Ta/CoFeB/MgO/HfO2 stack and a Pt/Co/HfO2 stack assisted by ionic liquid gating. Large E-field effects on magnetic anisotropy were obtained and E-field effect on domain wall propagation, pining and depining were observed. The major conclusions of this thesis are listed below.Magnetic and dielectric properties of CoFeB/MgO/(Ta, HfO2 and Al2O3) havebeen studied.All studied samples show PMA with different values of HK. In as grown films,samples with Ta as protecting layer show the lowest HK. Highest HK is foundwhen capping with 30 nm HfO2 in 0.8nm (746 mT) and 1nm (218 mT) thickCoFeB films. After annealing at 290 degree, there is a general increase of HK. The largest HK of 1082 mT and 524 mT are found for 10 nm Al2O3 in 0.8 nmCoFeB samples and 1 nm CoFeB samples, respectively. HK can be varied up to 100 mT for 1 nm thick CoFeB samples and up to 220 mT for 0.8 nm thick CoFeB samples indicating a non-negligible effect of the capping layer on the surface magnetic anisotropy of thin films.A high dielectric constant of 45 is obtained in a MgO (2 nm)/HfO2 (30 nm) structure. The breakdown voltage increases with annealing temperature, however, there is a large decrease in the dielectric constant after annealing at 290 degrees. By decreasing the annealing temperature to 250 degree, the high dielectric constant can be preserved with an improved breakdown voltage. Aging effect on HK and -K2/K1 of samples with different capping layers has been studied. HK is not necessary decreasing, but inhomogeneities in the magnetic properties occur in aged samples. Aging increases -K2/K1 which could help the formation of an easy-cone state. Stability of a MgO (2 nm) layer incontact with an IL and ionic film has been studied. After recording HK for months, it has been found that a MgO/IL structure can not preserve a highmagnetic anisotropy but is able to remain relatively stable in a low anisotropy state. A MgO/ionic film structure is found to be stable since no sign of degradation was found. The stability of samples with a simple MgO (2 nm)/HfO2 structure has been tested. Ms of the sample covered with an IL and the one not covered with IL have been recorded for one month. It is found that the change is within 3% indicating a stable structure against ambient conditions and the IL.The E-field effect has been studied in the low and high PMA states of aTa/CoFeB/MgO/IL sample. PMA of the device evolves from a high PMA state to a low PMA state which can be linked to a potential increase in the oxygen content of MgO due to air exposure during fabrication and operation. In the high PMA state, domain wall velocities in the creep regime can be modulated by a factor of 4.2 and the coercive field increases by a factor of 1.3 when going from -0.8 V to 0.8V. In the low PMA state, a large modulation of the anisotropy field reaches 80 mT per V/nm with a low leakage current. The applied E-fields are seen to significantly influence DWs' pinning, depinning and nucleation processes. The results presented here show that a solid/liquid device structure based on CoFeB/MgO thin films can be an interesting approach to control magnetic properties with gate voltages below 1 V over large areas, allowing for potential parallel operation of pinning/nucleation units.The E-field effect has been studied in a Ta/CoFeB/MgO/HfO2/IL sample
APA, Harvard, Vancouver, ISO, and other styles
3

Albert, Maximilian. "Domain wall dynamics and resonant modes of magnetic nanostructures." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/413582/.

Full text
Abstract:
In this work we present finite element-based simulations of magnetic nanostructures using the micromagnetic software packages Nmag and Finmag developed at the University of Southampton. As part of this work the package Finmag has been extended with the implementation of an eigenvalue-based method to compute resonant modes in magnetic nanosystems. The details of this implementation are discussed, including certain complications encountered in the context of a finite element discretisation scheme. The implementation is verified using results from an independently published study on eigenmodes of an elliptical nanodisc. We present two studies of domain walls in magnetic nanowires. The first one investigates field-driven domain wall motion in nanowires with edge roughness. A new roughness model is introduced which allows the systematic study of how edge roughness features influence the domain wall motion compared to the case of a smooth nanowire. While the large-scale behaviour, such as the asymptotic domain wall velocity, is largely unaffected by the roughness, it introduces marked local alterations to the domain wall trajectories and can lead to dynamic pinning, both below and above the Walker breakdown. It is shown that the effective pinning strength of the roughness features is strongest when their size is comparable to the size of the domain wall. The second domain wall study investigates different types of resonant modes (translational, breathing and twisting modes) of transverse domain walls pinned at notches in a magnetic nanowire. The different sensititivies of each mode type on the nanowire and notch geometry are investigated in detail. It is found that the translational and twisting mode respond relatively strongly to changes in the notch geometry, while the breathing mode is fairly robust to changes in the notches’ size, making it a promising candidate for applications. We finally present a study of resonant modes in an elliptical magnetic nanodisc representing the free layer of a spin-torque nano-oscillator. We demonstrate that the resonant frequencies and spatial mode profiles are altered in the presence of a magnetic nanoparticle. The dependence of the frequency shifts on the nanoparticle position and material parameters is studied systematically. It is shown that these frequency shifts exceed achievable linewidths in state-of-the-art spin-torque oscillators and that they can be maintained over large external field ranges (owing to to the fact that they are a direct response to the stray field of the nanoparticle and do not rely on changes to the magnetic ground state of the disc). This opens up promising applications for novel nano-sensing devices using frequency-based detection schemes.
APA, Harvard, Vancouver, ISO, and other styles
4

Richter, Kornel. "Study of the fast domain wall dynamics in thin magnetic wires." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01004612.

Full text
Abstract:
The domain wall dynamics is used in many spintronic devices based on the uniaxial ferromagnetic wires to transport and store information. Therefore, the domain wall velocity is one of the main parameters that determine the operation speed of these devices. Recently, a big attention is being paid to amorphous glass-coated microwires due to the very high domain wall velocities that reach up to 20 km/s. In this work, the fast domain wall propagation in amorphous glass-coated microwires was found in the presence of two main factors: (i) relatively low magnetic anisotropy, (ii) complex geometry of magnetic anisotropies given by internal distribution of mechanical stresses. The domain wall dynamics was examined in amorphous glass-coated microwires of reduced diameter down to 1 μm. It was shown, that the domain wall dynamics in these wires is the same as in wires of bigger diameter. It proves that the high domain wall velocities in microwires are not the effect of microwire diameter value. The direct observation of the surface domain wall structure by use of MOKE microscope confirmed that the domain wall is inclined relatively to the main axis. A new method for magneto-optical observation of the samples with cylindrical geometry was proposed. The inclined structure of the domain wall was found to be partially responsible for the high apparent domain wall velocity measured by the Sixtus-Tonks method in microwires.
APA, Harvard, Vancouver, ISO, and other styles
5

SARMA, BHASKARJYOTI. "Effect of Disorder on Domain Wall Dynamics." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2713359.

Full text
Abstract:
The purpose of this work is to study the effects of disorders on domain wall dynamics in perpendicular magnetic anisotropy ultra-thin ferromagnetic materials. It is done, firstly, by experimental study of domain wall dynamics in Ta/CoFeB/MgO material where distributions and strengths of pinning points are controlled by light ion irradiation and secondly, by micromagnetic study of the dynamics and morphology of a bubble domain in a disorder induced PMA material with Dzyaloshinskii-Moriya interaction. By studying the effects of He^{+} ion irradiation on domain wall dynamics, it is found that irradiation influences the distribution of pinning points as well as their strengths, thereby influencing the velocities of domain walls. The velocities are found to be lowest for non-irradiated samples, then it is observed to increase with irradiation and then decrease at higher irradiations suggesting that there is an optimum irradiation where velocity should be maximum. On the other hand, by studying the dynamics of bubble domain using micromagnetic simulations in ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction, it is found, as expected that magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble was found to have a ripple-like part which caused a kink-like (steep decrease) feature in the velocity versus in-plane field curve. It is shown that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, it is also shown that the Dzyaloshinskii-Moriya interaction field is not constant, in contradiction with the results of experiments, but rather depends on the in-plane field.
APA, Harvard, Vancouver, ISO, and other styles
6

Mawass, Mohamad-Assaad [Verfasser]. "Magnetic domain wall dynamics and spin transport in confined geometries / Mohamad-Assaad Mawass." Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1112626409/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

NASSERI, SEYED ALI. "Magnetic Domain Wall Motion: Numerical Simulation and Collective Coordinate Modeling." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710713.

Full text
Abstract:
Manipulating magnetic domain walls in nanostructures has been linked with applications in spintronic logic, sensing and storage devices. Recent studies of domain wall motion have focused on perpendicular magnetic anisotropy heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide, in which spin-orbit coupling and broken inversion symmetry can dominate domain wall motion. Specifically, chiral domain walls are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction, and current-driven domain wall motion is enhanced due to the spin Hall effect. The chirality of the domain walls in such systems may be partially influenced by the application of external in-plane magnetic fields. Such magnetic fields are used in bubble expansion experiments to assess the strength of the Dzyaloshinskii-Moriya interaction. In addition, bombarding the ferromagnetic layer with heavy metal ions can induce local changes in material properties such as magnetic anisotropy which could be used to manipulate local pinning properties. While computational micromagnetic simulations can help elucidate the behavior of domain walls, their computational cost prohibits extensive studies. As such, assessing the strength of the Dzyaloshinskii-Moriya interaction, extracting material parameters and understanding the behavior of the domain wall to an extent depends on simpler models of domain wall motion based on collective characteristics of the domain wall, and derived from applying model reduction methods to the more complex micromagnetic model. Several Lagrangian-based collective coordinate models exist to describe domain wall motion, namely the $q-\phi$, $q-\phi-\Delta$, and $q-\phi-\chi$ models. While these models can describe domain wall motion with acceptable accuracy, they fail to replicate results of micromagnetic simulations specially for domain wall motion under the application of in-plane fields in heterostructures of interest. Moreover, recent advances in domain wall motion such as pinning due to irradiation have not been included in these models. In this work, we will first present the process for developing Lagrangian-based collective coordinate models, culminating in the derivation of a four collective coordinate model for domain wall motion (the $q-\phi-\chi-\Delta$ model). We show how this model can be extended for cases where in-plane magnetic fields are present to correctly account for the physics; this extension involved introducing the canting induced by the in-plane fields in the domains. We also extend these models to describe the dynamics of magnetic bubbles. In-plane field cases are specifically studied to help identify specific conditions which could help measure properties of the magnetic material. We also compare the equations derived using our Lagrangian-based approach to another reduced model developed through the application of statistical methods to the LLG equation, shedding light on the shortcomings of our approach. The work culminates with a summary of how these models may be made more realistic, through the inclusion of pinning and thermal effects within the model.
APA, Harvard, Vancouver, ISO, and other styles
8

Haltz, Eloi. "Domain wall dynamics driven by spin-current in ferrimagnetic alloys." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS607.

Full text
Abstract:
Malgré les grands succès de la spintronique de ces dernières années, plusieurs questions demeurent quant à l'efficacité et la rapidité de la manipulation électrique de l’aimantation. Ces problèmes semblent pouvoir être résolus en considérant des nouveaux matériaux plus exotiques mélangeant différents sous-réseaux magnétiques. Les alliages ferrimagnétiques de type terres rares-métaux de transitions sont composés de deux populations magnétiques couplées antiferromagnétiquement. Dans ces matériaux, deux configurations particulièrement intéressantes se distinguent : les points de compensation magnétique et angulaire auxquels l'aimantation ou le moment angulaire totale de l'alliage s’annulent. Dans ces configurations, ces matériaux ferrimagnétiques présentent de nouvelles propriétés très intéressantes tant sur le plan fondamental que technologique. Dans cette thèse, la dynamique d’aimantation dans ces matériaux a été étudié expérimentalement et théoriquement à travers la dynamique de paroi de domaine magnétique par application de courants de spin.Les alliages ferrimagnétiques (comme le TbFeCo ou le GdFeCo) ont été déposés en couche mince par co-évaporation et étudiés en combinant plusieurs méthodes : magnétiques, électriques et optiques ce qui révéla leur grand intérêt spintronic. Des techniques d'imagerie ont montré une organisation en domaines magnétiques, séparés par des parois facilement manipulables. Cette étude des propriétés statiques a également montré l’existence d’un gradient chimique en épaisseur induisant des effets habituellement surfaciques dans la zone centrale de films comme le DMI.La dynamique de paroi sous courant de spin (par couple de transfert de spin et spin-orbite) a été étudiée dans deux études qui ont mis en évidence l'efficacité et la rapidité du contrôle électrique de l’aimantation. L’une d’elles a également révélé une dynamique particulière qui est la signature directe d’un retournement magnétique sans précession à la compensation angulaire.Enfin, un modèle théorique effectif des propriétés statique et dynamique des alliages ferrimagnétiques a été développé et a révélé de nouveaux modes de propagation de paroi comme le retournement sans précession ou la disparition des régimes transitoires<br>Despite the large success of spintronics, several questions remain concerning the improvement of efficiency and speed of the magnetization manipulation by electrical current. Those issues can be addressed through the study of new exotic materials that mix different magnetic sub-lattices. Rare earth-transition metal ferrimagnetic alloys are composed of two different magnetic sub-lattices that are antiferromagneticaly coupled. Specifically, two interesting configurations can emerge called the magnetic and the angular compensation points at which the alloy’s net magnetization or net angular momentum independently vanishes. In these configurations, ferrimagnets seem to present new and very convenient properties which makes them promising for both fundamental and technological point of view. In this thesis, these materials were experimentally and theoretically studied through the prism of magnetic domain wall dynamics driven by spin-currents.Ferrimagnetic alloys (such as TbFeCo or GdFeCo) were grown in thin films by co-evaporation. Their structural and magnetic properties were studied by combining magnetization, electrical and optical methods which have revealed their spintronic value. Imaging techniques showed a perpendicularly magnetized domain organization separated by easily handled domain walls. These statics properties studies also showed a chemical depth gradient which induces surface-like effects in the bulk region of films such as DMI à définir.The domain wall dynamics driven by spin current were investigated in two studies revealing very high efficiency and speed of their electrical manipulation. First, the efficiency of the current manipulation via spin-transfer torque was measured by studying the domain wall motion under combined effects of field and current in the creep regime. Secondly, the domain wall dynamics driven by spin-orbit torque was fully characterized using in-plane fields. This measurement revealed a singular dynamic of the domain wall at the angular compensation point which is the direct signature of the precession-free reversal of the magnetization.Finally, an effective theoretical model of both the static and dynamic properties of ferrimagnets was developed. It allows the description of all the observed experimental results. Using this formalism, we analytically and numerically studied the domain wall dynamics driven by field or spin-currents thus revealing new propagation regimes such as precession-free dynamics or the vanishing of transient motions
APA, Harvard, Vancouver, ISO, and other styles
9

Wuth, Clemens [Verfasser]. "Stochastic and coherent dynamics of individual magnetic domains and domain walls / Clemens Wuth." München : Verlag Dr. Hut, 2015. http://d-nb.info/1079768815/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okuno, Takaya. "Magnetic dynamics in antiferromagnetically-coupled ferrimagnets: The role of angular momentum." Kyoto University, 2020. http://hdl.handle.net/2433/253106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!