Academic literature on the topic 'Magnetic nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetic nanocrystals"
Wang, Li, Hong Fang Sun, Hui Hua Zhou, and Jing Zhu. "Self-Assembly Growth and Size Control of Silver Nanocrystals for Nonvolatile Memory Applications." Materials Science Forum 610-613 (January 2009): 585–90. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.585.
Full textZhang, Xinhai, Qiuling Chen, and Shouhua Zhang. "Ta2O5 Nanocrystals Strengthened Mechanical, Magnetic, and Radiation Shielding Properties of Heavy Metal Oxide Glass." Molecules 26, no. 15 (July 26, 2021): 4494. http://dx.doi.org/10.3390/molecules26154494.
Full textYin, J. S., and Z. L. Wang. "Self-Assembled Cobalt Oxide Nanocrystals with Tetrahedral Shape." Microscopy and Microanalysis 4, S2 (July 1998): 736–37. http://dx.doi.org/10.1017/s1431927600023801.
Full textXiong, Zichang, Himashi P. Andaraarachchi, Jacob T. Held, Rick W. Dorn, Yong-Jin Jeong, Aaron Rossini, and Uwe R. Kortshagen. "Inductively Coupled Nonthermal Plasma Synthesis of Size-Controlled γ-Al2O3 Nanocrystals." Nanomaterials 13, no. 10 (May 12, 2023): 1627. http://dx.doi.org/10.3390/nano13101627.
Full textKang, Myung Jong, Na Hyeon An, and Young Soo Kang. "Magnetic and Photochemical Properties of Cu Doped Hematite Nanocrystal." Materials Science Forum 893 (March 2017): 136–43. http://dx.doi.org/10.4028/www.scientific.net/msf.893.136.
Full textHarfenist, S. A., Z. L. Wang, T. G. Schaaff, and R. L. Whettent. "A BCC Superlattice of Passivated Gold Nanocrystals." Microscopy and Microanalysis 4, S2 (July 1998): 716–17. http://dx.doi.org/10.1017/s1431927600023709.
Full textZhan, Li, Qi Wei, Geng Yanxia, Xu Junzheng, and Wu Wangsuo. "Biodistribution of60Co–Co/Graphitic-Shell NanocrystalsIn Vivo." Journal of Nanomaterials 2011 (2011): 1–5. http://dx.doi.org/10.1155/2011/842613.
Full textLin, Fang Hsin, and Reuy An Doong. "Synthesis of Ferrite Nanoparticle and Ferrite-Gold Heterostructures." Advanced Materials Research 123-125 (August 2010): 251–55. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.251.
Full textPosfai, M., and R. E. Dunin-Borkowski. "Magnetic Nanocrystals in Organisms." Elements 5, no. 4 (August 1, 2009): 235–40. http://dx.doi.org/10.2113/gselements.5.4.235.
Full textKikkawa, Shinichi. "Nanocrystals of Nitrides and Oxides." Journal of Nano Research 24 (September 2013): 16–25. http://dx.doi.org/10.4028/www.scientific.net/jnanor.24.16.
Full textDissertations / Theses on the topic "Magnetic nanocrystals"
Radovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.
Full textShevchenko, Elena V. "Monodisperse magnetic alloy nanocrystals and their superstructures." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968507395.
Full textNorberg, Nicholas S. "Magnetic nanocrystals : synthesis and properties of diluted magnetic semiconductor quantum dots /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8625.
Full textSimpson, Edward Thomas. "Electron holography of isolated and interacting magnetic nanocrystals." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/252128.
Full textMozul, K., A. Ishchenko, A. P. Kryshtal, L. P. Olkhovik, and Z. I. Sizova. "Magnetic Anisotropy of Ultra-small Nanocrystals of CoFe2O4." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35365.
Full textAlmeida, António José Sousa de. "Magnetic resonance studies of spin systems in semiconductor nanocrystals." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18636.
Full textEsta tese apresenta um estudo experimental de sistemas de spins fornecidos por dopantes electrónicos e por defeitos capturadores de carga em nanocristais (NCs) semiconductores, por meio de técnicas de ressonância magnética. Aqui, investigámos problemas que têm efeitos limitadores de performance nas propriedades de NCs semiconductores para o seu uso em aplicações tecnológicas. Nomeadamente, estudámos a dopagem electrónica de NCs semiconductores. A dopagem é crítica para controlar o comportamento de semiconductores, que de outra forma seriam isoladores. Investigámos também defeitos capturadores de carga, que podem ter um impacto negativo na conductividade de NCs semiconductores ao capturar portadores de carga em estados electrónicos deslocalizados de NCs. Para além disso, abordámos a origem da anisotropia magnética em NCs de materiais diamagnéticos. Nesta tese, reportamos investigações usando medidas de ressonância paramagnética electrónica (RPE) quantitativa, dizendo respeito à eficiência de dopagem electrónica de Si NCs com átomos de P e à sua dependência com o ambiente envolvendo os NCs. Das medidas de RPE quantitativas, estimamos eficiências de dopagem nos NCs que são consistentes com a incorporação da maioria dos dopantes P como dadores substitucionais nos NCs. Observamos também que a eficiência de dopagem dos NCs varia em várias ordens de grandeza dependendo do ambiente envolvendo os NCs, devido a uma forte compensação dos dadores por moléculas absorbidas na superfície dos NCs. Usando espectroscopia RPE dependente da temperatura, mostramos também que a energia de ionização dos dopantes P em Si NCs aumenta relativamente ao seu correspondente cristal macroscópico devido a confinamento. Usamos espectroscopia RPE dependente da temperatura para estudar a interacção entre múltiplos dopantes incorporados num único Si NC e o seu impacto na estrutura electrónica destes NCs. Monitorizámos experimentalmente a interacção de troca em pares de dadores P (dímeros de dadores) em Si NCs através de um desvio da ressonância magnética do seu estado tripleto em relação ao paramagnetismo de Curie. Mostrámos que a interacção de troca entre dadores próximos entre si pode ser bem descrita pela teoria de massa efectiva, permitindo o cálculo de muitas configurações de dopantes e permitindo a consideração de efeitos estatísticos cruciais em conjuntos de nanocristais. Descobrimos que dímeros de dadores induzem estados discretos num NC, e que a sua separação energética difere em até três ordens de grandeza para dímeros colocados aleatoriamente num conjunto de NCs devido a uma enorme dependência da energia de troca na configuração do dímero. Investigámos também sistemas de spins induzidos por defeitos capturadores de carga e como estes defeitos podem afectar a dopagem de NCs. Identificamos a presença de dois estados de carga de um defeito em NCs de CdSe usando espectroscopia RPE combinada com a afinação electrónica de NCs através de dopagem com Ag induzida quimicamente. A partir de de RPE foto-induzido, mostramos que estes defeitos têm um papel central na fixação do nível de Fermi em conjuntos de NCs. Através da análise da dependência do sinal de RPE dos defeitos com a concentração de dopantes de Ag, mostramos também que os defeitos actuam como capturadores efectivos de electrões nos NCs. Do RPE dependente da temperatura, estimamos um limite inferior para a energia de ionização dos defeitos estudados. Com base nas características do espectro RPE dos defeitos observados, propomos que está associado a lacunas de Se com o estado paramagnético sendo o estado positivo do defeito. Para além disso, mostramos que as interacções magnéticas entre spins associados a defeitos nos NCs podem induzir efeitos de anisotropia magnética em conjuntos de NCs que não são esperados acontecer no cristal macroscópico correspondente. Usando espectroscopia de ressonância ferromagnética (RFM) com dependência angular, medimos a anisotropia magnética em conjuntos de aleatórios de NCs de CdSe através da gravação do espectro de ressonância magnética para várias orientações do campo magnético externo. As dependências angulares do campo ressonante são diferente para conjuntos aparentemente similares de NCs de CdSe. Mostramos que a forma e amplitude da variação angular do RFM pode ser bem descrita po um modelo simples que toma em consideração as interacções dipolo-dipolo entre dipolos localizados na superfície dos NCs. Os dipolos na superfície podem originar de ligações pendentes em sítios da superfície que não estão passivados por ligantes. Dos nossos cálculos, descobrimos que para diferentes conjuntos aleatórios de NCs a força da anisotropia magnética induzida por interacções dipolo-dipolo pode tomar valores abrangendo quatro ordens de grandeza, dependendo do arranjo específico dos NCs no conjunto e da distribuição específica dos dipolos na superfície de cada NC. Esta enorme variabilidade pode justificar a disparidade de anisotropias magnéticas observada nas nossas experiências.
This thesis presents an experimental study of systems of spins provided by electronic dopants and by charge trapping defects in semiconductor NCs, by means of magnetic resonance spectroscopy techniques. Here, we have investigated issues that have performance-limiting effects on the properties of semiconductor NCs for their use in technological applications. Namely, we have studied the electronic doping of semiconductor NCs. Doping is critical to control the behavior of semiconductors, which would otherwise be electrically insulating. We have further investigated charge trapping defects in semiconductor NCs, which can have a negative impact on the conductivity of semiconductor NCs by capturing charge carriers from delocalized electronic states of the NCs. Moreover, we addressed the origin of magnetic anisotropy in NCs of diamagnetic materials. In this thesis, we report investigations using quantitative electron paramagnetic resonance (EPR) measurements concerning the efficiency of electronic doping of Si NCs with P atoms and its dependence on the environment surrounding the NCs. From quantitative EPR measurements, we estimate doping efficiencies in the NCs that are consistent with the incorporation of most P dopants as substitutional donors in the NCs. We further observe that the doping efficiency of the NCs varies by several orders of magnitude depending on the NCs surrounding environment due to a strong compensation of donors by molecules adsorbed to the NCs surface. Using temperature-dependent EPR spectroscopy, we further show that the ionization energy of P dopants in Si NCs increases with respect to their bulk counterpart due to confinement. We use temperature-dependent EPR spectroscopy to study the interaction between multiple P dopants incorporated in a single Si NC and its impact on the electronic structure of these NCs. We experimentally probe the exchange interaction in pairs of P donors (donor dimers) in Si NCs via a deviation of their triplet-state magnetic resonance from Curie paramagnetism. We showed that the exchange coupling of closely spaced donors can be well described by effective mass theory, enabling the calculation of many dopant configurations and allowing the consideration of statistical effects crucial in NC ensembles. We find that donor dimers induce discrete states in a NC, and that their energy splitting differs by up to three orders of magnitude for randomly placed dimers in a NC ensemble due to an enormous dependence of the exchange energy on the dimer configuration. We also investigate systems of spins induced by charge trapping defects and how these defects can affect the doping of NCs. We identify the presence of two charge states of a defect in CdSe NCs using EPR spectroscopy, combined with electronic tuning of NCs via chemically induced Ag doping. From light-induced EPR, we show that these defects have a central role on Fermi level pinning of NC ensembles. By analyzing the dependence of the EPR signal of the defects on the concentration of Ag dopants, we further demonstrate that the defects act as effective electron traps in the NCs. From temperaturedependent EPR, we estimate a lower limit for the ionization energy of the studied defects. Based on the characteristics of the EPR spectrum of the observed defect, we propose that it is associated to Se vacancies with the paramagnetic state being the positively charged state of the defect. Moreover, we show that magnetic interactions between spins associated to defects in NCs can induce magnetic anisotropy effects in NCs ensembles that are not expected to occur in their bulk counterpart. Using angulardependent ferromagnetic resonance (FMR) spectroscopy, we measure the magnetic anisotropy in different random ensembles of CdSe NCs by recording magnetic resonance spectra for various orientations of the external magnetic field. The observed angular dependencies of resonant field are different for apparently similar CdSe NC ensembles. We show that the shape and amplitude of the FMR angular variation can be well described by a simple model that considers magnetic dipole-dipole interactions between dipoles located at the NCs surface. The surface dipoles may originate from dangling bonds on surface sites that are not passivated by ligands. From our calculations, we find that for different random ensembles of NCs the strength of the magnetic anisotropy induced by dipole-dipole interactions may take values spanning four orders of magnitude, depending on the specific arrangement of the NCs in the ensemble and the specific distribution of the surface dipoles in each NC. This huge variability may justify the disparity of magnetic anisotropies observed in our experiments.
Larsen, Brian A. "Bioengineered iron-oxide nanocrystals: Applications in magnetic resonance imaging." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337119.
Full textTracy, Nicholas Alan. "Synthesis and Characterization of Magnetic II-VI Nanoparticles." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/32507.
Full textMaster of Science
Kumar, Kritika. "Microfluidic synthesis of superparamagnetic iron oxide nanocrystals for magnetic resonance imaging." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18809.
Full textSong, Qing. "Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7645.
Full textBooks on the topic "Magnetic nanocrystals"
Iwasaki, Tomohiro, and Tomohiro Iwasaki. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textIwasaki, Tomohiro. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textZbroszczyk, Józef. Amorficzne i nanokrystaliczne stopy żelaza. Częstochowa: Wydawn. Politechniki Częstochowskiej, 2007.
Find full textPawlik, Piotr. Rola składu chemicznego i procesu wytwarzania w kształtowaniu właściwości magnetycznych masywnych amorficznych i nanokrystalicznych stopów żelaza. Częstochowa: Wydawn. Wydz. Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej Politechniki Częstochowskiej, 2011.
Find full text1962-, Zhukova Valentina, ed. Magnetic properties and applications of ferromagnetic microwires with amorpheous and nanocrystalline structure. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textvan Schooten, Kipp. Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00590-4.
Full textB, Cantor, ed. Novel nanocrystalline alloys and magnetic nanomaterials: An Oxford-Kobe materials text. Bristol: Institute of Physics Pub., 2005.
Find full text1945-, Švec Petr, Idzikowski Bogdan, Miglierini Marcel, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Properties and applications of nanocrystalline alloys from amorphous precursors. Dordrecht: Kluwer Academic Publishers, 2005.
Find full textDantas, Noelio Oliveira. Diluted Magnetic Semiconductor Nanocrystals in Glass Matrix. INTECH Open Access Publisher, 2010.
Find full textK, Rajendran, and Veeramanikandasamy T. Structural, Optical, Electrical and Magnetic Properties of Synthesized Manganese Sulfide Nanocrystals: A Study on the Influence of Process Parameters on Synthesis of MnS Nanocrystals. Independently Published, 2019.
Find full textBook chapters on the topic "Magnetic nanocrystals"
Petit, Christophe, Laurence Motte, Anh-Tu Ngo, Isabelle Lisiecki, and Marie-Paule Pileni. "Collective Magnetic Properties of Organizations of Magnetic Nanocrystals." In Nanocrystals Forming Mesoscopic Structures, 251–78. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607587.ch10.
Full textCozzoli, P. Davide, Concetta Nobile, Riccardo Scarfiello, Angela Fiore, and Luigi Carbone. "Magnetic Multicomponent Heterostructured Nanocrystals." In Magnetic Nanomaterials - Fundamentals, Synthesis and Applications, 217–90. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527803255.ch8.
Full textWang, Zhong L., Yong Ding, and Jing Li. "Structures of Magnetic Nanoparticles and Their Self-Assembly." In Nanocrystals Forming Mesoscopic Structures, 49–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607587.ch2.
Full textKumar, J., S. Ramasubramanian, R. Thangavel, and M. Rajagopalan. "On the Optical and Magnetic Properties of Doped-ZnO." In ZnO Nanocrystals and Allied Materials, 309–29. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_15.
Full textRichardi, Johannes, and Marie-Paule Pileni. "Self-Organization of Magnetic Nanocrystals at the Mesoscopic Scale: Example of Liquid-Gas Transitions." In Nanocrystals Forming Mesoscopic Structures, 75–89. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607587.ch3.
Full textMarchessault, Robert H., Glen Bremner, and Grégory Chauve. "Fishing for Proteins with Magnetic Cellulosic Nanocrystals." In ACS Symposium Series, 3–17. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0934.ch001.
Full textGiannelis, E. P., V. Mehrotra, J. K. Vassiliou, R. D. Shull, R. D. MacMichael, and R. F. Ziolo. "Magnetic and Optical Properties of γ-Fe2O3 Nanocrystals." In Nanophase Materials, 617–24. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1076-1_63.
Full textLiu, Xian Ming, and Shao Yun Fu. "Synthesis and Magnetic Properties of Spherical NiO Nanocrystals." In Solid State Phenomena, 1437–42. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.1437.
Full textMorgenstern, Markus, Jens Wiebe, Felix Marczinowski, and Roland Wiesendanger. "Scanning Tunneling Spectroscopy on III–V Materials: Effects of Dimensionality, Magnetic Field, and Magnetic Impurities." In Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, 217–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10553-1_9.
Full textJayakumar, O. D., C. Persson, A. K. Tyagi, and C. Sudakar. "Experimental and Theoretical Investigations of Dopant, Defect, and Morphology Control on the Magnetic and Optical Properties of Transition Metal Doped ZnO Nanoparticles." In ZnO Nanocrystals and Allied Materials, 341–70. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1160-0_17.
Full textConference papers on the topic "Magnetic nanocrystals"
Barker, Alex J., Brant Cage, Stephen Russek, Ruchira Garg, Robin Shandas, and Conrad R. Stoldt. "Tailored Nanoscale Contrast Agents for Magnetic Resonance Imaging." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81503.
Full textZou, Shou-Jyun, and Shun-Jen Cheng. "Magnetism of magnetic ion doped semiconductor nanocrystals." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2023623.
Full textYouhui Gao, Zentaro Akase, Daisuke Shindo, Yuping Bao, and Kannan Krishnan. "Microstructure and magnetic properties of cobalt nanocrystals." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463769.
Full textDasgupta, Papri, Sudip Mukherjee, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Magnetic Properties Of Er[sub 2]O[sub 3] Nanocrystals Dispersed In Silica Matrix." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928982.
Full textFescenko, Ilja, Abdelghani Laraoui, Janis Smits, Nazanin Mosavian, Pauli Kehayias, Jong Seto, Lykourgos Bougas, Andrey Jarmola, and Victor M. Acosta. "Magnetic imaging of malarial nanocrystals with diamond sensors." In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.jw3a.89.
Full textDatt, Gopal, and A. C. Abhyankar. "Structural, magnetic and dielectric properties of NiZnFe2O4 nanocrystals." In 5TH NATIONAL CONFERENCE ON THERMOPHYSICAL PROPERTIES: (NCTP‐09). American Institute of Physics, 2016. http://dx.doi.org/10.1063/1.4945159.
Full textGiacometti, M., L. B. Callegari, A. Collovini, M. Monticelli, C. Rinaldi, D. Petti, G. Ferrari, et al. "On-Chip Magnetophoretic Concentration of Malaria-Infected Red Blood Cells and Hemozoin Nanocrystals." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508846.
Full textPeixoto, E. B., S. G. Mecena, L. S. Silva, F. A. Fabian, C. T. Meneses, and J. G. S. Duque. "CRYSTALLIZATION PROCESS AND MAGNETIC PROPERTIES OF Fe-RICH NANOCRYSTALS EMBEDDED ON AMORPHOUS MAGNETIC RIBBONS." In International Symposium on Crystallography. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/phypro-sic100-031.
Full textChen, Kok Hao, and Jong Hyun Choi. "DNA Oligonucleotide-Templated Nanocrystals: Synthesis and Novel Label-Free Protein Detection." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11958.
Full textRosenzweig, Zeev, Desheng Wang, Liane M. Rossi, Yuri A. Barnakov, and Lifang Shi. "Nanocomposite particles containing semiconductor and magnetic nanocrystals: fabrication and characterization." In Optics East, edited by M. Saif Islam and Achyut K. Dutta. SPIE, 2004. http://dx.doi.org/10.1117/12.570455.
Full textReports on the topic "Magnetic nanocrystals"
Moler, Kathryn A. Magnetic Properties of Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada441687.
Full textDickerson, James Henry. Structure and Magnetic Properties of Lanthanide Nanocrystals. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1140150.
Full textSachleben, Joseph Robert. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10120364.
Full textMeulenberg, R., J. Lee, and S. McCall. LDRD-LW Final Report: 07-LW-041 "Magnetism in Semiconductor Nanocrystals: New Physics at the Nanoscale". Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/971408.
Full text