To see the other types of publications on this topic, follow the link: Magnetic nanocrystals.

Dissertations / Theses on the topic 'Magnetic nanocrystals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Magnetic nanocrystals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Radovanovic, Pavle V. "Synthesis, spectroscopy, and magnetism of diluted magnetic semiconductor nanocrystals /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shevchenko, Elena V. "Monodisperse magnetic alloy nanocrystals and their superstructures." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=968507395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Norberg, Nicholas S. "Magnetic nanocrystals : synthesis and properties of diluted magnetic semiconductor quantum dots /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Simpson, Edward Thomas. "Electron holography of isolated and interacting magnetic nanocrystals." Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/252128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mozul, K., A. Ishchenko, A. P. Kryshtal, L. P. Olkhovik, and Z. I. Sizova. "Magnetic Anisotropy of Ultra-small Nanocrystals of CoFe2O4." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35365.

Full text
Abstract:
Ferrimagnetic nanoparticles of CoFe2O4 with dimensions of 4-16 nm were synthesized by pyrolysis of a mixture of acetylacetonates of iron and cobalt. In the temperature range 300-500 K investigated field dependence of magnetization up o 18 kOe. Found a significant contribution of "surface" anisotropy to the effective anisotropy of the nanoparticles. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35365
APA, Harvard, Vancouver, ISO, and other styles
6

Almeida, António José Sousa de. "Magnetic resonance studies of spin systems in semiconductor nanocrystals." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18636.

Full text
Abstract:
Doutoramento em Física
Esta tese apresenta um estudo experimental de sistemas de spins fornecidos por dopantes electrónicos e por defeitos capturadores de carga em nanocristais (NCs) semiconductores, por meio de técnicas de ressonância magnética. Aqui, investigámos problemas que têm efeitos limitadores de performance nas propriedades de NCs semiconductores para o seu uso em aplicações tecnológicas. Nomeadamente, estudámos a dopagem electrónica de NCs semiconductores. A dopagem é crítica para controlar o comportamento de semiconductores, que de outra forma seriam isoladores. Investigámos também defeitos capturadores de carga, que podem ter um impacto negativo na conductividade de NCs semiconductores ao capturar portadores de carga em estados electrónicos deslocalizados de NCs. Para além disso, abordámos a origem da anisotropia magnética em NCs de materiais diamagnéticos. Nesta tese, reportamos investigações usando medidas de ressonância paramagnética electrónica (RPE) quantitativa, dizendo respeito à eficiência de dopagem electrónica de Si NCs com átomos de P e à sua dependência com o ambiente envolvendo os NCs. Das medidas de RPE quantitativas, estimamos eficiências de dopagem nos NCs que são consistentes com a incorporação da maioria dos dopantes P como dadores substitucionais nos NCs. Observamos também que a eficiência de dopagem dos NCs varia em várias ordens de grandeza dependendo do ambiente envolvendo os NCs, devido a uma forte compensação dos dadores por moléculas absorbidas na superfície dos NCs. Usando espectroscopia RPE dependente da temperatura, mostramos também que a energia de ionização dos dopantes P em Si NCs aumenta relativamente ao seu correspondente cristal macroscópico devido a confinamento. Usamos espectroscopia RPE dependente da temperatura para estudar a interacção entre múltiplos dopantes incorporados num único Si NC e o seu impacto na estrutura electrónica destes NCs. Monitorizámos experimentalmente a interacção de troca em pares de dadores P (dímeros de dadores) em Si NCs através de um desvio da ressonância magnética do seu estado tripleto em relação ao paramagnetismo de Curie. Mostrámos que a interacção de troca entre dadores próximos entre si pode ser bem descrita pela teoria de massa efectiva, permitindo o cálculo de muitas configurações de dopantes e permitindo a consideração de efeitos estatísticos cruciais em conjuntos de nanocristais. Descobrimos que dímeros de dadores induzem estados discretos num NC, e que a sua separação energética difere em até três ordens de grandeza para dímeros colocados aleatoriamente num conjunto de NCs devido a uma enorme dependência da energia de troca na configuração do dímero. Investigámos também sistemas de spins induzidos por defeitos capturadores de carga e como estes defeitos podem afectar a dopagem de NCs. Identificamos a presença de dois estados de carga de um defeito em NCs de CdSe usando espectroscopia RPE combinada com a afinação electrónica de NCs através de dopagem com Ag induzida quimicamente. A partir de de RPE foto-induzido, mostramos que estes defeitos têm um papel central na fixação do nível de Fermi em conjuntos de NCs. Através da análise da dependência do sinal de RPE dos defeitos com a concentração de dopantes de Ag, mostramos também que os defeitos actuam como capturadores efectivos de electrões nos NCs. Do RPE dependente da temperatura, estimamos um limite inferior para a energia de ionização dos defeitos estudados. Com base nas características do espectro RPE dos defeitos observados, propomos que está associado a lacunas de Se com o estado paramagnético sendo o estado positivo do defeito. Para além disso, mostramos que as interacções magnéticas entre spins associados a defeitos nos NCs podem induzir efeitos de anisotropia magnética em conjuntos de NCs que não são esperados acontecer no cristal macroscópico correspondente. Usando espectroscopia de ressonância ferromagnética (RFM) com dependência angular, medimos a anisotropia magnética em conjuntos de aleatórios de NCs de CdSe através da gravação do espectro de ressonância magnética para várias orientações do campo magnético externo. As dependências angulares do campo ressonante são diferente para conjuntos aparentemente similares de NCs de CdSe. Mostramos que a forma e amplitude da variação angular do RFM pode ser bem descrita po um modelo simples que toma em consideração as interacções dipolo-dipolo entre dipolos localizados na superfície dos NCs. Os dipolos na superfície podem originar de ligações pendentes em sítios da superfície que não estão passivados por ligantes. Dos nossos cálculos, descobrimos que para diferentes conjuntos aleatórios de NCs a força da anisotropia magnética induzida por interacções dipolo-dipolo pode tomar valores abrangendo quatro ordens de grandeza, dependendo do arranjo específico dos NCs no conjunto e da distribuição específica dos dipolos na superfície de cada NC. Esta enorme variabilidade pode justificar a disparidade de anisotropias magnéticas observada nas nossas experiências.
This thesis presents an experimental study of systems of spins provided by electronic dopants and by charge trapping defects in semiconductor NCs, by means of magnetic resonance spectroscopy techniques. Here, we have investigated issues that have performance-limiting effects on the properties of semiconductor NCs for their use in technological applications. Namely, we have studied the electronic doping of semiconductor NCs. Doping is critical to control the behavior of semiconductors, which would otherwise be electrically insulating. We have further investigated charge trapping defects in semiconductor NCs, which can have a negative impact on the conductivity of semiconductor NCs by capturing charge carriers from delocalized electronic states of the NCs. Moreover, we addressed the origin of magnetic anisotropy in NCs of diamagnetic materials. In this thesis, we report investigations using quantitative electron paramagnetic resonance (EPR) measurements concerning the efficiency of electronic doping of Si NCs with P atoms and its dependence on the environment surrounding the NCs. From quantitative EPR measurements, we estimate doping efficiencies in the NCs that are consistent with the incorporation of most P dopants as substitutional donors in the NCs. We further observe that the doping efficiency of the NCs varies by several orders of magnitude depending on the NCs surrounding environment due to a strong compensation of donors by molecules adsorbed to the NCs surface. Using temperature-dependent EPR spectroscopy, we further show that the ionization energy of P dopants in Si NCs increases with respect to their bulk counterpart due to confinement. We use temperature-dependent EPR spectroscopy to study the interaction between multiple P dopants incorporated in a single Si NC and its impact on the electronic structure of these NCs. We experimentally probe the exchange interaction in pairs of P donors (donor dimers) in Si NCs via a deviation of their triplet-state magnetic resonance from Curie paramagnetism. We showed that the exchange coupling of closely spaced donors can be well described by effective mass theory, enabling the calculation of many dopant configurations and allowing the consideration of statistical effects crucial in NC ensembles. We find that donor dimers induce discrete states in a NC, and that their energy splitting differs by up to three orders of magnitude for randomly placed dimers in a NC ensemble due to an enormous dependence of the exchange energy on the dimer configuration. We also investigate systems of spins induced by charge trapping defects and how these defects can affect the doping of NCs. We identify the presence of two charge states of a defect in CdSe NCs using EPR spectroscopy, combined with electronic tuning of NCs via chemically induced Ag doping. From light-induced EPR, we show that these defects have a central role on Fermi level pinning of NC ensembles. By analyzing the dependence of the EPR signal of the defects on the concentration of Ag dopants, we further demonstrate that the defects act as effective electron traps in the NCs. From temperaturedependent EPR, we estimate a lower limit for the ionization energy of the studied defects. Based on the characteristics of the EPR spectrum of the observed defect, we propose that it is associated to Se vacancies with the paramagnetic state being the positively charged state of the defect. Moreover, we show that magnetic interactions between spins associated to defects in NCs can induce magnetic anisotropy effects in NCs ensembles that are not expected to occur in their bulk counterpart. Using angulardependent ferromagnetic resonance (FMR) spectroscopy, we measure the magnetic anisotropy in different random ensembles of CdSe NCs by recording magnetic resonance spectra for various orientations of the external magnetic field. The observed angular dependencies of resonant field are different for apparently similar CdSe NC ensembles. We show that the shape and amplitude of the FMR angular variation can be well described by a simple model that considers magnetic dipole-dipole interactions between dipoles located at the NCs surface. The surface dipoles may originate from dangling bonds on surface sites that are not passivated by ligands. From our calculations, we find that for different random ensembles of NCs the strength of the magnetic anisotropy induced by dipole-dipole interactions may take values spanning four orders of magnitude, depending on the specific arrangement of the NCs in the ensemble and the specific distribution of the surface dipoles in each NC. This huge variability may justify the disparity of magnetic anisotropies observed in our experiments.
APA, Harvard, Vancouver, ISO, and other styles
7

Larsen, Brian A. "Bioengineered iron-oxide nanocrystals: Applications in magnetic resonance imaging." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tracy, Nicholas Alan. "Synthesis and Characterization of Magnetic II-VI Nanoparticles." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/32507.

Full text
Abstract:
Magnetic semiconductor nanocrystals are being studied for their potential application in the field of spintronics as spin-injectors for spin-based transistors and spin-based storage elements for nonvolatile memories. They also have a number of biomedical engineering applications including contrast enhancing agents for magnetic resonance imaging (MRI). In this study, we present a synthesis route to grow colloidal II-VI magnetic nanoparticles at room temperature with easily handled, relatively non-toxic source materials. CoSe and CrSe nanocrystals were synthesized in an aqueous solution where gelatin is used to retard the reaction. Characterization of the nanocrystals was done through transmission electron microscope (TEM) imaging and UV-Vis absorption spectroscopy. Spin-carrier relaxation times were determined using a superconducting quantum interference device (SQUID) magnetometer.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, Kritika. "Microfluidic synthesis of superparamagnetic iron oxide nanocrystals for magnetic resonance imaging." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18809.

Full text
Abstract:
Superparamagnetic iron oxide nanoparticles (SPIONs) are of significant interest in areas such as drug delivery, hyperthermic treatment, magnetic resonance imaging (MRI) and selective separation of biological fluids. For all these applications there is a recognised need for improved synthetic methods that are capable of yielding SPIONs of uniform size, geometry and stoichiometry. Microfluidic reactors offer an attractive route to nanoparticle synthesis due to the superior control they provide over reaction conditions and particle properties relative to traditional bulk methods. In 2002 Edel et al.1 proposed the use of microfluidic reactors for nanoparticle synthesis due to the high levels of control they provide over key reaction parameters such as temperature, reagent concentrations and reaction time. Since that report a diversity of metal, metal oxide, compound semiconductor and organic nanomaterials have been successfully synthesised in microfluidic systems. Most reports of nanoparticle synthesis in microreactors have involved single-phase mode of operation, in which continuous streams of miscible fluids are manoeuvred through microscale channels where nucleation and growth take place. Such reactors, however, are poorly suited to the synthesis of SPIONs due to their high susceptibility to fouling. An alternative approach is to use droplet-based reactors in which an immiscible liquid is injected alongside the reaction mixture, causing the latter to spontaneously divide into a series of near identical droplets. In this thesis microfluidic synthesis of SPIONs in a controlled and reproducible manner is described. This work is focussed on improving the microfluidic methods for controlled synthesis of SPIONs and utilise the produced nanoparticles directly as contrast enhancers in MR imaging. The droplet based reactions were initially performed on polydimethylsiloxane (PDMS) microfluidic devices, however on such devices, low throughput was obtained. To overcome fabrication difficulty and to increase throughput, droplet-based synthesis was performed on the capillary-based reactor.
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Qing. "Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7645.

Full text
Abstract:
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals Qing Song 216 pages Directed by Dr. Z. John Zhang The correlationship between magnetic properties and magnetic couplings is established through the investigations of various cubic spinel ferrite nanocrystals. The results of this thesis contribute to the knowledge of size and shape controlled synthesis of various spinel ferrites and core shell architectured nanocrystals as well as the nanomagnetism in spinel ferrites by systematically investigating the effects of spin orbital coupling, magnetocrystalline anisotropy, exchange coupling, shape and surface anisotropy upon superparamagnetic properties of spinel ferrite nanocrystals. A general synthetic method is developed for size and shape control of metal oxide nanocrystals. The size and shape dependent superparamagnetic properties are discussed. The relationship between spin orbital coupling and magnetocrystalline anisotropy is studied comparatively on variable sizes of spherical CoFe2O4 and Fe3O4 nanocrystals. It also addresses the effect of exchange coupling between magnetic hard phase and soft phase upon magnetic properties in core shell structured spinel ferrite nanocrystals. The role of anisotropic shapes of nanocrystals upon self assembled orientation ordered superstructures are investigated. The effect of thermal stability of molecular precursors upon size controlled synthesis of MnFe2O4 nanocrystals and the size dependent superparamagnetic properties are described.
APA, Harvard, Vancouver, ISO, and other styles
11

Patel, Ketan. "OXIDE BASED MAGNETIC NANOCRYSTALS FOR HIGH-FREQUENCY AND HIGH-ENERGY PRODUCT APPLICATIONS." Master's thesis, Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/464990.

Full text
Abstract:
Mechanical Engineering
M.S.M.E.
Magnets play a major role in our rapidly developing world of technology. Electric motors and generators, transformers, data storage devices, MRI machines, cellphones, and NMR are some of the many applications for magnets. However, almost all the magnets currently being used have rare-earth heavy metals in them. Despite their high-energy product, the presence of rare-earth metals increases the cost significantly. Also, the processes involved in the mining of rare-earth metals are hazardous to the environment, and to all life forms. In the past few decades, oxide based magnets have gained a lot of attention as potential replacements for the rare-earth magnets. Oxide based magnetic nanocrystals are attracting a lot of attention as a potential replacement for rare-earth magnets. They are stable in ambient condition and their manufacturing cost is very low when compared to the rare-earth magnets. My work deals with the synthesis of core-shell magnetic structure for high frequency applications (Chapter 1) and the synthesis of high energy product magnetic nanocrystals (Chapter 2) and the synthesis of soft magnetic nanocrystals for high frequency measurement. NiZn ferrite, a soft oxide based magnet cannot be directly implied at high frequencies as they fail at the frequency which over the MHz range. On the other hand, BaZn ferrite is a Y-type magnets, which is robust at higher frequencies. Therefore, using the latter magnet as a protective shell for core material, made of former magnet, enables us to manufacture a cheap solution to the rare-earth magnets used in our cell phones and other devices that work on high frequency signals. On the other hand, successful coating of a very soft magnetic material on a hard-magnetic core increases the total energy product of the magnetic composite, which enhances its versatility.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209998012687-36583.

Full text
Abstract:
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
APA, Harvard, Vancouver, ISO, and other styles
13

Brandl, Ana Lucia. "Propriedades magnéticas de sistemas nanocristalinos." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278234.

Full text
Abstract:
Orientador: Marcelo Knobel
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-04T01:56:42Z (GMT). No. of bitstreams: 1 Brandl_AnaLucia_D.pdf: 5290468 bytes, checksum: 32290a7675f89cf9c2a2ea53be70c6fb (MD5) Previous issue date: 2004
Resumo: Sistemas magnéticos granulares são constituídos de pequenas partículas magnéticas imersas numa matriz não magnética. Essas partículas têm formas e tamanhos variados, eixos de anisotropia variados e orientados aleatoriamente e, dependendo do tipo de matriz (isolante ou condutora) e da concentração do material magnético, diferentes tipos de interações magnéticas podem estar presentes. Esses materiais apresentam diversas propriedades físicas interessantes, como magneto-resistência gigante e efeito Hall gigante. Devido à complexidade desses sistemas, a sua magnetização só pode ser calculada analiticamente em dois casos limites: quando a temperatura é zero (modelo Stoner-Wohlfarth) ou quando a temperatura é alta (modelo de Langevin). Embora o modelo de Langevin seja aplicado com bastante sucesso para temperaturas acima da temperatura de bloqueio média (TB) do sistema, mostramos nesse trabalho que os resultados podem ser enganosos, fornecendo parâmetros estruturais muito diferentes dos reais. Essas discrepâncias podem ser atribuídas a efeitos de interações magnéticas e a efeitos de anisotropia, ambos desconsiderados no formalismo de Langevin. Os principais resultados experimentais apresentados nesta dissertação foram obtidos de um conjunto de filmes granulares do tipo metal-isolante, com partículas nanocristalinas de Co imersas numa matriz amorfa de SiO2, fabricados por evaporação catódica. A caracterização magnética foi realizada através de medidas de magnetização em função do campo, susceptibilidade resfriada com e sem campo magnético aplicado e magnetização termo-remanente. A caracterizção estrutural foi realizada através de medidas de microscopia de transmissão de elétrons, difração de raio-x e espalhamento de raio-x a baixo ângulo
Abstract: Granular magnetic systems are formed by magnetic grains whose size is of the order of a few nanometers, embedded in a non-magnetic (insulating or metallic) matrix. These ultrafine particle systems present size, shape, and anisotropy distributions, besides randomly orientated easy directions. Magnetic interactions always exist, being stronger or weaker according to the volume concentration and the matrix type. These systems have shown interesting magnetotransport properties, as giant magnetoresistance and giant Hall effect. Owing to the inherent complexity of the nanostructure, the magnetization can be analytically calculated only in two limiting cases: when T = 0 (Stoner-Wohlfarth model) or for high temperatures (Langevin model). The Langevin model presents very good results when applied at temperatures higher than the mean blocking temperature (TB) of the system. However this adequacy can be just apparent: the obtained structural parameters are very different from the real ones, as we show in this work. These discrepancies can be attributed to magnetic interactions andanisotropy effects, both unconsidered in the Langevin formalism. The main results presented in this thesis were obtained from a set of metal-insulator granular films, composed of Co nanoparticles immersed in an amorphous SiO2 matrix. The films were produced by magnetron co-sputtering. The magnetic characterization was perfomed with magnetization loops, zero-field cooled and field cooled susceptibilities, and thermoremanent magnetization. The microstructural characterization was done by transmission electron microscopy, x-ray diffraction, and small angle x-ray scattering
Doutorado
Física
Doutor em Ciências
APA, Harvard, Vancouver, ISO, and other styles
14

Seminari, Umugaba. "Production of nanocrystalline aluminium alloy powders through cryogenic milling and consolidation by dynamic magnetic compaction." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=100234.

Full text
Abstract:
Nanopowders and bulk nanostructred materials have gained large interest in recent years. Bulk nanostructured materials exhibit properties that are far superior in comparison to conventional micron grained alloys. The fabrication of large scale nano-grained materials has been achieved in a two step process: (1) the production of nanostructured aluminium alloy powders and (2) the consolidation of the powder using a electromagnetic shockwave process.
The first part consists of cryo-milling; the milling of powder in an attritor filled with liquid nitrogen. This causes successive welding and fracturing events as the powder is milled, thereby creating the nano-structure. The low temperature prevents the possibility of recrystallization and grain growth. The alloy used for this work was Al 5356 (Al-5%Mg). Two different types of raw source materials were investigated: pre-alloyed powders and a mixture of aluminum with pure magnesium or an Al12Mg17 intermetallic. Experiments have been conducted in order to determine the optimum milling parameters that will simultaneously give a grain size smaller than 100 nm; equiaxed milled particles and mechanically alloyed powder (in the case of the mixture). The optimum milling parameters were established at 15 hours of milling time with a rotational speed of 300 RPM and ball to powder weight ratio of 24:1 in the case of the pre-alloyed powders. For the mixture of pure aluminum with pure magnesium the parameters were 15 hours, 300RPM and 32:1. The parameters for the mixture with the intermetallic were 18 hours, 300RPM and 32:1.
The dynamic magnetic compaction technique was done with a peak pressure of 1.1 GPa. This ultra-high strain rate process minimizes the exposure of the powders to high temperature and therefore reduces the possibility of recrystallization and grain growth. Relative densities of compacted pieces obtained ranged from 86.39% to 97.97%. However consolidation characterized by particle to particle bonding with a melted layer was not accomplished.
APA, Harvard, Vancouver, ISO, and other styles
15

Zhou, Shengqiang. "Transition metal implanted ZnO: a correlation between structure and magnetism." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23718.

Full text
Abstract:
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
APA, Harvard, Vancouver, ISO, and other styles
16

Saha, Arpita. "Tuning the properties of quantum nanocrystals and magnetic nanoparticles using spherical ligands: carboranes and metallacarboranes." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667956.

Full text
Abstract:
El primer capítulo trata de los puntos cuánticos acuosos (QDs) recubiertos con meta-carboranil fosfinado, lo que nos da una nueva arquitectura de QDs denominada como QDs de dosel central. Esta es la primera vez que los ligandos esféricos se utilizan experimentalmente para tapar los QD. Debido a esta arquitectura, obtuvimos una nueva propiedad de luminiscencia en estos QDs, llamada conmutación por fluorescencia cinética (KFS), la cual nunca antes se había reportado. Es un nuevo fenómeno en el que la luminiscencia se desvanece con el tiempo, pero al aplicar energía cinética recupera toda la intensidad de la emisión. Estos QDs de dosel central pueden atrapar aniones y actuar como condensadores, son comparados con otros QDs y caracterizados. Este capítulo trata de la síntesis de los QDs en el agua utilizando una nueva configuración desarrollada por nosotros. Produce QDs con un alto PL, QY y una vida útil más larga de emisión en el medio acuático. La configuración utilizada es diferente al método basado en el reflujo utilizado para sintetizar los QDs en agua a 100oC. Aquí utilizamos un baño de arena aislado con corcho, con tubos de presión de vidrio. Los QDs se generan en estos tubos de presión a 150oC bajo presión autogénica producida por los tubos. Han sido comparados con los tradicionales QDs a base de agua y caracterizados. Estos QDs combinan la ventaja de la alta calidad y los diferentes colores de luminiscencia de los QDs sintetizados organometálicos y la producción fácil y barata de una síntesis a base de agua. El siguiente capítulo trata de los nanocristales cuánticos (QNCs) que se sintetizan en el agua por primera vez. Hemos demostrado una ruta sintética fácil y un diseño de configuración que utiliza varillas cuánticas (Qrods) y anillos cuánticos (QRs) que pueden sintetizarse fácilmente en un medio acuático. Esta es la primera vez que se sintetiza y estudia experimentalmente. Estas QNCs pueden ser fácilmente almacenadas en forma de polvo, permaneciendo suspendidas en varios solventes por más de 18 meses, sin degradación en sus propiedades de estabilidad coloidal o luminiscencia. Además, pueden utilizarse para formar nanocompuestos utilizando polímeros. Estas películas poliméricas que contienen los QNCs mostraron una luminiscencia que duró más de un año y que también podría mostrar electroluminiscencia, haciéndolas viables para aplicaciones de QLED en el futuro. El cuarto capítulo trata de trata de las nanopartículas magnéticas (MNP) recubiertas con metacarboranil fosfinado. Estos dan lugar a nuevos nanohíbridos que pueden utilizarse para la aplicación biológica de la terapia de captura de neutrones de boro (BNCT). Estos nanohíbridos han sido sintetizados, caracterizados y utilizados en aplicaciones biológicas. Sus propiedades magnéticas y estabilidad han sido estudiadas después de la esterilización en autoclave, así como su estabilidad coloidal en diferentes medios de cultivo biológicos. Luego se ha estudiado y cuantificado su absorción celular. La captación de los MNPs por las células tumorales ha sido visualizada y también estudiada in vivo para aplicaciones de la BNCT. Finalmente, el último capítulo trata de la síntesis de MNPs y el recubrimiento con cáscara de sílice inorgánica. Estos MNPs recubiertos son funcionalzied más lejos con los grupos amino y carboxílicos para que sean unidos con los anticuerpos para los usos del biosensing. Los MWCNT también se utilizan en conjugación con estos MNPs para generar nanocompuestos magnéticos (MNCs). Tanto los MNPs como los MNCs se utilizan para generar por primera vez un complejo no ligado con H[COSAN]. H[COSAN] siendo una especie redox puede ser utilizada para manipular los niveles de HOMO-LUMO, permitiendo así que estos MNPs y MNCs sean materiales de capa de detección efectivos.
The research presented in this thesis has been summarized as a compendium of articles published and to be published in the future. There are five chapters dealing with the results and discussions. The results and discussions are preceded by a general introduction and objectives. The summary of each chaper of the results is given below. The 1st chapter deals with aqueous quantum dots (QDs) capped with meta-carboranyl phosphinate which gives us a brand new architecture of QDs named as core-canopy QDs. This is the first time spherical ligands have been experimentally used to cap QDs. Due to this architecture, we obtained a new luminescence property in these QDs, called the kinetic fluorescence switching (KFS) which has never been reported before. It is a new phenomenon in which the luminescence fades with time but upon application of kinetic energy regains the full intensity of emission. These core-canopy QDs can trap anions and act like capacitors, they are compared with other QDs and characterized. The next chapter deals with synthesis of QDs in water using a new set up developed by us. It produces QDs with high PL, QY and longer lifetime of emission in water medium. The set up used is different to the reflux based method used to synthesize QDs in water at 100oC. Here we used a cork insulated sand bath, with ace pressure tubes of glass. The QDs are generated in these pressure tubes at 150oC under autogeneous pressure produced by the tubes. They have been compared to the traditional water based QDs and charaterized. These QDs combine the advanatge of high QY and different luminescence colours of organometallic synthesized QDs and the easy and cheap production of a water based synthesis. The next chapter deals with quantum nanocrystals (QNCs) being synthesized in water for the first time. We have demonstrated an easy synthetic route and setup design using which quantum rods (Qrods) and quantum rings (QRs) can be easily synthesized in a water medium. This is the first time that this has been experimentally synthesized and studied. These QNCs could be easily stored in powdered form, remain suspended in various solvents for more than 18 months, without degradation in their colloidal stability or luminescence properties. Moreover, they can be used to form nancomposites using polymers. These polymeric films containing the QNCs showed luminescence which lasted over a year and could also show electroluminescence, hence making them viable for QLED applications in the future. The 4th chapter of the results and discussions deals with magnetic nanoparticles (MNPs) coated with meta-carboranyl phosphinate. These give rise to new nano-hybrids which can be used for biological application of boron neutron capture therapy (BNCT). These nanohybrids have been synthesized, characterized and used in biological applications. Their magnetic properties and stability has been studied after autoclave sterilization, further their colloidal stability in different biological culture mediums has also been studied. Then their cellular uptake has been studied and quantified. The uptake of the MNPs by the glioblastoma tumor cells has been visualized and also studied in vivo for BNCT applications. Finally, the last chapter deals with the synthesis of MNPs and coating with inorganic silica shell. These coated MNPs are further functionalzied with amino and carboxylic groups for them to be attached with antibodies for biosensing applications. MWCNTs are also used in conjugation with these MNPs to generate magnetic nanocomposites (MNCs). Both the MNPs and MNCs are used to generate for the first time a non-bonded complex with H[COSAN]. H[COSAN] being a redox specie can be used to manipulate the HOMO-LUMO levels, thus enabling these MNPs and MNCs as effective sensing layer materials.
APA, Harvard, Vancouver, ISO, and other styles
17

Sathe, Tushar R. "Integrated Magnetic and Optical Nanotechnology for Early Cancer Detection and Monitoring." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19868.

Full text
Abstract:
Despite significant developments in imaging modalities and therapeutics, cancer mortality rates remain unchanged. Detecting cancer before it has spread to other organs improves patient outcome dramatically. Therefore, greater emphasis must be placed on developing novel technology for early cancer detection and disease monitoring. Nanometer-sized materials have unique optoelectronic and magnetic properties. In particular, semiconductor quantum dots (QD) are a new class of fluorophores that are bright, photostable, and can be simultaneously excited to emit different wavelengths of light. Magnetic iron oxide nanoparticles are another class of unique nanomaterials that exhibit superparamagnetism and are strongly magnetized only in the presence of a magnetic field. In this dissertation, we describe the integration of semiconductor QDs and magnetic iron oxide nanoparticles and potential applications for (i) early detection of cancer biomarkers through routine screening, and (ii) disease monitoring through the capture and analysis of rare circulating tumor cells. First, we describe the development of integrated magneto-optical beads that can be optically encoded and magnetically separable for isolating low amounts of biomolecules from solution. Second, we demonstrate improved detection sensitivity by combining immunomagnetic beads and highly luminescent nanoparticles in a sandwich assay. Next, we describe integration of magnetic and QD nanotechnology for the selective capture and molecular profiling of rare cells. We demonstrate the ability to spectroscopically determine relative molecular levels of markers to identify invasive cells. As disease monitoring requires the analysis of patient blood samples, we have also studied nanoparticle-cell interactions using QDs to determine nanoparticle behavior in whole blood as a function of surface coatings. We observed that anionic nanoparticles with carboxylic acid groups (-COOH) were strongly associated with leukocytes, but interestingly this association was cell specific. Hydroxyl-modified QDs (QD-OH) suppressed binding and uptake by leukocytes as efficiently as PEG-modified QDs. The integration of nanotechnologies represents a new and exciting approach that has the potential to push the limits of detection sensitivity and permit isolation and profiling of multiple biomarkers from large sample volumes.
APA, Harvard, Vancouver, ISO, and other styles
18

Cooper, Susan. "Understanding Size-Dependent Structure and Properties of Spinel Iron Oxide Nanocrystals Under 10 nm Diameter." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24523.

Full text
Abstract:
Iron oxide nanoparticles (NPs) are promising materials for use in many applications, including new cancer treatments and in cleaning water, because they exhibit size-dependent magnetic and absorptive properties. NP properties are caused by structural attributes of the NPs, like surface disorder and cation vacancies. However, NP synthetic methods also impact structure, therefore properties, of NPs. Furthermore, the synthetic method is often changed in order to change the core diameter of NPs. Determining if properties are caused by the dimensions of the NP is impossible if there are also structural features present in the NP caused by the synthetic method, like grain boundaries or polycrystalline shells. In Chapter II of this dissertation, we show a new continuous growth synthesis of spinel iron oxide where the diameter of NPs is changed by the amount of precursor added to the reaction, meaning the only structural feature changing between the NPs is size. Continuous growth, therefore, can be used to probe the impact that size has on NP structure and properties. We report that saturation magnetization of NPs produced from continuous growth is size-dependent and higher in magnitude than NPs of the same core diameter made by other syntheses. In chapter III of this dissertation we determine nanoscale structure by Pair Distribution Function (PDF) analysis of Total X-ray Scattering data of NPs isolated from the reaction with core diameters between 3-10 nm. In Chapter IV of this dissertation we monitored the growth of NPs in situ with Total X-ray Scattering to gain insight on the structures of NPs while forming. In situ measurements of Total X-ray Scattering data gave insights into how precursor oxidation state influences the structures formed during formation of NPs, with more oxidized precursor giving a more oxidized product and a reduced precursor yielding a more reduced product even though the NPs formed by either method are indistinguishable by ex situ analysis. This dissertation includes previously published and unpublished co-authored material.
2021-04-30
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, William K. "Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Biadala, Louis. "Propriétés optiques de nanocristaux de CdSe/ZnS individuels à basse température." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00654493.

Full text
Abstract:
Les nanocristaux de CdSe font l'objet d'applications émergentes dans les domaines de la nanoélectronique, des technologies laser ou du marquage fluorescent de biomolécules. Pour ces applications, la détermination de la structure fi…ne de l'exciton de bord de bande et des mécanismes de relaxation entre sous-niveaux est d'un intérêt majeur. Cette thèse a été consacrée à l'étude spectroscopique à basse température et sous champ magnétique de nanocristaux individuels de CdSe/ZnS. La remarquable photostabilité des nanocristaux étudiés a permis de caractériser les propriétés optiques des deux états excitoniques de plus basse énergie : l'état excitonique fondamental noir, et l'état excitonique brillant situé quelques meV plus haut en énergie. Ces études ont aussi permis d'identi…er un état excitonique chargé (trion) et de caractériser ses propriétés photophysiques. La possibilité de générer une cascade radiative biexciton-exciton a également été démontrée dans ces systèmes.
APA, Harvard, Vancouver, ISO, and other styles
21

Silva, Alessandra dos Santos. "Estudo de propriedades físicas de nanocristais de ZnTe e Zn1-xAxTe (A = Mn; Co) no sistema vítreo P2O5 ZnO Al2O3 BaO PbO." Universidade Federal de Uberlândia, 2015. https://repositorio.ufu.br/handle/123456789/15620.

Full text
Abstract:
Fundação de Amparo a Pesquisa do Estado de Minas Gerais
In this work, Zn1-xAxTe (A = Mn, Co) diluted magnetic semiconductors (DMS) nanocrystal (NCs) were successfully grown in the P2O5 ZnO Al2O3 BaO PbO glass system synthesized by the method of Fusion-Nucleation, after subjecting to appropriate thermal annealing. Various experimental techniques were used in this study in order to get a comprehensive understanding of the optical, morphological, structural and magnetic properties these NCs. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) images revealed the size of both of Zn1-xMnxTe and Zn1-xCoxTe NCs. From the vibrating sample magnetometer (VSM) technique, there was growth behavior of magnetization and magnetic susceptibility as a function of the Mn concentration in the samples containing Zn1-xMnxTe NCs. At lower Mn concentrations, the sp electrons of ZnTe host semiconductor interact with the d electrons of Mn2+ ions, resulting in the sp-d exchange interaction, which causes a small increase in susceptibility. At higher Mn concentrations, the d-d exchange interaction between Mn atoms dominates over the sp-d exchange interaction, resulting in an abrupt increase in susceptibility. The EPR spectra, in addition to prove the results exhibited the well-known sextet hyperfine lines of Mn2+ ions, since samples with low Mn concentrations revealed the presence of Mn2+ ions within and near the surface of the ZnTe NCs. From the optical absorption spectra (OA) and photoluminescence (PL), analyzed on the basis of crystal field theory (CFT) as well as of the diffraction X-ray (XRD), Raman scattering (RS) and electron microscopy transmission (TEM) techniques, the substitutional incorporation of Mn2+ ions was confirmed up to its solubility limit (x = 0.100) ZnTe NCs. Above this concentration, can observe the formation of manganese oxide NCs such as MnO and MnO2, since the nucleation rate for the formation of these NCs is greater than that of Zn1-xMnxTe NCs, at high concentrations. Furthermore, from the PL spectra, it was found that it is possible to tune the emission of energy related to transition 4T1(4G) → 6A1(6S) of Mn2+ ions, of the spectral orange region to the near infrared, depending on Mn concentration. This is possible due to the variation of the local crystal field, where these ions are inserted. From the OA spectra, analyzed on the basis of CFT, it showed that Co2+ ions are substitutionally incorporated in tetrahedral sites of ZnTe NCs, due to its characteristics transitions in visible and near infrared spectral region. This evidence has been enhanced from MFM images, since NCs doped with magnetic ions, magnetically respond when induced by the magnetization of the probe.
Neste trabalho, nanocristais semicondutores magnéticos diluídos (SMD) de Zn1-xAxTe (A = Mn; Co) foram crescidos com sucesso no sistema vítreo P2O5 ZnO Al2O3 BaO PbO, sintetizado pelo método de Fusão-Nucleação, após submetê-lo a tratamento térmico apropriado. Várias técnicas experimentais foram utilizadas neste estudo a fim de obter um entendimento compreensivo das propriedades ópticas, morfológicas, estruturais e magnéticas desses NCs. Imagens de microscopia eletrônica de transmissão (MET) e microscopia de força atômica (MFA) revelaram o tamanho tanto de NCs de Zn1-xMnxTe quanto de Zn1-xCoxTe. A partir da técnica de magnetometria de amostra vibrante (MAV), verificou-se o crescimento da magnetização e o comportamento da susceptibilidade magnética, em função da concentração de Mn, em amostras contendo NCs de Zn1-xMnxTe. Em baixas concentrações de Mn, os elétrons sp do semicondutor hospedeiro ZnTe, interagem com os elétrons d dos íons Mn2+, resultando na interação de troca sp-d, que provoca um pequeno aumento na susceptibilidade magnética. Já, em concentrações mais elevadas de Mn, a interação de troca d-d entre átomos de Mn domina a interação de troca sp-d, o que resulta em um aumento abrupto da susceptibilidade. Os espectros RPE, além de comprovar esses resultados, exibiram o bem conhecido sexteto de linhas hiperfinas de íons Mn2+, uma vez que amostras com baixas concentrações de Mn revelaram a presença de íons Mn2+ no interior e próximos à superfície dos NCs de ZnTe. A partir dos espectros de absorção óptica (AO) e fotoluminescência (FL), analisados com base na teoria do campo cristalino (TCC), bem como das técnicas de difração de raios-X (DRX), espalhamento Raman (ER) e microscopia eletrônica de transmissão (MET), confirmou-se a incorporação substitucional de íons Mn2+ até seu limite de solubilidade nominal (x = 0,100) em NCs de ZnTe. Acima dessa concentração, observa-se a formação de NCs de óxido de manganês, tais como MnO e MnO2, uma vez que a taxa de nucleação para a formação desses NCs é maior que a de NCs de Zn1-xMnxTe, em altas concentrações. Além disso, a partir dos espectros FL, verificou-se que é possível sintonizar a energia de emissão relacionada à transição 4T1(4G) → 6A1(6S) de íons Mn2+, da região espectral laranja ao infravermelho próximo, em função da concentração de Mn. Isso é possível devido à variação do campo cristalino local, onde esses íons estão inseridos. A partir dos espectros AO, analisados com base na TCC, evidenciou-se que íons Co2+ são incorporados substitucionalmente em sítios tetraédricos de NCs de ZnTe, devido às suas transições características na região espectral do visível e infravermelho próximo. Essa evidência foi reforçada a partir de imagens de MFM, uma vez que os NCs, dopados com íons magnéticos, respondem magneticamente quando induzidos pela magnetização da sonda.
Doutor em Física
APA, Harvard, Vancouver, ISO, and other styles
22

Zedan, Abdallah. "GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED MATERIALS." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/457.

Full text
Abstract:
Exciting periods of scientific research are often associated with discoveries of novel materials. Such period was brought about by the successful preparation of graphene which is a 2D allotrope of carbon with remarkable electronic, optical and mechanical properties. Functional graphene-based nanocomposites have great promise for applications in various fields such as energy conversion, opteoelectronics, solar cells, sensing, catalysis and biomedicine. Herein, microwave and laser-assisted synthetic approaches were developed for decorating graphene with various semiconductor, metallic or magnetic nanostructures of controlled size and shape. We developed a scalable microwave irradiation method for the synthesis of graphene decorated with CdSe nanocrystals of controlled size, shape and crystalline structure. The efficient quenching of photoluminescence from the CdSe nanocrystals by graphene has been explored. The results provide a new approach for exploring the size-tunable optical properties of CdSe nanocrystals supported on graphene which could have important implications for energy conversion applications. We also extended this approach to the synthesis of Au-ceria-graphene nanocomposites. The synthesis is facilely conducted at mild conditions using ethylenediamine as a solvent. Results reveal significant CO conversion percentages between 60-70% at ambient temperatures. Au nanostructures have received significant attention because of the feasibility to tune their optical properties by changing size or shape. The coupling of the photothermal effects of these Au nanostructures of controlled size and shape with GO nanosheets dispersed in water is demonstrated. Our results indicate that the enhanced photothermal energy conversion of the Au-GO suspensions could to lead to a remarkable increase in the heating efficiency of the laser-induced melting and size reduction of Au nanostructures. The Au-graphene nanocomposites are potential materials for photothermolysis, thermochemical and thermomechanical applications. We developed a facile method for decorating graphene with magnetite nanocrystals of various shapes (namely, spheres, cubes and prisms) by the microwave-assisted-reduction of iron acetylacetonate in benzyl ether. The shape control was achieved by tuning the mole ratio between the oleic acid and the oleyamine. The structural, morphological and physical properties of graphene-based nanocomposites described herein were studied using standard characterization tools such as TEM, SEM, UV-Vis and PL spectroscopy, powder X-ray diffraction, XPS and Raman spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
23

Song, Guangjie. "Structure analyses of cellobiose and cellulose using X-ray diffraction and solid-state NMR spectroscopy on oriented samples." Kyoto University, 2015. http://hdl.handle.net/2433/199362.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第19038号
農博第2116号
新制||農||1031(附属図書館)
学位論文||H27||N4920(農学部図書室)
31989
京都大学大学院農学研究科森林科学専攻
(主査)教授 木村 恒久, 教授 西尾 嘉之, 教授 髙野 俊幸
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
24

Verfasser], Anteneh Belete Shibeshi, Karsten [Akademischer Betreuer] [Mäder, Reinhard H. H. [Akademischer Betreuer] Neubert, and Dagmar [Akademischer Betreuer] Fischer. "Development of MRI contrast agents using hydrophobic magnetite nanocrystals : from chemical synthesis to In Vivo applications / Anteneh Belete Shibeshi. Betreuer: Karsten Mäder ; Reinhard Neubert ; Dagmar Fischer." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2009. http://d-nb.info/1024895513/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Guidetti, Giulia. "Cellulose photonics : designing functionality and optical appearance of natural materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277918.

Full text
Abstract:
Cellulose is the most abundant biopolymer on Earth as it is found in every plant cell wall; therefore, it represents one of the most promising natural resources for the fabrication of sustainable materials. In plants, cellulose is mainly used for structural integrity, however, some species organise cellulose in helicoidal nano-architectures generating strong iridescent colours. Recent research has shown that cellulose nanocrystals, CNCs, isolated from natural fibres, can spontaneously self-assemble into architectures that resemble the one producing colouration in plants. Therefore, CNCs are an ideal candidate for the development of new photonic materials that can find use to substitute conventional pigments, which are often harmful to humans and to the environment. However, various obstacles still prevent a widespread use of cellulose-based photonic structures. For instance, while the CNC films can display a wide range of colours, a precise control of the optical appearance is still difficult to achieve. The intrinsic low thermal stability and brittleness of cellulose-based films strongly limit their use as photonic pigments at the industrial scale. Moreover, it is challenging to integrate them into composites to obtain further functionality while preserving their optical response. In this thesis, I present a series of research contributions that make progress towards addressing these challenges. First, I use an external magnetic field to tune the CNC films scattering response. Then, I demonstrate how it is possible to tailor the optical appearance and the mechanical properties of the films as well as to enhance their functionality, by combining CNCs with other polymers. Finally, I study the thermal properties of CNC films to improve the retention of the helicoidal arrangement at high temperatures and to explore the potential use of this material in industrial fabrication processes, such as hot-melt extrusion.
APA, Harvard, Vancouver, ISO, and other styles
26

Febri, Maria Immaculata Maya. "Synthèse de poudres d'alliages intermétalliques terres rares-métaux 3D et de leurs phases d'insertion par des procédés chimiques à basse température : obtention de nanocomposites à haute perméabilité magnétique par réaction-décomposition controlée de ces phases d'insertion." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10223.

Full text
Abstract:
Les methodes conventionnelles de synthese d'alliages intermetalliques contenant terres rares (tr) et metaux 3d (m) s'effectuent par fusion des metaux precurseurs. L'impossibilite d'obtenir directement apres fusion (c. -a-d. Sans post-recuit d'homogeneisation) des alliages a fusion non congruente limite cette approche. L'approche chimique par calciothermie, appelee procede d'oxyde-reduction-diffusion (ord) presentee ici, permet d'operer a plus basses temperatures, par consequent d'obtenir des alliages stables, en dessous de leur point de fusion non congruent ; le post-recuit devient alors inexistant. Dans ce procede, l'oxyde de terre rare et du metal (m) (precurseurs en poudre) sont melanges puis chauffes en presence de calcium en leger exces. A l'etat liquide, ce dernier joue un double role d'agent reducteur (reduction oxyde de terre rare en metal) et de milieu reactionnel, afin de faciliter la diffusion des especes metalliques reactantes. Des alliages binaires et ternaires repondant a des formules diverses ont ainsi ete synthetises. Ce travail montre que le procede ord est devenu une bonne alternative d'elaboration d'alliages tr-m. L'apport de la chimie est ensuite etendu aux procedes d'hydruration et de nitruration des alliages tr-m, ou l'hydrogene (ou l'azote) est libere par la decomposition des composes sources: nah ou nabh#4 en presence d'eau, et nan#3. Les reactions d'hydruration (de nitruration) chimiques sont caracterisees par des mesures magnetiques (aimantation, t#c, h#c,). On montre que la voie chimique permet d'abaisser les temperatures operatoires d'hydruration (de nitruration). Enfin, en controlant la reaction de segregation des phases d'insertion metastables (hydrures, nitrures) d'alliages tr-m, on parvient a obtenir des nanocomposites. Par exemple, la segregation des alliages ternaires nd-(fe,co)-b avec l'azote (>400c) forme des nanocomposites constitues des precipites de ndn (refractaires) dans une matrice nanocristalline d'alliage fe-co. Ceux-ci presentent en plus une susceptibilite magnetique elevee dans la gamme de frequences 0,1-20 ghz. Ils constituent ainsi une nouvelle classe d'absorbants de micro-ondes
APA, Harvard, Vancouver, ISO, and other styles
27

Lin, Bi Tiao, and 林必窕. "Specific heats and magnetic properties of nanocrystals." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/60611749301921074861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mirsaidov, Utkur. "Nuclear magnetic resonance force microscopy of ammonium dihydrogen phosphate and magnetism of cobalt nanocrystals." Thesis, 2005. http://hdl.handle.net/2152/2304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chalasani, Rajesh. "Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets." Thesis, 2013. http://etd.iisc.ernet.in/2005/3463.

Full text
Abstract:
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
30

Hyun, Changbae 1974. "Magnetic studies of colossal magnetoresistance materials and FePt nanocrystals." Thesis, 2007. http://hdl.handle.net/2152/3604.

Full text
Abstract:
This dissertation introduces scanning probe microscopy (SPM) and describes the construction and design of a home built low temperature magnetic force microscope (MFM). Then the magnetic coatings on atomic force microscope cantilevers with a focused ion beam (FIB) will be explained. This technique allows the convenient deposition of complex or expensive materials such as CoCrPt. With the MFM tip coated by FIB, the ferromagnetic domain structure of a La[subscript 0.67]Ca[subscript 0.33]MnO₃ film is studied as a function of an in-plane magnetic field below room temperature. Next I will discuss the use of chemically-synthesized FePt nanocrystals as a good candidate for high density storage media. This nanocrystal film showed sintering problems during the annealing process, which is essential to make FePt a hard ferromagnet. A silica overcoating method was used to prevent nanocrystal sintering, which allowed the MFM study of films made from these nanocrystals. I will also discuss resistance measurements of the FePt nanocrystals.
APA, Harvard, Vancouver, ISO, and other styles
31

Frase, Heather N. "Vibrational and magnetic properties of mechanically attrited Ni3Fe nanocrystals." Thesis, 1998. https://thesis.library.caltech.edu/301/1/Frase_hn_1998.pdf.

Full text
Abstract:
The vibrational and magnetic properties of mechanically attrited nanocrystalline Ni3Fe powders were studied. The as-milled Ni3Fe powders were annealed to create nanocrystalline samples with different grain sizes, RMS strains, and grain boundary atomic structures. The average grain size and RMS strain of the samples were measured using x-ray diffractometry and transmission electron microscopy. From inelastic neutron scattering experiments, the phonon density of states (DOS) of various as-milled and annealed Ni3Fe nanocrystalline powders were determined. At low energies (<15 meV), nanocrystalline samples compared to bulk Ni3Fe showed an enhancement in the phonon DOS that was proportional to the density of grain boundaries in the powders. A broadening of features in the phonon DOS was also observed for the smallest nanocrystals. The room temperature phonon DOS of nanocrystals with an average grain size of 6 nm and a large grain boundary volume fraction of 20%, was different from the phonon DOS of the same powder after it had been exposed to 10 K. It is believed that upon exposure to 10 K the grain boundary local atomic structure changed affecting the vibrational properties of the sample. The magnetic properties of nanocrystalline Ni3Fe were studied using Mossbauer spectroscopy, M-H magnetization curves, complex permeability measurements using microwave cavity perturbation technique, and small angle neutron scattering. M-H magnetization curves and cavity perturbation measurements showed that the coercivity and magnetic saturation are related to nanocrystal grain size and RMS strain while the complex permeability is intricately related to grain size and frequency. Both Mossbauer spectroscopy and small angle neutron scattering showed that the grain boundary magnetic moment density of as-milled Ni3Fe nancrystalline powder was smaller than that of powder annealed at low temperature. This indicates that local atomic structure in the grain boundary affects the magnetic moment density.
APA, Harvard, Vancouver, ISO, and other styles
32

Chalasani, Rajesh. "Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3463.

Full text
Abstract:
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
33

Shevchenko, Elena V. [Verfasser]. "Monodisperse magnetic alloy nanocrystals and their superstructures / Elena V. Shevchenko." 2003. http://d-nb.info/968507395/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lien, Wen-hsu, and 連玟絮. "The Study of Magnetic Hydroxyapatite Nanocrystals for Breast Cancer Chemohyperthermia." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/mb9g9h.

Full text
Abstract:
碩士
大同大學
材料工程學系(所)
106
In this study, magnetic hydroxyapatite nanocrystals (MHAp) were prepared by chemical co-precipitation method. Anticancer drug Doxorubicin (DOX) loaded in MHAp and it grafted with HER2 antibody for breast cancer targeting. The results confirmed that HER2-MHAp-DOX can effectively carry DOX as a drug carrier. Under the alternating-magnetic-field (AMF) for 10 minutes, MHAp (5 mg/mL) can be heated to 42-45 °C. It can be used as heat mediator for hyperthermia. After 28 days for animal experiment, the initial tumor was set as 100%. The tumor size of the untreated group (shame) was increased to 137%. After chemotherapy, the tumor size was reduced relative to the initial size 10.9%. After hyperthermia with HER2-MHAp, the tumor size was reduced to 25.5% compared with the initial size. After chemohyperthermia, the tumor size were reduced to 47.3%. Through H&E tissue staining, it can be estimated that HER2-MHAp in this study does not cause damage to the main organs in the body.
APA, Harvard, Vancouver, ISO, and other styles
35

Heitsch, Andrew Theron. "Synthesis and characterization of silicon nanowires, silicon nanorods, and magnetic nanocrystals." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-882.

Full text
Abstract:
Silicon nanowires, silicon nanorods, and magnetic nanocrystals have shown interesting size, shape, mechanical, electronic, and/or magnetic properties and many have proposed their use in exciting applications. However, before these materials can be applied, it is critical to fully understand their properties and how to synthesize them economically and reproducibly. Silicon nanowires were synthesized in high boiling point ambient pressure solvents using gold and bismuth nanocrystals seeds and trisilane as the silicon precursor. Reactions temperatures as low as 410°C were used to promote the solution-liquid-solid (SLS) growth of silicon nanowires. The silicon nanowires synthesis was optimized to produce 5 mg of silicon nanowires with average diameters of 30 nm and lengths exceeding 2 [mu]m by adjusting the silicon to gold ratio in the injection mixture and reaction temperature. Silicon nanorods were synthesized using a solution-based arrested-SLS growth approach where gold seeds, trisilane, and a dodecylamine were vital to the success. Dodecylamine was found to prevent gold seed coalescence at high temperatures -- creating small diameter rods -- and bond to the crystalline silicon surface -- preventing silicon nanorod aggregation. Furthermore, an etching strategy was developed using an emulsion of aqua regia and chloroform to remove the gold seeds from the silicon nanorods tip. A thin silicon shell surrounding the gold seed of the silicon nanorod was subsequently observed. Multifunctional colloidal core-shell nanoparticles of iron platinum or iron oxide encapsulated in fluorescent dye doped silica shells were also synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with a uniform silica shell using a microemulsion approach. These colloidal heterostructures have the potential to be used as dual-purpose tags, exhibiting a fluorescent signal that could be combined with enhanced magnetic resonance imaging contrast. Compositionally-ordered, single domain, antiferromagnetic L1₂ FePt₃ and ferromagnetic L1₀ FePt nanocrystals were synthesized by coating colloidally-grown Pt-rich or stoichiometricly equal Fe-Pt nanocrystals with thermally-stable SiO₂ and annealing at high temperature. Without the silica coating, the nanocrystals transform predominately into the L1₀ FePt phase due to interparticle diffusion of Fe and Pt atoms. Magnetization measurements of the L1₂ FePt₃ nanocrystals revealed two antiferromagnetic transitions near the bulk Neél temperatures of 100K and 160K. Combining L1₂ FePt₃ nanocrystals with L1₀ FePt nanocrystals was found to produce a constriction in field-dependent magnetization loops that has previously been observed near zero applied field in ensemble measurements of single domain silica-coated L1₀ FePt nanocrystals. Dipole interactions between FePt@SiO₂ nanoparticles with varying SiO₂ shell thickness was also explored.
text
APA, Harvard, Vancouver, ISO, and other styles
36

Lee, Doh Chang 1978. "Silicon nanowires, carbon nanotubes, and magnetic nanocrystals: synthesis, properties, and applications." Thesis, 2007. http://hdl.handle.net/2152/3229.

Full text
Abstract:
Central to the practical use of nanoscale materials is the controlled growth in technologically meaningful quantities. Many of the proposed applications of the nanomaterials potentially require inexpensive production of the building blocks. Solution-based synthetic approach offers controllability, high throughput, and scalability, which make the process attractive for the potential scale-up. Growth kinetics could be readily influenced by chemical interactions between the precursor and the solvent. In order to fully utilize its benefits, it is therefore pivotal to understand the decomposition chemistry of the precursors used in the reactions. Supercritical fluids were used as solvent in which high temperature reactions could take place. Silicon nanowires with diameters of 20~30 nm was synthesized in supercritical fluids with metal nanocrystals as seeds for the nanowire growth. To unravel the effect of silicon precursors, several silicon precursors were reacted and the resulting products were investigated. The scalability of the system is discussed based on the experimental data. The nanowires were characterized with various characterization tools, including high-resolution transmission electron microscopy and electron energy loss spectroscopy. The crystallographic signatures were analyzed through the transmission electron microscopic study, and fundamental electrical and optical properties were probed by electron energy loss spectroscopy. Carbon nanotubes were prepared by reacting carbon-containing chemicals in supercritical fluids with organometallic compounds that form metal seed particles in-situ. A batch reaction, in which the temperature control was relatively poor, yielded a mixture of multiwall nanotubes and amorphous carbon nanofilaments with a low selectivity of nanotubes in the product. When reaction parameters were translated into a continuous flow-through reaction, nanotube selectivity as well as the throughput of the total product significantly improved. Magnetic properties of various metal nanocrystals were also studied. Colloidal synthesis enables the growth of FePt and MnPt3 nanocrystals with size uniformity. The as-synthesized nanocrystals, however, had compositionally disordered soft-magnetic phases. To obtain hard magnetic layered phase, the nanocrystals must be annealed at high temperatures, which led to sintering of the inorganic cores. To prevent sintering, the nanocrystals were encapsulated with silica layer prior to annealing. Interparticle magnetic interactions were also explored using particles with varying silica thickness.
text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Yong-Lun, and 陳永倫. "Growth and Magnetic Interactions in Epitaxial Core-Shell Metal Oxide Nanocrystals." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/88825368492843184061.

Full text
Abstract:
碩士
國立交通大學
材料科學與工程學系所
101
Transition metal oxides have been one of the target of primary research due to their tremendous potential for practical applications such as non-volatile memories, magnetic recording media, solar cells, chemical catalyst and so on. Recently, oxide nanocrystals have gradually caught significant attention as results of their fascinating physical properties. Since functional oxide nanocrystals possess interesting magnetic, electric, and optical properties than other scales, a combination of two or more different nanocrystals would deliver a new pathway to design the material systems in nanoscale. In this study, monodispersed epitaxial oxide nanocrystals with one covering the other have been successfully created by utilizing the instable characteristics of bismuth-based complex ternary oxides. This method takes advantage of both the virtues of traditional core-shell nanostructures and the epitaxial supported nanostructures, showing the control of facet and interface of core-shell nanocrystals. Here, we fabricated nanocrystals combined with rock-salt structure of antiferromagnetic CoO and spinel structure of ferrimagnetic Fe3O4, where we could manipulate one through the other easily. Our results show that the magnetic properties such as the magnetic anisotropy, the coercivity, and the magnetization are tunable and can be precisely controlled by the size, thickness, orientation, interface and the role of core or shell at room temperature. In addition, a large exchange bias has been observed due to the strong magnetic interaction of the core and shell magnetic nanocrystals. This approach can be expanded into all sorts of bismuth-containing oxide and then demonstrates different epitaxial core-shell metal oxide nanocomposite easily. Based on the novel structure and their possibility of convenient control of physical characteristics, this study provides us a new opportunity to understand the fundamental properties of nanoscopic oxides and the potential to design more functional devices in the future.
APA, Harvard, Vancouver, ISO, and other styles
38

Hsieh, Shun-Yu, and 謝舜祐. "Hyaluronic Acid Modified Magnetic Hydroxyapatite Nanocrystals for Targeted Hyperthermia Cancer Therapy." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/83274043369182515089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yavuz, Cafer Tayyar. "Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations." Thesis, 2008. http://hdl.handle.net/1911/22266.

Full text
Abstract:
This work describes the first size dependent magnetic separation in nanoscale. Magnetite (Fe3O4) nanocrystals of high quality and uniform size were synthesized with monodispersity below 10%. Magnetite nanocrystals of 4 nm to 33 nm (average diameter) were produced. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals is reported for the first time. The cost of a kg of lab purity magnetite nanocrystals was shown to be $2600. A green synthesis that utilizes rust and edible oils was developed. The cost of a kg was brought down to $22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied to enable the known silica related biotechnologies. Magnetite--silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite--silica nanoshells to produce triple multishells. Anti-microbial activity of multishells is anticipated.
APA, Harvard, Vancouver, ISO, and other styles
40

Sabergharesou, Tahereh. "Magnetic and Structural Investigation of Manganese Doped SnO_2 and In_2 O_3 Nanocrystals." Thesis, 2013. http://hdl.handle.net/10012/7874.

Full text
Abstract:
Diluted magnetic semiconductor oxides (DMSOs) have received great attention recently due to their outstanding applications in optoelectronic and spintronic devices. Ever since the initial observation of ferromagnetism at room temperature in cobalt-doped titania, extensive effort is concentrated on preparation of transition metal doped wide band gap semiconductors, especially Mn- doped ZnO. Compared to Mn-doped ZnO, magnetic interactions in SnO! and In!O! semiconductors have been underexplored. SnO! and In!O! semiconductors have many applications, owing to their high charge carrier density and mobility as well as high optical transparency. Investigation on electronic structure changes induced by dopants during the synthesis procedure can effectively influence magnetic interactions between charge carriers. In this work, a combination of structural and spectroscopic methods was used to probe as-synthesized SnO! and In!O! nanocrystals doped with Mn!! and Mn!! as precursors. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy are powerful techniques to explore formal oxidation state of manganese dopant, electronic environment, number of nearest neighbors around the absorbent, and bond lengths to the neighboring atoms. Analysis reveals the presence of multiple oxidation states in the doped nanocrystals, and establishes a relation between !"!! ratio and expansion or contraction of lattice parameters. !"!! Although doping semiconductors are crucial for manipulating the functional properties, the influence of dopants on nanocrystals structure is not well understood. Nanocrystalline films prepared from colloidal Mn-doped SnO! and In!O! nanocrystals through spin coating process exhibit ferromagnetic behavior in temperatures ranging from 5 K to 300 K. Magnetic transformation from paramagnetic in free-standing Mn-doped nanocrystals to strong ferromagnetic ordering in nanocrystalline films is attributed to the formation of extended structural defects, e.g., oxygen vacancies at the nanocrystals interface. Magnetic circular dichroism (MCD) studies clearly show that Mn!! occupies different symmetry sites in indium oxide, when bixbyite and rhombohedral In!O! nanocrystals (NCs) are compared.
APA, Harvard, Vancouver, ISO, and other styles
41

Saraiva, Diogo Vieira Pedro Marques. "Electro-optical devices based on cellulose nanocrystals." Master's thesis, 2018. http://hdl.handle.net/10362/40333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Křišťan, Petr. "Hyperjemné interakce v magnetitu a maghemitu." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-295940.

Full text
Abstract:
Thesis is aimed at studying of magnetic iron oxide particles of submicron and nanoscale dimensions by means of nuclear magnetic resonance (NMR). 57 Fe NMR inves- tigations were carried out in composite bentonite/maghemite with respect to tempera- ture of calcination (Tcalc) during the sample preparation and in magnetite submicron powders with respect to various range of the particles size. One of the main findings is that increasing Tcalc improves resolution in the NMR spectra, which is most likely connected with higher degree of atomic ordering in the spinel structure. Evaluating the integral intensities of NMR spectra allowed us to determine the relative content of maghemite phase in particular samples of the series: the content rapidly grows for Tcalc up to ∼420 deg. An approach to distinguish signal from tetrahedral and octahedral irons was developed and tested on pure maghemite sample. Analysis based on vacancy- distribution models was performed in the spinel structure and the results were compared to the experiment. 57 Fe NMR spectra in submicron magnetite samples were found to differ markedly from spectrum of a single crystal. It was concluded that the investigated powders possess high amount of defects in the crystal structure or contain additional phase (probably closely related to the maghemite phase).
APA, Harvard, Vancouver, ISO, and other styles
43

"The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal." Thesis, 2012. http://hdl.handle.net/1911/70343.

Full text
Abstract:
Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities -- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on α-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.
APA, Harvard, Vancouver, ISO, and other styles
44

Mukherjee, Sumanta. "Internal Structure and Self-Assembly of Low Dimensional Materials." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3474.

Full text
Abstract:
The properties of bulk 3D materials of metals or semiconductors are manifested with various length scales(e.g., Bohr excitonic radius, magnetic correlation length, mean free path etc.) and are important in controlling their properties. When the size of the material is smaller than these characteristics length scales, the confinement effects operate reflecting changes in their physical behavior. Materials with such confinement effects can be designated as low dimensional materials. There are exceedingly large numbers of low dimensional materials and the last half a century has probably seen the maximum evolution of such materials in terms of synthesis, characterization, understanding and modification of their properties and applications. The field of” nanoscience and nanotechnology”, have become a mature field within the last three decades where, for certain application, synthesis of materials of sizes in the nanometer range can be designed and controlled. Interface plays a very important role in controlling properties of heterogeneous material of every dimensionality. For example, the interface forms in 2D thin films or interface of heterogeneous nanoparticles(0D). In recent times, a large number of remarkable phenomena have triggered understanding and controlling properties arises due to nature of certain interface. In the field of nanoparticles, it is well known that the photoluminescence property depends very strongly on the nature of interface in heterostructured nanoparticles. In the recent time a large variety of heterostructured nanoparticles starting from core-shell to quantum dot-quantum well kind has been synthesized to increase the photoluminescence efficiency up to 80%. Along with improvement of certain properties due to heterostructure formation inside the nanoparticles, the techniques to understand the nature of those interfaces have improved side by side. It has been recently shown that variable energy X-ray Photoemission Spectroscopy (XPS) can be employed to understand the nature of interfaces (internal structure) of such heterostructure nanoparticles in great detail with high accuracy. While most of the previous studies of variable energy XPS, uses photonenergies sensitive to smaller sized particle, we have extended the idea of such nondestructive approach of understanding the nature of buried interfaces to bigger sized nanoparticles by using photon energy as high as 8000eV, easily available in various 3rd generation synchrotron centers. The nature of the interface also plays an important role in multilayer thin films. Major components of various electronic devices, like read head memory devices, field effect transistors etc., rely on interface properties of certain multilayer thin film materials. In recent time wide range of unusual phenomenon such as high mobility metallic behavior between two insulating oxide, superconductivity, interface ferroelectricity, unusual magnetism, multiferroicity etc. has been observed at oxide interface making it an interesting field of study. We have shown that variable energy photoemission spectroscopy with high photon energies, can be a useful tool to realize such interfaces and controlling the properties of multilayered devices, as well as to understand the origin of unusual phenomenon exists at several multilayer interfaces. Chapter1 provides a brief description of low dimensional materials, overall perspective of interesting properties in materials with reduced dimensionality. We have emphasized on the importance of determining the internal structure of buried interface of different dimensionalities. We have given a brief overview and importance of different interfaces that we have studied in the subsequent chapters dealing with specific interfaces. Chapter 2 describes experimental and theoretical methods used for the study of interface and self-assembly reported in this thesis. These methods are divided into two categories. The first section deals with different experimental techniques, like, UV-Visible absorption and photoluminescence spectroscopy, X-Photoelectron Spectroscopy(XPS), X-Ray diffraction, Transmission Electron Microscopy(TEM) etc. This section also includes brief overview on synchrotron radiation and methods used for detail analysis of interface structure using variable energy XPS. In the second part of this chapter, we have discussed theoretical methods used in the present study. \ In Chapter 3A we have combined low energy XPS, useful to extract information of the surface of the nanoparticles, with high energy XPS, important to extract bulk information and have characterized the internal structure of nanoparticle system of different heterogeneity. We have chosen two important heterostructure systems namely, inverted core-shell(CdScore-CdSeshell) type nanoparticles and homogeneous alloy(CdSeS)type nanoparticles. Such internal structure study revealed that the actual internal structure of certain nanomaterial can be widely different from the aim of the synthesis and knowledge of internal structure is a prerequisite in understanding their property. We were able to extend the idea of variable energy XPS to higher energy limit. Many speculations have been made about the probable role of interface in controlling properties, like blinking behavior of bigger sized core-shell nanoparticles, but no conclusive support has yet been given about the nature of such interface. After successfully extending the technique to determine the internal structure of heterostructured nanoparticles to very high photon energy region, we took the opportunity to determine the internal structure of nanoparticles of sizes as large as 12nm with high energy photoemission spectroscopy for the first time. In Chapter 3B we emphasize on the importance of interface structure in controlling the behavior of bigger sized nanoparticles systems, the unsettled issues regarding their internal structure, and described the usefulness of high energy XPS in elucidating the internal structure of such big particles with grate accuracy to solve such controversies. The existence of high density storage media relies on the existence of highly sensitive magnetic sensors with large magnetoresistance. Today almost all sensor technologies used in modern hard disk drives rely on tunnel magnetoresistance (TMR) CoFeB-MgO-CoFeB structures. Though device fabrication is refined to meet satisfactory quality assurance demands, fundamental understanding of the refinement in terms of its effect on the nature of the interfaces and the MgO tunnel barrier leading to improved TMR is still missing. Where, the annealing condition required to improve the TMR ratio is itself not confirmatory its effect on the interface structure is highly debatable. In particular, it has been anticipated that under the proposed exotic conditions highly mobile B will move into the MgO barrier and will form boron oxide. In Chapter 4 we are able to shed definite insights to heart of this problem. We have used high energy photoemission to investigate a series of TMR structures and able to provide a systematic understanding of the driving mechanisms of B diffusion in CoFeBTMR structures. We have solved the mix-up of annealing temperature required and have shown that boron diffusion is limited merely to a sub-nanometer thick layer at the interface and does not progress beyond this point under typical conditions required for device fabrication. We have given a brief overview on the evolution of magnetic storage device and have described various concepts relevant for the study of such systems. The interface between two nonmagnetic insulators LaAlO3 and SrTiO3 has shown a variety of interface phenomena in the recent times. In spite of a large number of high profile studies on the interface LaAlO3 and SrTiO3 there is still a raging debate on the nature, origin and the distribution of the two dimensional electron gas that is supposed to be responsible for its exotic physical properties, ranging from unusual transport properties to its diverse ground states, such as metallic, magnetic and superconducting ones, depending on the specific synthesis. The polar discontinuity present across the SrTiO3-LaAlO3 interface is expected to result in half an electron transfer from the top of the LaAlO 3 layer to each TiofSrTiO3 at the interface, but, the extent of localization that can make it behave like delocalized with very high mobility as well as localized with magnetic moments is not yet clear. In Chapter 5 we have given a description of this highly interesting system as well as presented the outcome of our depth resolved XPS investigation on several such samples synthesized under different oxygen pressure. We were able to describe successfully the distribution of charge carriers. While synthesizing and understanding properties of nanoparticles is one issue, using them for device fabrication is another. For example, to make a certain device often requires specific arrangements of nanoparticles in a suitable substrate. Self-assembly formation can be a potential tool in these regards. Just like atom or ions, both nano and colloidal particles also assemble by themselves in ordered or disordered structure under certain conditions, e.g., the drying of a drop of suspension containing the colloid particles over a TEM grid. This phenomenon is known as self-assembly. Though, the process of assembly formation can be a very easy and cost-effective technique to manipulate the properties in the nano region, than the existing ones like lithography but, the lack of systematic study and poor understanding of these phenomena at microscopic level has led to a situation that, there is no precise information available in literature to say about the nature of such assembly. In Chapter 6 we have described experiments that eliminate the dependence of the self-assembly process on many complicating factors like substrate-particle interaction, substrate-solvent interaction etc., making the process of ordering governed by minimum numbers of experimental parameter that can be easily controlled. Under simplified conditions, our experiments unveil an interesting competition between ordering and jamming in drying colloid systems similar to glass transition phenomenon Resulting in the typical phase behavior of the particles. We establish a re-entrant behavior in the order-disorder phase diagram as a function of particle density such that there is an optimal range of particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory. In summary, we were able to extend the idea of variable energy XPS to higher energy limit advantageous for investigating internal structure of nonmaterial of various dimensionalities and sizes. We were able to comprehend nature of buried interface indicating properties of heterostructures quantum dots and thin films. Our study revealed that depth resolved XPS combined with accessibility of high and variable energies at synchrotron centers can be a very general and effective tool for understanding buried interface. Finally, we have given insight to the mechanism of spontaneous ordering of nanoparticles over a suitable substrate.
APA, Harvard, Vancouver, ISO, and other styles
45

Mukherjee, Sumanta. "Internal Structure and Self-Assembly of Low Dimensional Materials." Thesis, 2013. http://etd.iisc.ernet.in/2005/3474.

Full text
Abstract:
The properties of bulk 3D materials of metals or semiconductors are manifested with various length scales(e.g., Bohr excitonic radius, magnetic correlation length, mean free path etc.) and are important in controlling their properties. When the size of the material is smaller than these characteristics length scales, the confinement effects operate reflecting changes in their physical behavior. Materials with such confinement effects can be designated as low dimensional materials. There are exceedingly large numbers of low dimensional materials and the last half a century has probably seen the maximum evolution of such materials in terms of synthesis, characterization, understanding and modification of their properties and applications. The field of” nanoscience and nanotechnology”, have become a mature field within the last three decades where, for certain application, synthesis of materials of sizes in the nanometer range can be designed and controlled. Interface plays a very important role in controlling properties of heterogeneous material of every dimensionality. For example, the interface forms in 2D thin films or interface of heterogeneous nanoparticles(0D). In recent times, a large number of remarkable phenomena have triggered understanding and controlling properties arises due to nature of certain interface. In the field of nanoparticles, it is well known that the photoluminescence property depends very strongly on the nature of interface in heterostructured nanoparticles. In the recent time a large variety of heterostructured nanoparticles starting from core-shell to quantum dot-quantum well kind has been synthesized to increase the photoluminescence efficiency up to 80%. Along with improvement of certain properties due to heterostructure formation inside the nanoparticles, the techniques to understand the nature of those interfaces have improved side by side. It has been recently shown that variable energy X-ray Photoemission Spectroscopy (XPS) can be employed to understand the nature of interfaces (internal structure) of such heterostructure nanoparticles in great detail with high accuracy. While most of the previous studies of variable energy XPS, uses photonenergies sensitive to smaller sized particle, we have extended the idea of such nondestructive approach of understanding the nature of buried interfaces to bigger sized nanoparticles by using photon energy as high as 8000eV, easily available in various 3rd generation synchrotron centers. The nature of the interface also plays an important role in multilayer thin films. Major components of various electronic devices, like read head memory devices, field effect transistors etc., rely on interface properties of certain multilayer thin film materials. In recent time wide range of unusual phenomenon such as high mobility metallic behavior between two insulating oxide, superconductivity, interface ferroelectricity, unusual magnetism, multiferroicity etc. has been observed at oxide interface making it an interesting field of study. We have shown that variable energy photoemission spectroscopy with high photon energies, can be a useful tool to realize such interfaces and controlling the properties of multilayered devices, as well as to understand the origin of unusual phenomenon exists at several multilayer interfaces. Chapter1 provides a brief description of low dimensional materials, overall perspective of interesting properties in materials with reduced dimensionality. We have emphasized on the importance of determining the internal structure of buried interface of different dimensionalities. We have given a brief overview and importance of different interfaces that we have studied in the subsequent chapters dealing with specific interfaces. Chapter 2 describes experimental and theoretical methods used for the study of interface and self-assembly reported in this thesis. These methods are divided into two categories. The first section deals with different experimental techniques, like, UV-Visible absorption and photoluminescence spectroscopy, X-Photoelectron Spectroscopy(XPS), X-Ray diffraction, Transmission Electron Microscopy(TEM) etc. This section also includes brief overview on synchrotron radiation and methods used for detail analysis of interface structure using variable energy XPS. In the second part of this chapter, we have discussed theoretical methods used in the present study. \ In Chapter 3A we have combined low energy XPS, useful to extract information of the surface of the nanoparticles, with high energy XPS, important to extract bulk information and have characterized the internal structure of nanoparticle system of different heterogeneity. We have chosen two important heterostructure systems namely, inverted core-shell(CdScore-CdSeshell) type nanoparticles and homogeneous alloy(CdSeS)type nanoparticles. Such internal structure study revealed that the actual internal structure of certain nanomaterial can be widely different from the aim of the synthesis and knowledge of internal structure is a prerequisite in understanding their property. We were able to extend the idea of variable energy XPS to higher energy limit. Many speculations have been made about the probable role of interface in controlling properties, like blinking behavior of bigger sized core-shell nanoparticles, but no conclusive support has yet been given about the nature of such interface. After successfully extending the technique to determine the internal structure of heterostructured nanoparticles to very high photon energy region, we took the opportunity to determine the internal structure of nanoparticles of sizes as large as 12nm with high energy photoemission spectroscopy for the first time. In Chapter 3B we emphasize on the importance of interface structure in controlling the behavior of bigger sized nanoparticles systems, the unsettled issues regarding their internal structure, and described the usefulness of high energy XPS in elucidating the internal structure of such big particles with grate accuracy to solve such controversies. The existence of high density storage media relies on the existence of highly sensitive magnetic sensors with large magnetoresistance. Today almost all sensor technologies used in modern hard disk drives rely on tunnel magnetoresistance (TMR) CoFeB-MgO-CoFeB structures. Though device fabrication is refined to meet satisfactory quality assurance demands, fundamental understanding of the refinement in terms of its effect on the nature of the interfaces and the MgO tunnel barrier leading to improved TMR is still missing. Where, the annealing condition required to improve the TMR ratio is itself not confirmatory its effect on the interface structure is highly debatable. In particular, it has been anticipated that under the proposed exotic conditions highly mobile B will move into the MgO barrier and will form boron oxide. In Chapter 4 we are able to shed definite insights to heart of this problem. We have used high energy photoemission to investigate a series of TMR structures and able to provide a systematic understanding of the driving mechanisms of B diffusion in CoFeBTMR structures. We have solved the mix-up of annealing temperature required and have shown that boron diffusion is limited merely to a sub-nanometer thick layer at the interface and does not progress beyond this point under typical conditions required for device fabrication. We have given a brief overview on the evolution of magnetic storage device and have described various concepts relevant for the study of such systems. The interface between two nonmagnetic insulators LaAlO3 and SrTiO3 has shown a variety of interface phenomena in the recent times. In spite of a large number of high profile studies on the interface LaAlO3 and SrTiO3 there is still a raging debate on the nature, origin and the distribution of the two dimensional electron gas that is supposed to be responsible for its exotic physical properties, ranging from unusual transport properties to its diverse ground states, such as metallic, magnetic and superconducting ones, depending on the specific synthesis. The polar discontinuity present across the SrTiO3-LaAlO3 interface is expected to result in half an electron transfer from the top of the LaAlO 3 layer to each TiofSrTiO3 at the interface, but, the extent of localization that can make it behave like delocalized with very high mobility as well as localized with magnetic moments is not yet clear. In Chapter 5 we have given a description of this highly interesting system as well as presented the outcome of our depth resolved XPS investigation on several such samples synthesized under different oxygen pressure. We were able to describe successfully the distribution of charge carriers. While synthesizing and understanding properties of nanoparticles is one issue, using them for device fabrication is another. For example, to make a certain device often requires specific arrangements of nanoparticles in a suitable substrate. Self-assembly formation can be a potential tool in these regards. Just like atom or ions, both nano and colloidal particles also assemble by themselves in ordered or disordered structure under certain conditions, e.g., the drying of a drop of suspension containing the colloid particles over a TEM grid. This phenomenon is known as self-assembly. Though, the process of assembly formation can be a very easy and cost-effective technique to manipulate the properties in the nano region, than the existing ones like lithography but, the lack of systematic study and poor understanding of these phenomena at microscopic level has led to a situation that, there is no precise information available in literature to say about the nature of such assembly. In Chapter 6 we have described experiments that eliminate the dependence of the self-assembly process on many complicating factors like substrate-particle interaction, substrate-solvent interaction etc., making the process of ordering governed by minimum numbers of experimental parameter that can be easily controlled. Under simplified conditions, our experiments unveil an interesting competition between ordering and jamming in drying colloid systems similar to glass transition phenomenon Resulting in the typical phase behavior of the particles. We establish a re-entrant behavior in the order-disorder phase diagram as a function of particle density such that there is an optimal range of particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory. In summary, we were able to extend the idea of variable energy XPS to higher energy limit advantageous for investigating internal structure of nonmaterial of various dimensionalities and sizes. We were able to comprehend nature of buried interface indicating properties of heterostructures quantum dots and thin films. Our study revealed that depth resolved XPS combined with accessibility of high and variable energies at synchrotron centers can be a very general and effective tool for understanding buried interface. Finally, we have given insight to the mechanism of spontaneous ordering of nanoparticles over a suitable substrate.
APA, Harvard, Vancouver, ISO, and other styles
46

Shang-Wei, Chou, and 周尚威. "Synthesis and application of magnetic alloy nanocrystal." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/71748385020229359229.

Full text
Abstract:
博士
國立臺灣師範大學
化學系
98
The controlled growth of alloy FePt nanostructures was investigated systematically. FePt octapod, cuboctahedron, and nanocube were successfully synthesized from a cuboctahedral seed and examined by the high-resolution transmission electron microscopy (HRTEM). In a solution reaction, the specific surfactant-facet bindings on the growth seed were generated and then, the growth rate of crystal facets on seed was differentiated by the djustments of reaction parameters. Therefore, the formations of FePt nanostructures were mainly attributed to the differences in the growth rate between the {111} and {100} planes of cuboctahedral seeds. In particular, the highest coercivity and blocking temperature of octapods are mainly due to its higher surface to volume ratio and more structural facets. On the other hand, the FeCo particles with different sizes were synthesized through controlling the reaction period. The process of Ostwald ripening was discovered in the FexCo1-x system due to the low lattice energy. Based on the XRD patterns, the transformation of structural phase and formation of magnetically dead layers was observed. Also, the saturated magnetization of FexCo1-x nanoparticles was influenced by their structural changes obviously. Finally, the water-soluble nanoparticles with the sizes of 3, 6 and 12 nm in diameters were prepared and presented excellent biocompatibility and hemocompatibility. The bio-distribution analyses indicated that 3nm-FePt nanoparticles exhibited the highest brain concentration. Moreover, 12 nm-FePt nanoparticles exerted the highest circulation half-life and image contrast effect in the in vitro CT/MRI test. Anti-Her2 antibody conjugated FePt nanoparticles demonstrated molecular expression dependent CT/MRI dual imaging contrast effect in MBT2 cell line and its Her2/neu gene knock out counterpart. The 12 nm-FePt outperformed 3nm-FePt in both imaging modalities. Selective contrast enhancement of Her2/neu overexpression cancer lesions in both CT and MRI was found in tumor bearing animal after tail vein injection of the nanoparticles. These results indicate the potential of FePt nanoparticles to serve as novel multi-modal molecular imaging contrast agents in clinical settings.
APA, Harvard, Vancouver, ISO, and other styles
47

Cho, Minjung. "Biomedical Nanocrystal Agents: Design, Synthesis, and Applications." Thesis, 2013. http://hdl.handle.net/1911/71938.

Full text
Abstract:
In these days, nanomaterials are applied in a variety of biomedical applications including magnetic resonance imaging (MRI), cell imaging, drug delivery, and cell separation. Most MRI contrast agents affect the longitudinal relaxation time (T1) and transverse relaxation time (T2) of water protons in the tissue and result in increased positive or negative contrast. Here, we report the optimization of r1 (1/T1) or r2 (1/T2) relaxivity dynamics with diameter controlled gadolinium oxide nanocrystals (2~22 nm) and iron based magnetic nanocrystals (4 ~33 nm). The r1 and r2 MR relaxivity values of hydrated nanocrystals were optimized and examined depending on their core diameter, surface coating, and compositions; the high r1 value of gadolinium oxide was 40-60 S-1mM-1, which is 10-15 fold higher than that of commercial Gd (III) chelates (4.3~4.6 S-1mM-1). Moreover, in vitro toxicological studies revealed that polymer coated nanocrystals suspensions had no significant effect on human dermal fibroblast (HDF) cells even at high concentration. Towards multimodal imaging or multifunctional ability, we developed the iron oxide/QDs complexes, which consist of cores of iron oxide that act as nucleation sites for fluorescent QDs. The choice of variable QDs helped to visualize and remove large iron oxide materials in a magnetic separation. Additionally, diluted materials concentrated on the magnet could be fluorescently detected even at very low concentration. The designed MRI or multifunctional nanomaterials will give great and powerful uses in biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
48

Arora, Neha. "Rational Synthesis, Stabilization, and Functional Properties of Metal and Intermetallic Nanoparticles." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3377.

Full text
Abstract:
The confluence of intriguing size and morphology dependent optical and chemical properties with versatile application in various fields, such as energetic and magnetic makes monometallic nonmaterial of high fundamental scientific interest. However, the challenge that needs to be addressed is to achieve their synthesis with a rational control on their dimensions, morphology and dispersion for the widespread applications of these materials. In addition to synthesis, achieving long-lasting stability of nonmaterial becomes imperative in order to realize their potential applications. Miniaturization in size of particles results in an increased surface to volume ratio, conducing especially reactive metal nanoparticals prone to oxidation. This thesis describes the synthesis of nearly monodiperse colloids of metallic and intermetallic nanoparticles using solvated metal atom dispersion method and digestive ripening facilitated interatomic diffusion process. Our aim is to understand the combinatiorial effects of nanosizing and stability on the functional properties of these nanomaterials. Towards this Direction, we investigated Co, A1 and Mg monometallic, and Au/Ag-In and Au-Sn intermetallic nanoparticle systems. Chapter 2 Describes the synthesis, detailed characterizations and magnetic properties of nearly monodisperse cobolt nanoparticles(<5nm) synthesized using a hydride synthetic protocol, solvated metal atom diserion method. The as-prepared cobalt nanoparticles in this size range exhibit intrinsic instability towards Oxidations. After 30 day of exposure to air, magnetic measurements showed drastic degration in saturation magnetization and complete conversion to antiferromagnetic cobalt oxide was confirmed. In order to achieve their stability, a heat treatment was applied to decompose the organic solvent and capping agent, resulting in carbonization of solvent/ligand around the surface of cobolt nano particles. Controlled and optimized annealing at different temperatures resulted in the formation of hexagonal closed packed (hcp) and fape-centered cubic (fcc) phases of metallic cobalt. Remarkably, the corresponding heat treated samples retained their rich magnetic behavior even after exposure to air for a duration of one year. Compared to un-annealed samples, magnetization values increased two-fold and the corecivity of nanoparticles exhibited strong dependence on the phase transformation of cobolt. Chapter 3 Deal with an exploratory study of the synthesis, characterization, and stabilization of nanometer-sized enegetic material, aluminum. Highly monodisperse colloidal aluminum nanoparticles (3.1‡ 0.6 mm) were prepared by using hexadecy amine (HAD) as the capping agent tetrahydrofurma as a coordinating solvent in the SMAD method. Since such small particles are highly prone to oxidation, a support materials is required for their stabilization. Stability has been achived by carbonization of the capping agent on the surface of A1 nanoparticles by carrying out thermal treatment of A1-HAD nanoparticles at a modest temperature. Presence of corbon was confirmed using Raman spectroscopy and TEM measurements evidencing that annealed A1 nanoparticles are encapsulated in a corbon matrix. The exhibition of robust stability was established using thermal analysis (TGA/DTA) wherein, oxidation of aluminum in air did not occur upto 500 0C. Indirectly, the successful passivation was further exploited in the synthesis and characterization of small sized monodisperse magnesium nanoparticles. The resulting samples were hybrided and nanosized MgH2 released hydrogen at much lower temperature than that of the bulk MgH2 (573 K). The observed hydrogen release was only partially reversible. This partial reversibility could be attributed to the coalescence of small sized Mg nanoparticles upon subsequent charging/discharging hydrogen cycles. In the next step, we exploed the intermetallic systes which are composed of more than one metallic species. Chapter 4 describes the synthesis and characterization of small sized, monodisperse (<10 nm) colloidal AuIn2 and Ag3In intermetallic nanoparticles. The formation of intermetallic nanoparticles could be explained by invoking digestive ripening facilitated atomic diffusion of Au/Ag and In nanoparticles followed simultaneously by their growth in te solution. The course of the reaction was followed using optical spectroscopy where the changes in UV-visible absorption band were correlated to the formation of AuIn/Ag3In intermetallic. Structural characterization, Performed using powder X-ray diffraction, brought out the formation of phase pure AuIn2 and Ag3In intermetallic compounds. Digestive ripening effects were clearly observed using transmission electron microscopy which showed the transformation of polydisperse physical mixture colloid of nanometallic species to uniform sized intermetallic nanoparticles. By invoking the phenomenon of interatomic diffusion at nanoscale favored by feasible thermodynamics ( G being negative) we were successful inrealizing the formation of these intermetallic nanoparticles. Optimization of temperature at which digestive ripening was performed, turned out to be a crucial factor in the successful synthesis of phase pure intermetallic nanoparticles. These promising results inspired us to study further the preparation of Au-Sn intermetallic system which is described in Chapter 5. The potential of such an unprecedented approach has been exploited in the synthesis of homogeneous intermetallic nanaocrystals of Au5Sn and AuSn. The two monometallic collids (Au and Sn), mixed in a stoichiometric amount were subjected to digestive ripening process. 1:1 stichiometry always led to the formation of eutectic mixture (Au5Sn and AUSn), The stoichiometry of monometallic nanocrystals. Therefore, by taking an extra equivalent of Au and Sn in two different experiments, phase pure Au5Sn and AuSn intermatillic nanocrsytals were obtained, respectively. This is the first observation that has been reported regarding the phase pure synthesis if Au5Sn intermetallic nanocrystals using solution based approach. Formation of different phases was established by structural characterization which elicited srystalline nature of the samples. A combination of TEM, HRTEM, and STEM-EDS mapping techniques employed here, brought and tailored phase. In conclusion, the careful selection of solvent, stoichiometry and growth directing agents is an important prerequisite for realizing distinct phases of Au-Sn system with a controlled morphology.
APA, Harvard, Vancouver, ISO, and other styles
49

Arora, Neha. "Rational Synthesis, Stabilization, and Functional Properties of Metal and Intermetallic Nanoparticles." Thesis, 2013. http://etd.iisc.ernet.in/2005/3377.

Full text
Abstract:
The confluence of intriguing size and morphology dependent optical and chemical properties with versatile application in various fields, such as energetic and magnetic makes monometallic nonmaterial of high fundamental scientific interest. However, the challenge that needs to be addressed is to achieve their synthesis with a rational control on their dimensions, morphology and dispersion for the widespread applications of these materials. In addition to synthesis, achieving long-lasting stability of nonmaterial becomes imperative in order to realize their potential applications. Miniaturization in size of particles results in an increased surface to volume ratio, conducing especially reactive metal nanoparticals prone to oxidation. This thesis describes the synthesis of nearly monodiperse colloids of metallic and intermetallic nanoparticles using solvated metal atom dispersion method and digestive ripening facilitated interatomic diffusion process. Our aim is to understand the combinatiorial effects of nanosizing and stability on the functional properties of these nanomaterials. Towards this Direction, we investigated Co, A1 and Mg monometallic, and Au/Ag-In and Au-Sn intermetallic nanoparticle systems. Chapter 2 Describes the synthesis, detailed characterizations and magnetic properties of nearly monodisperse cobolt nanoparticles(<5nm) synthesized using a hydride synthetic protocol, solvated metal atom diserion method. The as-prepared cobalt nanoparticles in this size range exhibit intrinsic instability towards Oxidations. After 30 day of exposure to air, magnetic measurements showed drastic degration in saturation magnetization and complete conversion to antiferromagnetic cobalt oxide was confirmed. In order to achieve their stability, a heat treatment was applied to decompose the organic solvent and capping agent, resulting in carbonization of solvent/ligand around the surface of cobolt nano particles. Controlled and optimized annealing at different temperatures resulted in the formation of hexagonal closed packed (hcp) and fape-centered cubic (fcc) phases of metallic cobalt. Remarkably, the corresponding heat treated samples retained their rich magnetic behavior even after exposure to air for a duration of one year. Compared to un-annealed samples, magnetization values increased two-fold and the corecivity of nanoparticles exhibited strong dependence on the phase transformation of cobolt. Chapter 3 Deal with an exploratory study of the synthesis, characterization, and stabilization of nanometer-sized enegetic material, aluminum. Highly monodisperse colloidal aluminum nanoparticles (3.1‡ 0.6 mm) were prepared by using hexadecy amine (HAD) as the capping agent tetrahydrofurma as a coordinating solvent in the SMAD method. Since such small particles are highly prone to oxidation, a support materials is required for their stabilization. Stability has been achived by carbonization of the capping agent on the surface of A1 nanoparticles by carrying out thermal treatment of A1-HAD nanoparticles at a modest temperature. Presence of corbon was confirmed using Raman spectroscopy and TEM measurements evidencing that annealed A1 nanoparticles are encapsulated in a corbon matrix. The exhibition of robust stability was established using thermal analysis (TGA/DTA) wherein, oxidation of aluminum in air did not occur upto 500 0C. Indirectly, the successful passivation was further exploited in the synthesis and characterization of small sized monodisperse magnesium nanoparticles. The resulting samples were hybrided and nanosized MgH2 released hydrogen at much lower temperature than that of the bulk MgH2 (573 K). The observed hydrogen release was only partially reversible. This partial reversibility could be attributed to the coalescence of small sized Mg nanoparticles upon subsequent charging/discharging hydrogen cycles. In the next step, we exploed the intermetallic systes which are composed of more than one metallic species. Chapter 4 describes the synthesis and characterization of small sized, monodisperse (<10 nm) colloidal AuIn2 and Ag3In intermetallic nanoparticles. The formation of intermetallic nanoparticles could be explained by invoking digestive ripening facilitated atomic diffusion of Au/Ag and In nanoparticles followed simultaneously by their growth in te solution. The course of the reaction was followed using optical spectroscopy where the changes in UV-visible absorption band were correlated to the formation of AuIn/Ag3In intermetallic. Structural characterization, Performed using powder X-ray diffraction, brought out the formation of phase pure AuIn2 and Ag3In intermetallic compounds. Digestive ripening effects were clearly observed using transmission electron microscopy which showed the transformation of polydisperse physical mixture colloid of nanometallic species to uniform sized intermetallic nanoparticles. By invoking the phenomenon of interatomic diffusion at nanoscale favored by feasible thermodynamics ( G being negative) we were successful inrealizing the formation of these intermetallic nanoparticles. Optimization of temperature at which digestive ripening was performed, turned out to be a crucial factor in the successful synthesis of phase pure intermetallic nanoparticles. These promising results inspired us to study further the preparation of Au-Sn intermetallic system which is described in Chapter 5. The potential of such an unprecedented approach has been exploited in the synthesis of homogeneous intermetallic nanaocrystals of Au5Sn and AuSn. The two monometallic collids (Au and Sn), mixed in a stoichiometric amount were subjected to digestive ripening process. 1:1 stichiometry always led to the formation of eutectic mixture (Au5Sn and AUSn), The stoichiometry of monometallic nanocrystals. Therefore, by taking an extra equivalent of Au and Sn in two different experiments, phase pure Au5Sn and AuSn intermatillic nanocrsytals were obtained, respectively. This is the first observation that has been reported regarding the phase pure synthesis if Au5Sn intermetallic nanocrystals using solution based approach. Formation of different phases was established by structural characterization which elicited srystalline nature of the samples. A combination of TEM, HRTEM, and STEM-EDS mapping techniques employed here, brought and tailored phase. In conclusion, the careful selection of solvent, stoichiometry and growth directing agents is an important prerequisite for realizing distinct phases of Au-Sn system with a controlled morphology.
APA, Harvard, Vancouver, ISO, and other styles
50

陳怡然. "Influence of Mn ion on magnetism in Cd1-xMnxSe nanocrystals." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/84518933755178722783.

Full text
Abstract:
碩士
國立交通大學
電子物理系所
97
Semiconductor nanocrystal has been widely studied in last two decades, not only because the novel physical properties it has but also the potential of been building block of nanodevice. To modify semiconductor nanocrystal’s physical properties, doping impurities in nanocrystal is a widely used approach. Magnetic ion doped semiconductor nanocrystal, named diluted magnetic semiconductor nanocyrstal (DMSNC), such like Cd1-xMnxSe, Cd1-xMnxTe etc., has attracted scientists attention in recent years because of its potential of been new building block of nanodevice and combination of magnetic , electrical, and optical properties. Although the optical properties in this kind of material have been widely studied and the magnetic properties have been discussed in theoretical approach, the experimental study of magnetic properties in DMSNC is still lack. In this article, the magnetic properties of Cd1-xMnxSe nanocrystal with different size (d=5, 8 nm) and concentration (x=0.375 %, 0.15 %) have been studied by using SQUID magnetometer. Magnetic field dependence of magnetization (M-H curves) has been measured under 2 K and temperature dependence of magnetic susceptibility (χ-T curves) has been measured under external magnetic field in 100 Oe. The non-saturated phenomenon has been observed in all of the M-H curves. This phenomenon has been more manifest in higher concentration sample. We also observed that Curie law can not explain the χ-T curves of all of our samples because the nonzero magnetic susceptibility under high temperature region. After considering the Pauli paramagnetism comes from the free carriers in nanocrystals, we observed that, in lower concentration samples, magnetic properties could be explained by a summation of magnetic properties come from the Mn ions and the free-carriers in nanocrystal. However, in higher concentration samples, the Mn ions will affect the magnetic properties of free-carriers in nanocrystal thus making the magnetic properties more complex.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography