Academic literature on the topic 'Magnetic propertie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic propertie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetic propertie"
Li, Wei Li, Xiao Chen Liu, and Jun Ci Cao. "Influence of Carbon Content on Fe-Cu Alloy Material Performance in Induction Motor with Compound Cage Rotor." Applied Mechanics and Materials 117-119 (October 2011): 1223–26. http://dx.doi.org/10.4028/www.scientific.net/amm.117-119.1223.
Full textCavellec, Myriam, Didier Riou, Cyril Ninclaus, Jean-Marc Grenèche, and Gérard Férey. "[Fe4(PO4)4F2(H2O)3] · [C6H14N2] or ULM-12, the first magnetic ferric phosphate with an open structure: Hydrothermal synthesis, structure, and magnetic propertie." Zeolites 17, no. 3 (September 1996): 250–60. http://dx.doi.org/10.1016/0144-2449(96)00008-5.
Full textKrupa, M. M. "Magnetic and magneto-optical properties of Fe3O4 and NiFe2O4 nanoparticlesMagnetic and magneto-optical properties of Fe3O4 and NiFe2O4 nanoparticles." Functional materials 21, no. 1 (March 30, 2014): 15–20. http://dx.doi.org/10.15407/fm21.01.015.
Full textLin Jiaqi, 林家齐, 倪海芳 Ni Haifang, 王晨 Wang Chen, and 雷清泉 Lei Qingquan. "Poly (Ethylene Terephthalate) Electronic Structural and Optical Propertie from First Principles Calculations." Acta Optica Sinica 30, no. 11 (2010): 3239–43. http://dx.doi.org/10.3788/aos20103011.3239.
Full textMeier, Wolfgang, and Heino Finkelmann. "Liquid Crystal Elastomers with Piezoelectric Properties." MRS Bulletin 16, no. 1 (January 1991): 29–31. http://dx.doi.org/10.1557/s0883769400057870.
Full textMarita, Yusrini, and Iskandar Idris Yaacob. "G-9 EFFECT OF THICKNESS ON MAGNETIG PROPERTIES OF NANOSTRUCTURED NiFe FILMS(Session: Fuel Cell/Magnet)." Proceedings of the Asian Symposium on Materials and Processing 2006 (2006): 135. http://dx.doi.org/10.1299/jsmeasmp.2006.135.
Full textSong, Hongseon, Dokyoung Kim, Younsoo Kim, Hyungsuk Jung, HanJin Lim, Seunghyup Lee, and Kijung Yong. "Improvement of the electrical and interfacial propertie of TiN/ZrO2 by a modulated atomic layer deposition process with controlled O3 dosing." Thin Solid Films 675 (April 2019): 153–59. http://dx.doi.org/10.1016/j.tsf.2019.02.040.
Full textFuentes, M. A. E., H. Camacho, and L. Fuentes. "Propiedades de acoplamiento eléctrico y magnético: cristales y policristales." Boletín de la Sociedad Española de Cerámica y Vidrio 40, no. 4 (August 30, 2001): 267–74. http://dx.doi.org/10.3989/cyv.2001.v40.i4.735.
Full textShalayev, R. V. "Structure and magnetic properties of Ni-N nanofilms." Functional Materials 21, no. 2 (June 30, 2014): 233–36. http://dx.doi.org/10.15407/fm21.02.233.
Full textZhao, H., X. Li, H. Zhao, and Y. Wang. "Effect of manganese doping on the magnetic and magnetocaloric properties of zinc ferrite." Materiali in tehnologije 53, no. 6 (December 19, 2019): 891–95. http://dx.doi.org/10.17222/mit.2019.089.
Full textDissertations / Theses on the topic "Magnetic propertie"
Ben, ghzaiel Tayssir. "Synthèse, caractérisation et étude des propriétés magnétiques et diélectriques de nanocomposites Polyaniline/hexaferrite pour l'absorption des micro-ondes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN003/document.
Full textThis thesis deals with the formulation of Polyaniline/hexaferrite nanocomposite for absorbing electromagnetic waves. The main idea is the process of composite materials based on polymers intrinsic conductors such as polyaniline that we doped with different types of acids (HCl, CSA, NSA, and ... TSA) and barium hexaferrite with magnetoplumbite structure with or without substitution according to desired stoichiometries. In the barium hexaferrite, the substitution of Fe 3+ is made by Al3+, Bi3+, Cr3+ and Mn3+ ions.The barium hexaferrite and its substitutions by different ions mentioned above were synthesized dynamic hydrothermal method by varying various parameters during the synthesis (pH, temperature, time, ratio [OH-]/[NO3-] ...).The elaboration of polyaniline/hexaferrite composite (pure or substituted) was carried out by oxidative polymerization using various synthesis techniques: Aqueous-Based Polymerisation with or without agitation (taking into account the nature of the acid used) (ABP) and Solid-Based Polymerization (SBP). The optimization of these various synthesis techniques after physicochemical (XRD, FTIR, TGA, SEM, EDX), dielectric (ε ', ε' ', σdc) and magnetic (Mr, Ms, Hc, Tc, µ', µ'') characterizations of the samples showed that the solid route is the easiest method, economical and environmentally friendly. It is also suitable for the production of composite Pani/BaFe12O19 with good structural, physical and magnetic properties.The study of the substitution of Fe 3+ in the BaFe12O19 by Al3+, Bi3+, Cr3+ and Mn3+ showed a strong dependence of the structural and magnetic properties with the distribution of these ions in the hexagonal crystal lattice. In fact, Al3+, Cr3+ and Mn3+ ions tend to occupy the tetrahedral sites, while the Bi3+ favoured the octahedral sites. An increase in Hc associated with the small crystallite size observed for particles substituted with Al and Cr and the enhancement magnetocristalline anisotropy (strong higher order term) for Bi and Mn due to their high ionic radius.The incorporation of the substituted hexaferrite in the polyaniline to obtain Pani/BaMeFe11O19 composite, where Me = Al, Bi, Cr and Mn, reveals a variation in electromagnetic properties in the frequency range from 1 to 18 GHz. In fact, these variations are due to the formation of dipoles between the substituting ion and surrounding O2- cations in the ferrite which are responsible for the ferromagnetic resonance, the magnetocrystalline anisotropy and the exchange interaction with the polymer. The composite Pani/BaFe12O19 shows absorption bands at the X-band that shift to the Ku-band with the substitution of iron, confirming the potential of these materials for microwave applications
Barbosa, Andreia Guedes Santiago. "Estudo de microestruturas magnéticas por microscopia de força magnética." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2010. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=132.
Full textA manipulação e o controle das propriedades magnéticas de materiais com pequenas dimensões tem atraído interesse crescente nos últimos anos. Para sistemas magnéticos micrométricos ou submicrométricos, diferentes configurações magnéticas são energeticamente acessíveis. Vórtices magnéticos merecem destaque entre essas configurações e figuram em um grande número de pesquisas tecnológicas que vão desde o armazenamento magnético (VMRAM) até a biofuncionalização de estruturas para o tratamento do câncer. Em uma configuração de vórtice magnético, a energia magnetostática é minimizada por uma configuração de caminho fechado no plano do filme e uma região central com magnetização perpendicular à superfície. A quiralidade (sentido de rotação da magnetização no plano) e a polarização (direção da magnetização na região central) são os dois principais parâmetros que caracterizam um vórtice magnético. Apesar do esforço recente, ainda não se alcançou um entendimento detalhado que permita a manipulação controlada dessas características. Um aspecto importante para a aplicação tecnológica das estruturas de vórtice magnético é a uniformidade e a reprodutibilidade do comportamento de inversão de magnetização da partícula. O tamanho do núcleo do vórtice e o valor da magnetização, fatores que dependem fortemente da anisotropia do sistema, são aspectos relevantes a serem considerados para que as aplicações destas estruturas magnéticas se tornem realidade. Neste trabalho, arranjos regulares de discos multicamadas Co/Pt com diâmetro de 1 e 2 μm e pemalloy com diâmetro na faixa de 5 a 17 μm, ambos com espessura nanométrica, foram investigados por Microscopia de força magnética (MFM) e magnetometria (VSM e PPMS). Um dos objetivos foi investigar a correlação entre a anisotropia magnética nas multicamadas e o tamanho do núcleo do vórtice magnético. Os resultados obtidos demonstraram a presença de estados de vórtice magnético em algumas das amostras estudadas, em função do diâmetro do disco. Além disso, foram estudadas propriedades magnéticas da configuração de vórtices magnéticos desde a nucleação à aniquilação e efeitos de variação de dimensões de disco (diâmetro e espessura) e anisotropia magnética (multicamadas Co/Pt).
The manipulation and control of magnetic properties in size reduced materials have attracted a great interest in the last years. For micrometric or submicron magnetic structures different magnetic configurations are energetically accessible. Magnetic vortex noteworthy belongs to those configurations, and often represents the lowest energy configuration. Nowadays, it appears in a number of technological research ranging from the magnetic storage (VRAM) to the biofunctionalized microdisks for cancer treatment. In a magnetic vortex configuration, magnetostatic energy is minimized by in-plane closed flux domain structure and this curling magnetization turns out of the plane at the centre of the vortex structure. The chirality (direction of rotation of the in-plane magnetization) and polarization (up or down direction of the vortex core) are two topological features that characterize a magnetic vortex. In spite of the great effort on this matter, a controlled manipulation of magnetic vortex features was not reached. A critical aspect for the technological application of magnetic vortex structures is the uniformity and reproducibility of the reversal behavior of the particle magnetization. The vortex core size and the related value of its overall magnetization are also very relevant for the use of such magnetic structures. It is usually considered that the size of the vortex core depends on parameters such as anisotropy, thickness and diameter of the magnetic disk. In this work, regular arrays of Co/Pt multilayers disks with diameter of 1 and 2 μm and pemalloy disks with diameter in the range 5 -17 μm, both nanometer-thick, were investigated by Magnetic Force Microscopy (MFM) and magnetization measurements (VSM and PPMS). The results show the existence of magnetic vortex states for the samples, depending on the disk diameter. Furthermore, it was investigated the magnetic properties of the magnetic vortex, since the nucleation to annihilation, and the effect of variation of disk dimensions (diameter and thickness) and magnetic anisotropy (Co/Pt multilayers).
Dudchenko, N. O., A. B. Brik, Y. V. Kardanets, and O. E. Grechanivskyy. "Influence of Ultrasound Treatment on the Properties of Synthetic Magnetite Nanoparticles." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35186.
Full textHarrison, Richard John. "Magnetic properties of the magnetite-spinel solid solution." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603779.
Full textXu, Ming. "Critical current density and time-dependent magnetization of the high transition temperature superconductors." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/30033.
Full textFelton, Solveig. "Tunable Magnetic Properties of Transition Metal Compounds." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5939.
Full textRaanaei, Hossein. "Tailoring Properties of Materials at the Nanoscale." Doctoral thesis, Uppsala : Uppsala University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-107425.
Full textSvensson, Jacob N. "A Study of the Magnetic Properties of Yb4LiGe4: Unusual Magnetism." Thesis, Boston College, 2010. http://hdl.handle.net/2345/1376.
Full textThe R5T4 compounds (R = rare earth, T = Ge or Si) are interesting because the magnetic properties are very sensitively dependent on slight changes in the crystalline structure. Yb5Ge4 is one such compound, with (presumed) antiferromagnetic order occurring at TN = 1.7 K. We are interested in the effects of substituting Li in place of one Yb atom. Previous measurements of the magnetic properties of polycrystalline Yb4LiGe4 using NMR, specific heat, and resistance measurements at temperatures down to 0.5 K and in magnetic fields up to 4 Tesla were made to compare results with the parent compound. The resistance measurements showed a maximum at 1.1 K, which may indicate the onset of magnetic order. Thus we performed μSR measurements on Yb4LiGe4 and Yb5Ge4, and analysis of the data confirmed magnetic ordering (possibly antiferromagnetic) at 1.1 K. The μSR measurements also revealed a dependence on the magnetic history of the sample. Currently we are studying the pressure dependence of the (presumed) Néel Temperature in order to explore whether increased pressure can drive the TN to 0 K, and results will be discussed
Thesis (BS) — Boston College, 2010
Submitted to: Boston College. College of Arts and Sciences
Discipline: Physics Honors Program
Discipline: Physics
Han, Man Huon. "Development of synthesis method for spinel ferrite magnetic nanoparticle and its superparamagnetic properties." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26465.
Full textCommittee Chair: Z. John Zhang; Committee Member: Angus Wilkinson; Committee Member: C P Wong; Committee Member: E. Kent Barefield; Committee Member: Mostafa El-Sayed. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Virdee, D. "The influence of magnetostatic interactions on the magnetic properties of magnetite." Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/14612.
Full textBooks on the topic "Magnetic propertie"
R, Fickett F., ed. Units for magnetic properties. Boulder, Colo: U.S. Dept. of Commerce, National Bureau of Standards, 1985.
Find full textKoichi, Itoh, and Kinoshita Minoru, eds. Molecular magnetism: New magnetic materials. Tokyo: Kodansha, 2000.
Find full textGuimarães, Alberto Passos. Magnetism and magnetic resonance in solids. New York: Wiley, 1998.
Find full textauthor, Rodewald Werner, ed. Magnetic materials: Fundamentals, products, properties, and applications. Erlangen: Publicis, 2013.
Find full textQuantum theory of magnetism: Magnetic properties of materials. 3rd ed. Berlin: Springer, 2007.
Find full textSandoval, Otilio Arturo Acevedo. La piedra imán del cerro Cangandhó, Zimapán, Hidalgo. Pachuca, Hidalgo, México: Universidad Autónoma del Estado de Hidalgo, 2007.
Find full textSandoval, Otilio Arturo Acevedo. La piedra imán del cerro Cangandhó, Zimapán, Hidalgo. Pachuca, Hidalgo, México: Universidad Autónoma del Estado de Hidalgo, 2007.
Find full textC, Radhakrishnamurty. Magnetism and basalts. Bangalore: Geological Society of India, 1993.
Find full textSandoval, Otilio Arturo Acevedo. La piedra imán del cerro Cangandhó, Zimapán, Hidalgo. Pachuca, Hidalgo, México: Universidad Autónoma del Estado de Hidalgo, 2007.
Find full textBook chapters on the topic "Magnetic propertie"
Jiles, David. "Magnetic Properties." In Introduction to Magnetism and Magnetic Materials, 89–106. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3868-4_5.
Full textSirdeshmukh, D. B., L. Sirdeshmukh, K. G. Subhadra, and C. S. Sunandana. "Magnetism III: Magnetic Symmetry and Magnetic Structures." In Electrical, Electronic and Magnetic Properties of Solids, 321–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09985-9_10.
Full textDionne, Gerald F. "Electromagnetic Properties." In Magnetic Oxides, 273–342. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0054-8_6.
Full textLovejoy, David. "Magnetism and magnetic properties of materials." In Magnetic Particle Inspection, 321–43. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1536-0_12.
Full textKoper, G. H. M., and Marten Terpstra. "Methods to Enhance the Magnetic Properties of Magnets and Magnetic Materials." In Improving the Properties of Permanent Magnets, 10–70. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3668-6_2.
Full textBlundell, Stephen J. "Concepts in Magnetism." In Springer Proceedings in Physics, 39–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64623-3_2.
Full textDionne, Gerald F. "Magneto-Optical Properties." In Magnetic Oxides, 343–84. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0054-8_7.
Full textDionne, Gerald F. "Spin Transport Properties." In Magnetic Oxides, 385–459. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0054-8_8.
Full textMerkulov, I. A. "Non-Magnetic Magnetic Polaron." In Optical Properties of Semiconductor Nanostructures, 269–78. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_28.
Full textFukushima, Kimichika. "Magnetic Properties." In Hartree-Fock-Slater Method for Materials Science, 121–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31297-8_5.
Full textConference papers on the topic "Magnetic propertie"
Song, Pan, Xiaoying Tang, ShaoJun Wang, Bin Ren, Yantian Zuo, and Jielu Wang. "A Study on the Magnetic Distribution of Nd-Fe-B Permanent Magnets in Pipeline in Line Inspection Tool." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84529.
Full textTian, Zongjun, Shangdong Li, Youwei Du, and Yinhui Huang. "Preparation and Magnetic Properties of the Exchange Coupling NdFeB Nanocomposited Permanent Magnets." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21156.
Full textEshaghi, Mehdi, Ramin Sedaghati, and Subash Rakheja. "A Hybrid Model for Characterizing Pre-Yield Properties of MR Fluids." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36785.
Full textHu, Chengzhi, Mingyuan Gao, Zhenzhi Chen, Honghai Zhang, and Sheng Liu. "Novel Magnetic Propulsion System for Capsule Endoscopy." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10432.
Full textN D, Senthil Ram, Rajeshkumar ramasamy, Seenuvas Sivathanu, Sathishkumar Manoharan, Thulasirajan Ganesan, Muruganandam Radhakrishnan, and Praveen Chakrapani Rao. "Design Analysis of Multipole Sensor Magnet for Peel off Strength of the Plastic Bonded Magnet from the Metal Cup." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0493.
Full textCurtin, Paul R., Steve Constantinides, and Patricia Iglesias Victoria. "Fracture Toughness of Samarium Cobalt Magnets." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53435.
Full textVictoria, Patricia Iglesias, Weimin Yin, Surendra K. Gupta, and Steve Constantinides. "Microstructural Characterization of Sm-Co Magnets." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37106.
Full textWalmer, Marlin S., Christina H. Chen, and Michael H. Walmer. "A New Class of Permanent Magnetic Materials for High Temperature Applications." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0412.
Full textSeat, Han C., and Ian A. Watson. "Laser welding of magnetic materials." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cmb7.
Full textSong, Haiyan, Zhengong Zhou, Lifu Liang, and Zongmin Liu. "Generalized Variational Principles of Electro-Magneto-Thermo-Elasto-Dynamics." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10681.
Full textReports on the topic "Magnetic propertie"
Rodger, E., and V. Badea. MAGNETIC PROPERTIES OF THE H-10 MAGNET. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/1150526.
Full textAndreescu, R., and M. J. O'Shea. Hard Magnetic Properties of Multilayered SmCo/Co Permanent Magnets. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada398436.
Full textLambrecht, Walter R. Magneto-Optical Properties of Hybrid Magnetic Material Semiconductor Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada472402.
Full textMoler, Kathryn A. Magnetic Properties of Nanocrystals. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada441687.
Full textGoldfarb, R. B., and F. R. Fickett. Units for magnetic properties. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.sp.696.
Full textCamley, R. E. Magnetic, Electronic, and Thermal Properties of Magnetic Multilayers. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada370040.
Full textAuthor, Not Given. (Magnetic properties of doped semiconductors). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6435513.
Full textMielke, Charles H., Vivien Zapf, Jae Wook Kim, Eun D. Mun, Joseph P. Baiardo, Jeremy N. Mitchell, Scott Richmond, and Daniel S. Schwartz. Pu doped with Hydrogen: Magnetic Properties. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1095224.
Full textChrzan, D. C. Magnetic properties of surfaces and interfaces. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7073523.
Full textSoffa, W. A. The relationship between microstructure and magnetic properties in high-energy permanent magnets characterized by polytwinned structures. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6633143.
Full text