To see the other types of publications on this topic, follow the link: Magnetic properties and spinel.

Journal articles on the topic 'Magnetic properties and spinel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetic properties and spinel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Astik, Nidhi M., and G. J. Baldha. "Investigation of Structural, Electrical and Magnetic Properties of Mixed Ferrite System." Advanced Materials Research 1047 (October 2014): 119–22. http://dx.doi.org/10.4028/www.scientific.net/amr.1047.119.

Full text
Abstract:
The mineral having chemical compositional formula MgAl2O4 is called “spinel”. The ferrites crystallize in spinel structure are known as spinel-ferrites or ferro-spinels. The spinel structure has an fcc cage of oxygen ions and the metallic cations are distributed among tetrahedral (A) and octahedral (B) interstitial voids (sites). A compound of Co0.85Ca0.15-yMgyFe2O4 (y=0.05, 0.10, 0.15) is synthesized in polycrystalline form, using the stoichiometric mixture of oxides with conventional standard ceramic technique and characterized by X-ray diffraction (XRD).The XRD analysis confirmed the presen
APA, Harvard, Vancouver, ISO, and other styles
2

Kariya, F., K. Ebina, K. Hasegawa, et al. "Magnetic properties of the spinel-type." Journal of Solid State Chemistry 182, no. 8 (2009): 2018–23. http://dx.doi.org/10.1016/j.jssc.2009.05.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sagredo, V., B. Watts, and B. Wanklyn. "Magnetic Properties of the Spinel SnCo2O4." Le Journal de Physique IV 07, no. C1 (1997): C1–279—C1–280. http://dx.doi.org/10.1051/jp4:19971110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cruz-Franco, Berenice, Thomas Gaudisson, Souad Ammar, et al. "Magnetic Properties of Nanostructured Spinel Ferrites." IEEE Transactions on Magnetics 50, no. 4 (2014): 1–6. http://dx.doi.org/10.1109/tmag.2013.2283875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamad, Mahmoud. "Simulated magnetocaloric properties of MnCr2O4 spinel." Processing and Application of Ceramics 10, no. 1 (2016): 33–36. http://dx.doi.org/10.2298/pac1601033h.

Full text
Abstract:
The magnetocaloric properties of MnCr2O4 spinel have been simulated based on a phenomenological model. The simulation of magnetization as function of temperature is used to explore magnetocaloric properties such as magnetic entropy change, heat capacity change, and relative cooling power. The results imply the prospective application of MnCr2O4 spinel to achieve magnetocaloric effect at cryogenic temperatures (20-60K) near Curie temperatures (38-44K). According to the obtained results it is recommended that MnCr2O4 spinel can be used as a promising practical material in the active magnetic reg
APA, Harvard, Vancouver, ISO, and other styles
6

Ito, Masakazu, Yuji Nagi, Naotoshi Kado, et al. "Magnetic properties of spinel FeCr2S4 in high magnetic field." Journal of Magnetism and Magnetic Materials 323, no. 24 (2011): 3290–93. http://dx.doi.org/10.1016/j.jmmm.2011.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kruk, Andrzej, Mateusz Schabikowski, Marzena Mitura-Nowak, and Tomasz Brylewski. "Magnetic and electrical properties of Mn2CoO4 spinel." Physica B: Condensed Matter 596 (November 2020): 412402. http://dx.doi.org/10.1016/j.physb.2020.412402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsoi, G. M., L. E. Wenger, Y. H. A. Wang, and A. Gupta. "Magnetic properties of chalcogenide spinel CuCr2Se4 nanocrystals." Journal of Magnetism and Magnetic Materials 322, no. 1 (2010): 142–47. http://dx.doi.org/10.1016/j.jmmm.2009.08.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sláma, Jozef, Martin Šoka, Anna Grusková, Rastislav Dosoudil, Vladimír Jančárik, and Jarmila Degmová. "Magnetic properties of selected substituted spinel ferrites." Journal of Magnetism and Magnetic Materials 326 (January 2013): 251–56. http://dx.doi.org/10.1016/j.jmmm.2012.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ito, Masakazu, Naotoshi Kado, Kazuyuki Matsubayashi, et al. "Magnetic properties of spinel CuCrZrS4 under pressure." Journal of Magnetism and Magnetic Materials 331 (April 2013): 98–101. http://dx.doi.org/10.1016/j.jmmm.2012.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Corral-Flores, Veronica, Dario Bueno-Baques, Anatoliy V. Glushchenko, et al. "Magnetic Properties of Spinel Cobalt–Manganese Ferrites." IEEE Transactions on Magnetics 51, no. 4 (2015): 1–4. http://dx.doi.org/10.1109/tmag.2014.2357172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

., Hina Bhargava. "BULK MAGNETIC PROPERTIES OF NANOSIZED SPINEL FERRITES." International Journal of Research in Engineering and Technology 05, no. 16 (2016): 401–4. http://dx.doi.org/10.15623/ijret.2016.0516088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sarkar, Babusona, Biswajit Dalal, Vishal Dev Ashok, Kaushik Chakrabarti, Amitava Mitra, and S. K. De. "Magnetic properties of mixed spinel BaTiO3-NiFe2O4composites." Journal of Applied Physics 115, no. 12 (2014): 123908. http://dx.doi.org/10.1063/1.4869782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Peña, O., Yanwei Ma, P. Barahona, et al. "Magnetic properties of NiMn2−xCoxO4 spinel oxides." Journal of the European Ceramic Society 25, no. 12 (2005): 3051–54. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Plumier, R., and M. Sougi. "Magnetic properties of the normal spinel Ag12In12Cr2S4." Journal of Magnetism and Magnetic Materials 83, no. 1-3 (1990): 309–10. http://dx.doi.org/10.1016/0304-8853(90)90528-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

ALEKSEEV, Aleksandr Valer’evich, and Tat’yana Andreevna SHERENDO. "Composition, structure and magnetic properties of ore chrome spinels of the Klyuchevsky massif (Middle Urals)." NEWS of the Ural State Mining University 1, no. 1 (2020): 73–85. http://dx.doi.org/10.21440/2307-2091-2020-1-73-85.

Full text
Abstract:
The overall objective was to create a geological and geophysical field test site for chromite mineralization and detailed works in order to determine and test the main search criteria for disseminated mineralization. To create a field test site, an area was selected in the southern part of the Klyuchevsky massif characterized by abundant development of disseminated mineralization in the banded dunite-clinopyroxenite complex and strong processes of superimposed metamorphism. This paper gives a piece of research on the composition of chrome spinel from disseminated ores that underwent metamorphi
APA, Harvard, Vancouver, ISO, and other styles
17

Milivojevic, D., B. Babic-Stojic, V. Jokanovic, et al. "Sol-gel as a method to tailor the magnetic properties of Co1+yAl2-yO4." Science of Sintering 45, no. 1 (2013): 69–78. http://dx.doi.org/10.2298/sos1301069m.

Full text
Abstract:
The magnetic properties of mesoscopic materials are modified by size and surface effects. We present a sol-gel method used to tailor these effects, and illustrate it on Co1+yAl2-yO4 spinel. Nanocomposites made of spinel oxide Co1+yAl2-yO4 particles dispersed in an amorphous SiO2 matrix were synthesized. Samples with various mass fractions -x of Co1+yAl2-yO4 in composite, ranging from predominantly SiO2 (x = 10 wt%) to predominantly spinel (x = 95 wt%), and with various Co concentrations in spinel y were studied. The spinel grain sizes were below 100 nm with a large size distribution, for sampl
APA, Harvard, Vancouver, ISO, and other styles
18

Hamedoun, M., A. Benyoussef, and M. Bousmina. "Magnetic properties of magnetic Co1−xMgxFe2O4 spinel by HTSE method." Physica B: Condensed Matter 406, no. 9 (2011): 1633–38. http://dx.doi.org/10.1016/j.physb.2010.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Salmi, S., R. Masrour, A. El Grini, et al. "Magnetic properties of NiAlxFe2−xO4 spinels: A mean field approach and high-temperature series expansions study." International Journal of Modern Physics B 32, no. 07 (2018): 1850070. http://dx.doi.org/10.1142/s0217979218500704.

Full text
Abstract:
The magnetic properties of NiAl[Formula: see text]Fe[Formula: see text]O4 (NAFO) spinels were studied. Influence of Al doping on magnetic properties of NiFe2O4 spinel were examined. The exchange interactions in NAFO were obtained. The general expression of saturation magnetization and the critical temperature were obtained using mean field theory. The high-temperature series expansions combined with the Padé approximant are given to determine the critical temperature of NAFO. The critical exponent associated with the magnetic susceptibility [Formula: see text] was also deduced. The obtained re
APA, Harvard, Vancouver, ISO, and other styles
20

Ramarao, K., B. Rajesh Babu, B. Kishore Babu, et al. "Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite." Materials Science-Poland 36, no. 4 (2018): 644–54. http://dx.doi.org/10.2478/msp-2018-0065.

Full text
Abstract:
AbstractIn this work, Ni substituted magnesium spinel ferrites having general formula Mg1−xNixFe2O4 (where x = 0.0, 0.1, 0.15, 0.2, 0.25 and 0.3) were synthesized by standard solid state reaction method. All the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), DC resistivity measurements. X-ray diffraction analysis confirmed the single spinel phase. The lattice constant decreased with increasing Ni content due to the difference in the ionic radii of Mg2+ and Ni2+ ions. The FT-IR spectra reveled two prom
APA, Harvard, Vancouver, ISO, and other styles
21

Bagdasarian, Alexander, Mikhail Samoylovich, Alpik Mkrtchyan, et al. "UHF-Properties of Nanocomposites: Magnetic Resonance." Advanced Materials Research 1084 (January 2015): 66–71. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.66.

Full text
Abstract:
This work presents the results of studies of electromagnetic properties of nanocomposites based on opal matrices in the millimeter wavelength range. It is shown that the application of an external magnetic field changes the transmission and reflection coefficients. Magnetic resonance was studied in nanocomposite particles of spinel ferrites or metals. Magnetic resonance spectra were restored. We considered the parameters of nanocomposites required for using in microwave devices.
APA, Harvard, Vancouver, ISO, and other styles
22

Demidzu, H., T. Nakamura, and Y. Yamada. "Magnetic Properties of Li-Mn-Mg Spinel Oxides." Journal of the Magnetics Society of Japan 32, no. 5 (2008): 504–8. http://dx.doi.org/10.3379/msjmag.32.504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Yang, Boyu Ma, Ning Chen, et al. "Structural and magnetic properties of LiMn1.5Fe0.5O4 spinel oxide." Physica B: Condensed Matter 405, no. 23 (2010): 4733–39. http://dx.doi.org/10.1016/j.physb.2010.08.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Meena, P. L., Sunita Pal, K. Sreenivas, and Ravi Kumar. "Structural and Magnetic Properties of MnCo2O4 Spinel Multiferroic." Advanced Science Letters 21, no. 9 (2015): 2760–63. http://dx.doi.org/10.1166/asl.2015.6336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sohma, M., K. Kawaguchi, Y. Oosawa, T. Manago, and H. Miyajima. "Magnetic properties of epitaxial spinel bilayers and multilayers." Journal of Magnetism and Magnetic Materials 198-199 (June 1999): 294–96. http://dx.doi.org/10.1016/s0304-8853(98)01113-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chhaya, Urvi V., Bimal S. Trivedi, and R. G. Kulkarni. "Magnetic properties of the mixed spinel NiAl2xCrxFe2−3xO4." Physica B: Condensed Matter 262, no. 1-2 (1999): 5–12. http://dx.doi.org/10.1016/s0921-4526(98)00659-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hoshi, T., H. Aruga Katori, M. Kosaka, and H. Takagi. "Magnetic properties of single crystal of cobalt spinel." Journal of Magnetism and Magnetic Materials 310, no. 2 (2007): e448-e450. http://dx.doi.org/10.1016/j.jmmm.2006.10.845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cruz-Franco, Berenice, Thomas Gaudisson, Souad Ammar, et al. "ChemInform Abstract: Magnetic Properties of Nanostructured Spinel Ferrites." ChemInform 46, no. 2 (2014): no. http://dx.doi.org/10.1002/chin.201502218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Aminov, T. G., E. V. Busheva, and G. G. Shabunina. "Magnetic Properties of Copper–Indium Doped Spinel FeCr2S4." Russian Journal of Inorganic Chemistry 64, no. 12 (2019): 1592–99. http://dx.doi.org/10.1134/s0036023619120039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

EL Maazouzi, A., R. Masrour, and A. Jabar. "Thickness-dependent magnetic properties of inverse spinel Fe3O4." Phase Transitions 93, no. 7 (2020): 733–40. http://dx.doi.org/10.1080/01411594.2020.1771563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Continenza, Alessandra, Teresa de Pascale, Franco Meloni, and Marina Serra. "Electronic and magnetic properties of the spinel semiconductorCdCr2Se4." Physical Review B 49, no. 4 (1994): 2503–8. http://dx.doi.org/10.1103/physrevb.49.2503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Silva, F. G. da, J. Depeyrot, A. F. C. Campos, R. Aquino, D. Fiorani, and D. Peddis. "Structural and Magnetic Properties of Spinel Ferrite Nanoparticles." Journal of Nanoscience and Nanotechnology 19, no. 8 (2019): 4888–902. http://dx.doi.org/10.1166/jnn.2019.16877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mounkachi, O., M. Hamedoun, and A. Benyoussef. "Electronic and Magnetic Properties of SnFe2O4 Spinel Ferrites." Journal of Superconductivity and Novel Magnetism 30, no. 11 (2017): 3035–38. http://dx.doi.org/10.1007/s10948-017-4138-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sagredo, V. "Magnetic properties of the Mn1−xFexIn2S4 spinel compounds." Journal of Alloys and Compounds 369, no. 1-2 (2004): 84–86. http://dx.doi.org/10.1016/j.jallcom.2003.09.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mohan, H., I. A. Shaikh, and R. G. Kulkarni. "Magnetic properties of the mixed spinel CoFe2−xCrxO4." Physica B: Condensed Matter 217, no. 3-4 (1996): 292–98. http://dx.doi.org/10.1016/0921-4526(95)00620-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kondrat'eva, O. N., G. E. Nikiforova, E. V. Shevchenko, and M. N. Smirnova. "Low-temperature magnetic properties of MgFe1.2Ga0.8O4 spinel nanoparticles." Ceramics International 46, no. 8 (2020): 11390–96. http://dx.doi.org/10.1016/j.ceramint.2020.01.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yamaura, K., Q. Huang, L. Zhang, et al. "Post-spinel transition and magnetic properties of LiMn2O4." physica status solidi (b) 244, no. 1 (2007): 285–89. http://dx.doi.org/10.1002/pssb.200672566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Guillemet-Fritsch, Sophie, Christophe Tenailleau, Helene Bordeneuve, and Abel Rousset. "Magnetic Properties of Cobalt and Manganese Oxide Spinel Ceramics." Advances in Science and Technology 67 (October 2010): 143–48. http://dx.doi.org/10.4028/www.scientific.net/ast.67.143.

Full text
Abstract:
Magnetic susceptibility measurements, magnetization and neutron diffraction results at low temperature for cobalt and manganese oxide spinel ceramics are presented. The Curie temperature varies similarly with the sample composition in ceramics and powders. The experimental molar Curie constant variation is explained by the presence of Co2+, CoIII, Mn3+ and Mn4+, and possibly Co3+ in the octahedral sites for the cobalt rich phases. The magnetic moments of the cations in tetrahedral and octahedral sites are not collinear and the global magnetization is oriented in a third direction.
APA, Harvard, Vancouver, ISO, and other styles
39

El Maazouzi, A., R. Masrour, A. Jabar, and M. Hamedoun. "Magnetic Properties of Chromite ACr2S4 (A=Zn, Cd and Hg) Spinels: A Monte Carlo Study." SPIN 08, no. 04 (2018): 1850021. http://dx.doi.org/10.1142/s2010324718500212.

Full text
Abstract:
The magnetic properties of chromite ACr2S4 ([Formula: see text]n, Cd and Hg) spinels have been investigated. The first, second and the third nearest-neighbor exchange interactions are included into a Metropolis-based Monte Carlo calculation for the three-dimensional Ising model. Transition temperatures have been deduced from the variation of magnetizations and magnetic susceptibilities for three spinel systems. The magnetic hysteresis cycles have been deduced for three systems. Critical exponents associated with the magnetization, magnetic susceptibility and specific heat have been determined.
APA, Harvard, Vancouver, ISO, and other styles
40

Panchal, Nital R., and Rajshree B. Jotania. "Enhancement of Magnetic Properties in Co-Sr Ferrite Nano Composites Prepared by an SHS Route." Solid State Phenomena 209 (November 2013): 164–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.164.

Full text
Abstract:
The preparation and characterization of composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. In order to improve the magnetic and electromagnetic absorption properties of magnetic materials, composite of soft/hard ferrite is required in proper composition. For high-density magnetic recording, decrease in the coercive field and simultaneously increase in saturation magnetization has attracted much attention. To achieve these properties, new modified CoFe2O4-SrFe12O19 composite ferrite nanoparticles
APA, Harvard, Vancouver, ISO, and other styles
41

Medina Chanduví, H. H., A. V. Gil Rebaza, and L. A. Errico. "PROPIEDADES ESTRUCTURALES, MAGNÉTICAS E HIPERFINAS DE LA FERRITA MgFe2O4: ESTUDIO MEDIANTE CÁLCULOS AB-INITIO." Anales AFA 31, no. 4 (2021): 121–26. http://dx.doi.org/10.31527/analesafa.2020.31.4.121.

Full text
Abstract:
We present here a first principles study of the structural, electronic, magnetic, and hyperfine properties of magnesium ferrite, MgFe2O4 (spinel structure). The study was carried out within the framework of Functional Density Theory (DFT) using the full potential linearized augmented plane waves method (FPLAPW) using both the Generalized Gradient (GGA) and the GGA+U approximations for the exchange and correlation potential. To discuss the magnetic ordering and the lowest energy structure of the system we consider different distributions of Mg and Fe ions in both cationic sites of the spinel st
APA, Harvard, Vancouver, ISO, and other styles
42

Garg, Neha, Monu Mishra, Govind Govind, and Ashok Kumar Ganguli. "Electrochemical and magnetic properties of nanostructured CoMn2O4 and Co2MnO4." RSC Advances 5, no. 103 (2015): 84988–98. http://dx.doi.org/10.1039/c5ra16937b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Azzoni, C. B., M. C. Mozzati, A. Paleari, V. Massarottib, D. Capsonib, and M. Binib. "Magnetic Order in Li-Mn Spinels." Zeitschrift für Naturforschung A 53, no. 8 (1998): 693–98. http://dx.doi.org/10.1515/zna-1998-0809.

Full text
Abstract:
Abstract Magnetic measurements were carried out on different samples of Lithium-Manganese spinel LiMn2O4 , great care having been taken to avoid the presence of spurious magnetic phases, such as Mn3O4 . Susceptibility data, showing deviations from paramagnetic behaviour at about 40 K, were analyzed in terms of local magnetic interactions, taking into account the structural and transport properties of these com-pounds. The magnetic response of pure and stoichiometric samples suggests that the onset of a longrange magnetic ordering is hindered by the topological frustration of the antiferromagne
APA, Harvard, Vancouver, ISO, and other styles
44

Uchida, Kazumasa, Ikuka Chiba, Atsunori Kamegawa, Hitoshi Takamura, and Masuo Okada. "Electric and Magnetic Properties of Newly Synthesized Spinel Manganites." Journal of the Japan Society of Powder and Powder Metallurgy 45, no. 7 (1998): 636–40. http://dx.doi.org/10.2497/jjspm.45.636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ochiai, K., N. Aoki, and H. Komoda. "Magnetic recording properties of spinel rich barium ferrite tapes." Journal of the Magnetics Society of Japan 14, no. 2 (1990): 49–52. http://dx.doi.org/10.3379/jmsjmag.14.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

XIANG, Jun. "Preparation and Magnetic Properties of Spinel-type Ferrite Fibres." Journal of Inorganic Materials 23, no. 5 (2008): 1005–10. http://dx.doi.org/10.3724/sp.j.1077.2008.01005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, Hee-Jung, Seung-Li Choi, Jung-Han Lee, Kwang-Joo Kim, Dong-Hyeok Choi, and Chul-Sung Kim. "Magnetic Properties of Cr-Doped Inverse Spinel Fe3O4Thin Films." Journal of the Korean Magnetics Society 17, no. 2 (2007): 51–54. http://dx.doi.org/10.4283/jkms.2007.17.2.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Anandan, S., T. Selvamani, G. Guru Prasad, A. M. Asiri, and J. J. Wu. "Magnetic and catalytic properties of inverse spinel CuFe2O4 nanoparticles." Journal of Magnetism and Magnetic Materials 432 (June 2017): 437–43. http://dx.doi.org/10.1016/j.jmmm.2017.02.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Smitha, P., P. K. Pandey, S. Kurian, and N. S. Gajbhiye. "Mössbauer studies and magnetic properties of spinel lead ferrite." Hyperfine Interactions 184, no. 1-3 (2008): 129–34. http://dx.doi.org/10.1007/s10751-008-9777-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Patra, P., I. Naik, H. Bhatt, and S. D. Kaushik. "Structural, infrared spectroscopy and magnetic properties of spinel ZnMn2O4." Physica B: Condensed Matter 572 (November 2019): 199–202. http://dx.doi.org/10.1016/j.physb.2019.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!