Academic literature on the topic 'Magnetic properties in spintronics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic properties in spintronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Magnetic properties in spintronics"

1

Owen, Man Hon Samuel. "Electrical gating effects on the magnetic properties of (Ga,Mn)As diluted magnetic semiconductors." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228705.

Full text
Abstract:
The aim of the research project presented in this thesis is to investigate the effects of electrostatic gating on the magnetic properties of carrier-mediated ferromagnetic Ga1-xMnxAs diluted magnetic semiconductors. (Ga,Mn)As can be regarded as a prototype material because of its strong spin-orbit coupling and its crystalline properties which can be described within a simple band structure model. Compressively strained (Ga,Mn)As epilayer with more complex in-plane competing cubic and uniaxial magnetic anisotropies is of particular interest since a small variation of these competing anisotropy
APA, Harvard, Vancouver, ISO, and other styles
2

Gustavsson, Fredrik. "Properties of Fe/ZnSe Heterostructures : A Step Towards Semiconductor Spintronics." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5314-7/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Yongxiong. "Synthesis and magnetic properties of Fe₃O₄/GaAs(100) structures for spintronics." Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rovinelli, Giovanni. "Magnetic, morphological and structural properties of polycrystalline ultrathin cobalt films for organic spintronics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
The opportunity of using the organic molecules in spintronic devices appeared challenging since these materials, having nominally high spin relaxation times, are suitable for coherent spin manipulation. The spin behaviour in these molecular spintronic devices has been demonstrated to strongly depend on the nature of the chemical bonds between the organic molecules and the magnetic electrodes affecting also the magnetic response of both molecular and metallic sides. In particular, the adsorption of an organic molecule on a ferromagnetic layer has been proved to change the local magnetism of a m
APA, Harvard, Vancouver, ISO, and other styles
5

Vahaplar, Kadir Tarı Süleyman. "Structural And Magnetic Properties os Si(100)/Ta/Co Multilayers For Spintronics Applications." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/fizik/T000662.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newhouse-Illige, T., Yaohua Liu, M. Xu, et al. "Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions." NATURE PUBLISHING GROUP, 2017. http://hdl.handle.net/10150/624333.

Full text
Abstract:
Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdOx tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the inte
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, I.-Ling. "Magnetic properties of two-dimensional materials : graphene, its derivatives and molybdenum disulfide." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/magnetic-properties-of-twodimensional-materials-graphene-its-derivatives-and-molybdenum-disulfide(59dcba1b-332e-4a58-86f6-80ed56c7fdd1).html.

Full text
Abstract:
Graphene, an atomically thin material consisting of a hexagonal, highly packed carbon lattice, is of great interests in its magnetic properties. These interests can be categorized in several fields: graphene-based magnetic materials and their applications, large diamagnetism of graphene, and the heterostructures of graphene and other two dimensional materials. In the first aspect, magnetic moments can be in theory introduced to graphene by minimizing its size or introducing structural defects, leading to a very light magnetic material. Furthermore, weak spin-orbital interaction, and long spin
APA, Harvard, Vancouver, ISO, and other styles
8

Lampert, Lester Florian. "High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3327.

Full text
Abstract:
Spintronics reaches beyond typical charge-based information storage technologies by utilizing an addressable degree of freedom for electron manipulation, the electron spin polarization. With mounting experimental data and improved theoretical understanding of spin manipulation, spintronics has become a potential alternative to charge-based technologies. However, for a long time, spintronics was not thought to be feasible without the ability to electrostatically control spin conductance at room temperature. Only recently, graphene, a 2D honeycomb crystalline allotrope of carbon only one atom th
APA, Harvard, Vancouver, ISO, and other styles
9

Staneva, Maya. "Theoretical study of dilute magnetic semiconductors : Properties of (Ga,Mn)As." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126096.

Full text
Abstract:
The dilute magnetic semiconductor (Ga,Mn)As , which is the most interesting and promising material for spintronics applications, has been theoretically studied by using Density Functional Theory. First of all, calculations on GaAs were done and it was found that GaAs is a semiconductor with a direct band gap. The calculated value of the band gap is ~ 0.5eV. Secondly, the material iron was considered and it was confirmed that iron is a ferromagnetic metal with 2.2µB net magnetic moment. Then a magnetic impurity of manganese, Mn was introduced in the nonmagnetic GaAs and it became ferromagnetic
APA, Harvard, Vancouver, ISO, and other styles
10

Gupta, Shalini. "Growth of novel wide bandgap room temperature ferromagnetic semiconductor for spintronic applications." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33809.

Full text
Abstract:
This work presents the development of a GaN-based dilute magnetic semiconductor (DMS) by metal organic chemical vapor deposition (MOCVD) that is ferromagnetic at room temperature (RT), electrically conductive, and possesses magnetic properties that can be tuned by n- and p-doping. The transition metal series (TM: Cr, Mn, and Fe) along with the rare earth (RE) element, Gd, was investigated in this work as the magnetic ion source for the DMS. Single- phase and strain-free GaTMN films were obtained. Optical measurements revealed that Mn is a deep acceptor in GaN, while Hall measurements showed th
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!