Academic literature on the topic 'Magnetické vortexy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetické vortexy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetické vortexy"

1

Mintairov, Alexander, Dmitrii Lebedev, Alexei Vlasov, Andrey Bogdanov, Shahab Ramezanpour, and Steven Blundell. "Fractional Charge States in the Magneto-Photoluminescence Spectra of Single-Electron InP/GaInP2 Quantum Dots." Nanomaterials 11, no. 2 (2021): 493. http://dx.doi.org/10.3390/nano11020493.

Full text
Abstract:
We used photoluminescence spectra of single electron quasi-two-dimensional InP/GaInP2 islands having Wigner-Seitz radius ~4 to measure the magnetic-field dispersion of the lowest s, p, and d single-particle states in the range 0–10 T. The measured dispersion revealed up to a nine-fold reduction of the cyclotron frequency, indicating the formation of nano-superconducting anyon or magneto-electron (em) states, in which the corresponding number of magnetic-flux-quanta vortexes and fractional charge were self-generated. We observed a linear increase in the number of vortexes versus the island size
APA, Harvard, Vancouver, ISO, and other styles
2

Pylypovskyi, O. V., D. D. Sheka, V. P. Kravchuk, Yu B. Gaididei, and F. G. Mertens. "Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core." Ukrainian Journal of Physics 58, no. 6 (2013): 596–603. http://dx.doi.org/10.15407/ujpe58.06.0596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Hui, Mengmeng Sun, Xinjian Fan, et al. "Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation." Science Robotics 4, no. 28 (2019): eaav8006. http://dx.doi.org/10.1126/scirobotics.aav8006.

Full text
Abstract:
Swimming microrobots that are energized by external magnetic fields exhibit a variety of intriguing collective behaviors, ranging from dynamic self-organization to coherent motion; however, achieving multiple, desired collective modes within one colloidal system to emulate high environmental adaptability and enhanced tasking capabilities of natural swarms is challenging. Here, we present a strategy that uses alternating magnetic fields to program hematite colloidal particles into liquid, chain, vortex, and ribbon-like microrobotic swarms and enables fast and reversible transformations between
APA, Harvard, Vancouver, ISO, and other styles
4

Watson, J. L. S., and Z. Li. "Vortex magnetic separation." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 211, no. 1 (1997): 31–42. http://dx.doi.org/10.1243/0954408971529520.

Full text
Abstract:
Vortex magnetic separation (VMS) is a new technique (1-3) which can not only greatly increase selectivity of high gradient magnetic separation but can also provide a much higher material throughput because high slurry velocity is used. This technique will have a wide range of applications in fields as diverse as mineral processing, biochemical engineering, sewage and wastewater treatment and industrial effluent treatment. At present in high gradient magnetic separation (HGMS) low Reynolds numbers (with respect to the wire diameter) are usually used and the magnetic product is captured on the u
APA, Harvard, Vancouver, ISO, and other styles
5

Antos, Roman, YoshiChika Otani, and Junya Shibata. "Magnetic Vortex Dynamics." Journal of the Physical Society of Japan 77, no. 3 (2008): 031004. http://dx.doi.org/10.1143/jpsj.77.031004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garcia, F., J. P. Sinnecker, E. R. P. Novais, and A. P. Guimarães. "Magnetic vortex echoes." Journal of Applied Physics 112, no. 11 (2012): 113911. http://dx.doi.org/10.1063/1.4768446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hrkac, Gino, Paul S. Keatley, Matthew T. Bryan, and Keith Butler. "Magnetic vortex oscillators." Journal of Physics D: Applied Physics 48, no. 45 (2015): 453001. http://dx.doi.org/10.1088/0022-3727/48/45/453001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guervilly, Céline, David W. Hughes, and Chris A. Jones. "Large-scale-vortex dynamos in planar rotating convection." Journal of Fluid Mechanics 815 (February 20, 2017): 333–60. http://dx.doi.org/10.1017/jfm.2017.56.

Full text
Abstract:
Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here, we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ($100\lesssim Rm\lesssim 550$, with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, nearly out of phase with the oscillating amplitude of the large-scale vortex. The large-scale vortex is disrupted once the mag
APA, Harvard, Vancouver, ISO, and other styles
9

Guslienko, K. Yu. "Magnetic Vortex State Stability, Reversal and Dynamics in Restricted Geometries." Journal of Nanoscience and Nanotechnology 8, no. 6 (2008): 2745–60. http://dx.doi.org/10.1166/jnn.2008.18305.

Full text
Abstract:
Magnetic vortices are typically the ground states in geometrically confined ferromagnets with small magnetocrystalline anisotropy. In this article I review static and dynamic properties of the magnetic vortex state in small particles with nanoscale thickness and sub-micron and micron lateral sizes (magnetic dots). Magnetic dots made of soft magnetic material shaped as flat circular and elliptic cylinders are considered. Such mesoscopic dots undergo magnetization reversal through successive nucleation, displacement and annihilation of magnetic vortices. The reversal process depends on the stabi
APA, Harvard, Vancouver, ISO, and other styles
10

REED, D. S., N. C. YEH, W. JIANG, U. KRIPLANI, M. KONCZYKOWSKI, and F. HOLTZBERG. "ANISOTROPIC VORTEX DYNAMICS AND PHASE DIAGRAM OF YBa2Cu3O7 SINGLE CRYSTALS WITH CANTED COLUMNAR DEFECTS." International Journal of Modern Physics B 10, no. 22 (1996): 2723–43. http://dx.doi.org/10.1142/s0217979296001215.

Full text
Abstract:
The anisotropic vortex dynamics and phase diagram are determined for a YBa 2 Cu 3 O 7 single crystal with columnar defects oriented at ±7.5° relative to the crystalline c-axis. A second-order splayed-glass to vortex-liquid transition is manifested for magnetic fields nearly parallel to the columns via the critical scaling of vortex AC and DC transport properties. In contrast, for magnetic fields aligned close to the ab-plane, an XY-like vortex-glass transition prevails. For magnetic fields at intermediate angles, there is no evidence of any vortex phase transition, and the vortex dynamics is d
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetické vortexy"

1

Flajšman, Lukáš. "Vektorová Kerrova magnetometrie." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232044.

Full text
Abstract:
Increased complexity of novel magnetic materials in the last decade has placed high demands on the manufacturing process as well as on the characterization. One of the possibilities for characterization of magnetic samples is to exploit the magneto-optical effects. The presented work uses the magneto-optical Kerr effect as a major characterization technique to probe the magnetic properties of samples. We have developed a mathematical model describing the effect of the magnetization on the polarized light and present an apparatus capable of measuring the response given by the light-matter inter
APA, Harvard, Vancouver, ISO, and other styles
2

Balajka, Jan. "Přepínání chirality vortexů v magnetostaticky svázaných permalloyových nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230609.

Full text
Abstract:
The diploma thesis is concerned with switching of vortex circulation in magnetic nanodisks. The results of micromagnetic simulations of hysteresis loops of individual disks with different degrees of asymmetry are presented. The influence of geometric asymmetry of the disk on the shape of the hysteresis loop is discussed as well as switching of vortex circulation in asymmetric nanodisks by external in-plane magnetic field. Simulations of pairs of magnetostatically coupled nanodisks were carried out for different interdisk distances and degrees of asymmetry. By analysing the results of the simul
APA, Harvard, Vancouver, ISO, and other styles
3

Hladík, Lukáš. "Přepínání spinových vortexů v magnetických nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230257.

Full text
Abstract:
The diploma thesis deals with the switching of spin vortices in magnetic nanodisks. First, the basic concepts of (micro)magnetism are defined and existing theoretical and experimental achievements in the field of switching of the two basic characteristics (chirality and polarity) of magnetic vortex are summarized. Then the principle of dynamic switching of magnetic vortex chirality using in-plane magnetic field pulse with a well defined amplitude and duration is presented. There is no need to use a certain shape of nanodisks or asymmetry in magnetic field distribution. Nanostructures were prep
APA, Harvard, Vancouver, ISO, and other styles
4

Pigeau, Benjamin. "Magnetic vortex dynamics nanostructures." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00779597.

Full text
Abstract:
This thesis is aimed at studying experimentally the magnetisationdynamics of discs in the sub-micron range made of low dampingferromagnetic materials. For this purpose, an extremely sensitivetechnique has been used: the ferromagnetic resonance force microscopy. A firstpart is devoted to the measurement of the eigenmodes of NiMnSb discstaken in their remanent state: a vortex. The influence of aperpendicular magnetic field on the spin wave modes in the vortex state willbe detailled. Then, the coupling mechanism between the vortex core andthese spin wave, eventually leading to its dynamical rever
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Zhengnan. "Vortex magnetic separation (VMS)." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaňatka, Marek. "Studium vortexových stavů v magnetostaticky svázaných magnetických nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231770.

Full text
Abstract:
Magnetic vortices in ferromagnetic disks are curling magnetization structures characterized by the sense of the spin circulation in the plane of the disk and by the direction of the magnetization in the vortex core. Concepts of memory devices using the magnetic vortices as multibit memory cells have been presented, which brought the high demand for their research in many physical aspects. This work investigates the magnetostatic coupling in pairs of ferromagnetic disks to clarify the influence of nearby disks or other magnetic structures to the vortex nucleation mechanism. To ensure that the v
APA, Harvard, Vancouver, ISO, and other styles
7

Staňo, Michal. "Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231312.

Full text
Abstract:
The thesis deals with magnetic force microscopy of soft magnetic nanostructures, mainly NiFe nanowires and thin-film elements such as discs. The thesis covers almost all aspects related to this technique - i.e. from preparation of magnetic probes and magnetic nanowires, through the measurement itself to micromagnetic simulations of the investigated samples. We observed the cores of magnetic vortices, tiny objects, both with commercial and our home-coated probes. Even domain walls in nanowires 50 nm in diameter were captured with this technique. We prepared functional probes with various magnet
APA, Harvard, Vancouver, ISO, and other styles
8

Doupal, Antonín. "Studium vlastností kovových tenkých vrstev a nanostruktur pomocí rastrovací sondové mikroskopie." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229111.

Full text
Abstract:
This diploma thesis is focused on investigation of metallic thin films and nanostructures using scanning probe microscopy. Magnetic properties of these objects are studied by magnetic force microscopy, which is modification of scanning probe microscopy. In the theoretical part basic principles of scanning probe microscopy and magnetic force microscopy are summarized, and also principle of creation of magnetic domains and some special properties of ferromagnetic and antiferromagnetic materials. Further, two techniques of fabricating nanostructures are described. Experimental part is focused on
APA, Harvard, Vancouver, ISO, and other styles
9

Dhankhar, Meena. "Paměťová buňka založená na magnetických vortexech." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-442336.

Full text
Abstract:
Magnetické vortexy jsou charakterizovány směrem stáčení magnetizace a polarizací vortexového jádra, přičemž každá z těchto veličin nabývá dvojice stavů. Ve výsledku jsou tak k dispozici čtyři možné stabilní konfigurace, čehož může být využito v multibitových paměťových zařízeních. Tato dizertační práce se zabývá selektivním zápisem stavů magnetického vortexu v magnetickém disku pulzem elektrického proudu stejně jako jejich následným elektrickým čtením. Před samotnou realizací elektrických měření byla provedena statická měření přepínání stavů vortexu pomocí různých proudových pulzů v kombinaci
APA, Harvard, Vancouver, ISO, and other styles
10

Dapore-Schwartz, Samuel. "An atomic beam magnetic resonance study of a superconductor's magnetic vortex lattice /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856906257537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetické vortexy"

1

service), SpringerLink (Online, ed. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rabinovich, B. I. Vortex processes and solid body dynamics: The dynamic problems of spacecrafts and magnetic levitation systems. Kluwer Academic, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

G, Lebedev V., and Mytarev Alexander I, eds. Vikhrevye prot͡s︡essy i dinamika tverdogo tela: Zadachi dinamiki kosmicheskikh apparatov i sistem na magnitnoĭ podveske. "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Antos, R., and Y. Otani. The dynamics of magnetic vortices and skyrmions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0022.

Full text
Abstract:
This chapter argues that control of magnetic domains and domain wall structures is one of the most important issues from the viewpoint of both applied and basic research in magnetism. Its discussion is however limited to static and dynamic properties of magnetic vortex structures. It has been revealed both theoretically and experimentally that for particular ranges of dimensions of cylindrical and other magnetic elements, a curling in-plane spin configuration is energetically favored, with a small region of the out-of-plane magnetization appearing at the core of the vortex. Such a system, whic
APA, Harvard, Vancouver, ISO, and other styles
5

Kokubo, N., S. Okayasu, and K. Kadowaki. Multi-Vortex States in Mesoscopic Superconductors. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.3.

Full text
Abstract:
This article investigates multi-vortex states in mesoscopic amorphous superconductors with different geometries by means of scanning SQUID microscopy. It first describes the setup of the scanning SQUID microscope used in magnetic imaging of superconducting vortices before discussing the physical properties of amorphous superconducting thin films. It then presents the results of experiments showing the formation of multi-vortex states in mesoscopic dots of weak pinning, amorphous MoGe thin films, along with the formation of vortex polygons and concentric vortex rings in mesoscopic disks. It als
APA, Harvard, Vancouver, ISO, and other styles
6

Scanning Squid Microscope for Studying Vortex Matter in TypeII Superconductors Springer Theses. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ono, T. Spin-transfer torque in nonuniform magnetic structures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0023.

Full text
Abstract:
This chapter defines a magnetic domain wall (DW) as the transition region where the direction of magnetic moments gradually change between two neighbouring domains. It has been pointed out that ferromagnetic materials are not necessarily magnetized to saturation in the absence of an external magnetic field. Instead, they have magnetic domains, within each of which magnetic moments align. The formation of the magnetic domains is energetically favourable because this structure can lower the magnetostatic energy originating from the dipole–dipole interaction. A magnetic vortex realized in a ferro
APA, Harvard, Vancouver, ISO, and other styles
8

Finkler, Amit. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Finkler, Amit. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narlikar, Anant V. Vortex Physics And Flux Pinning: Studies of High Temperature Superconductors. Nova Science Publishers, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetické vortexy"

1

Giamarchi, T., and S. Bhattacharya. "Vortex Phases." In High Magnetic Fields. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45649-x_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kes, P. H. "Pinning and Dynamics of Magnetic Vortices." In The Vortex State. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0974-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bishop, David J., Peter L. Gammel, and Cherry A. Murray. "Magnetic Decoration Studies of Flux Line Lattices in the Cuprate Superconductors." In The Vortex State. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0974-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Browne, P. F. "Magnetic Vortex Tubes and Charge Acceleration." In Interstellar Magnetic Fields. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72621-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Browne, P. F. "Phenomena Involving Magnetic Vortex Tubes." In Galactic and Intergalactic Magnetic Fields. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papanicolaou, N. "Dynamics of Magnetic Vortex Rings." In Singularities in Fluids, Plasmas and Optics. Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2022-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, L. R., and P. C. E. Stamp. "Effective Magnus Force on a Magnetic Vortex." In NATO Science for Peace and Security Series B: Physics and Biophysics. Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8512-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabinovich, Boris I., Valeryi G. Lebedev, and Alexander I. Mytarev. "Some Dynamics Problems for a Solid Body with Electrically Conductive Liquid Moving in Magnetic Field." In Vortex Processes and Solid Body Dynamics. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1038-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ling, Xinsheng, and Joseph I. Budnick. "A.C. Susceptibility Studies of Type-II Superconductors: Vortex Dynamics." In Magnetic Susceptibility of Superconductors and Other Spin Systems. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2379-0_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dewhurst, C. D., S. S. James, N. Saha, et al. "Vortex Pinning and Dynamics in Magnetic and Non- Magnetic (RE)Ni2B2C Superconductors." In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetické vortexy"

1

Swoboda, C., N. Breckwoldt, A. Kobs, et al. "Polarization control in magnonic vortex crystals." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levy, J. S. "Magnetic structures and low frequency dynamics of cubic nanoparticles: Vortex line networks and vortex line dances." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watson, J. H. P., and A. S. Bahaj. "Vortex capture in high gradient magneetic separators at moderate Reynolds number." In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.690181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Y., C. Zhou, and Y. Wu. "Effects of Dzyaloshinskii-Moriya interaction on magnetic vortex gyration." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ki-Suk Lee, Byoung-Woo Kang, and Sang-Koog Kim. "Vortex-antivortex pair driven magnetization dynamics." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xiaoxi, Shinsaku Isomura, and Akimitsu Morisako. "Magnetic vortex core for high resolution magnetic force microscopy." In 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2013. http://dx.doi.org/10.1109/nano.2013.6720870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wittrock, S., S. Tsunegi, K. Yakushiji, et al. "Low frequency noise in vortex spin torque nano-oscillators." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bance, S., G. Hrkac, D. Suess, C. Brownlie, S. McVitie, and T. Schrefl. "Transition from vortex to transverse walls in NiFe nano-structures." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.374974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hao, F., M. Zhang, M. Teng, et al. "Angular dependent vortex glass phase transition in BaFe1.8Co0.2As2 single crystal." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buchanan, K. S., P. E. Roy, M. Grimsditch, et al. "Magnetic vortex dynamics in elliptical dots: Field dependence and interaction effects." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376479.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetické vortexy"

1

Im, Mi-Young, Peter Fischer, Yamada Keisuke, and Shinya Kasai. Statistical Behavior of Formation Process of Magnetic Vortex State in Ni80Fe20 Nanodisks. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1011040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Civale, Leonardo, Ivan Nekrashevich, and Vivien Zapf. Using vortex dynamics tools to explore magnetic configurations in non-superconducting materials. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1798088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moll, Philip J. W., Nikolai D. Zhidadlo, J. Karpinski, et al. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1114402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kouzoudis, D. Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction. Office of Scientific and Technical Information (OSTI), 1999. http://dx.doi.org/10.2172/348923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!