Academic literature on the topic 'Magnetické vortexy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetické vortexy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetické vortexy"

1

Mintairov, Alexander, Dmitrii Lebedev, Alexei Vlasov, Andrey Bogdanov, Shahab Ramezanpour, and Steven Blundell. "Fractional Charge States in the Magneto-Photoluminescence Spectra of Single-Electron InP/GaInP2 Quantum Dots." Nanomaterials 11, no. 2 (February 16, 2021): 493. http://dx.doi.org/10.3390/nano11020493.

Full text
Abstract:
We used photoluminescence spectra of single electron quasi-two-dimensional InP/GaInP2 islands having Wigner-Seitz radius ~4 to measure the magnetic-field dispersion of the lowest s, p, and d single-particle states in the range 0–10 T. The measured dispersion revealed up to a nine-fold reduction of the cyclotron frequency, indicating the formation of nano-superconducting anyon or magneto-electron (em) states, in which the corresponding number of magnetic-flux-quanta vortexes and fractional charge were self-generated. We observed a linear increase in the number of vortexes versus the island size, which corresponded to a critical vortex radius equal to the Bohr radius and closed-packed topological vortex arrangements. Our observation explains the microscopic mechanism of vortex attachment in composite fermion theory of the fractional quantum Hall effect, allows its description in terms of self-localization of ems and represents progress towards the goal of engineering anyon properties for fault-tolerant topological quantum gates.
APA, Harvard, Vancouver, ISO, and other styles
2

Pylypovskyi, O. V., D. D. Sheka, V. P. Kravchuk, Yu B. Gaididei, and F. G. Mertens. "Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core." Ukrainian Journal of Physics 58, no. 6 (June 2013): 596–603. http://dx.doi.org/10.15407/ujpe58.06.0596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Hui, Mengmeng Sun, Xinjian Fan, Zhihua Lin, Weinan Chen, Lei Wang, Lixin Dong, and Qiang He. "Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation." Science Robotics 4, no. 28 (March 20, 2019): eaav8006. http://dx.doi.org/10.1126/scirobotics.aav8006.

Full text
Abstract:
Swimming microrobots that are energized by external magnetic fields exhibit a variety of intriguing collective behaviors, ranging from dynamic self-organization to coherent motion; however, achieving multiple, desired collective modes within one colloidal system to emulate high environmental adaptability and enhanced tasking capabilities of natural swarms is challenging. Here, we present a strategy that uses alternating magnetic fields to program hematite colloidal particles into liquid, chain, vortex, and ribbon-like microrobotic swarms and enables fast and reversible transformations between them. The chain is characterized by passing through confined narrow channels, and the herring school–like ribbon procession is capable of large-area synchronized manipulation, whereas the colony-like vortex can aggregate at a high density toward coordinated handling of heavy loads. Using the developed discrete particle simulation methods, we investigated generation mechanisms of these four swarms, as well as the “tank-treading” motion of the chain and vortex merging. In addition, the swarms can be programmed to steer in any direction with excellent maneuverability, and the vortex’s chirality can be rapidly switched with high pattern stability. This reconfigurable microrobot swarm can provide versatile collective modes to address environmental variations or multitasking requirements; it has potential to investigate fundamentals in living systems and to serve as a functional bio-microrobot system for biomedicine.
APA, Harvard, Vancouver, ISO, and other styles
4

Watson, J. L. S., and Z. Li. "Vortex magnetic separation." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 211, no. 1 (February 1, 1997): 31–42. http://dx.doi.org/10.1243/0954408971529520.

Full text
Abstract:
Vortex magnetic separation (VMS) is a new technique (1-3) which can not only greatly increase selectivity of high gradient magnetic separation but can also provide a much higher material throughput because high slurry velocity is used. This technique will have a wide range of applications in fields as diverse as mineral processing, biochemical engineering, sewage and wastewater treatment and industrial effluent treatment. At present in high gradient magnetic separation (HGMS) low Reynolds numbers (with respect to the wire diameter) are usually used and the magnetic product is captured on the upstream side of the wire matrix which results in a serious mechanical entrainment problem that is very detrimental to the purity of the magnetic fraction and to the reduction of the quantity of non-magnetic fraction (4). Vortex magnetic separation runs at moderate Reynolds number ( Re = 6–40) which leads to the formation of vortex flow in the neighbourhood of the matrix. Magnetic particles in the slurry are first concentrated in the boundary layer flow around the matrix and then brought into the magnetically attractive area on the matrix downstream side. The magnetic deposit on the downstream side of the matrix does not suffer the direct collisions with non-magnetic particles in the slurry, so the quality of the magnetic product is drastically improved. As will be described below, a new invention has been made with regard to the VMS matrix which allows capture to take place on both the upstream and downstream sides of the matrix without mechanical entrainment. This paper reviews experimental and theoretical work on the mechanisms involved in vortex magnetic separation.
APA, Harvard, Vancouver, ISO, and other styles
5

Antos, Roman, YoshiChika Otani, and Junya Shibata. "Magnetic Vortex Dynamics." Journal of the Physical Society of Japan 77, no. 3 (March 15, 2008): 031004. http://dx.doi.org/10.1143/jpsj.77.031004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garcia, F., J. P. Sinnecker, E. R. P. Novais, and A. P. Guimarães. "Magnetic vortex echoes." Journal of Applied Physics 112, no. 11 (December 2012): 113911. http://dx.doi.org/10.1063/1.4768446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hrkac, Gino, Paul S. Keatley, Matthew T. Bryan, and Keith Butler. "Magnetic vortex oscillators." Journal of Physics D: Applied Physics 48, no. 45 (October 6, 2015): 453001. http://dx.doi.org/10.1088/0022-3727/48/45/453001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guervilly, Céline, David W. Hughes, and Chris A. Jones. "Large-scale-vortex dynamos in planar rotating convection." Journal of Fluid Mechanics 815 (February 20, 2017): 333–60. http://dx.doi.org/10.1017/jfm.2017.56.

Full text
Abstract:
Several recent studies have demonstrated how large-scale vortices may arise spontaneously in rotating planar convection. Here, we examine the dynamo properties of such flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds number ($100\lesssim Rm\lesssim 550$, with $Rm$ based on the box depth and the convective velocity), a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic energy oscillates in time, nearly out of phase with the oscillating amplitude of the large-scale vortex. The large-scale vortex is disrupted once the magnetic field reaches a critical strength, showing that these oscillations are of magnetic origin. The dynamo mechanism relies on those components of the flow that have length scales lying between that of the large-scale vortex and the typical convective cell size; smaller-scale flows are not required. The large-scale vortex plays a crucial role in the magnetic induction despite being essentially two-dimensional; we thus refer to this dynamo as a large-scale-vortex dynamo. For larger magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum that peaks at the scale of the convective cells. In this case, the small-scale magnetic field continuously suppresses the large-scale vortex by disrupting the correlations between the convective velocities that allow it to form. The suppression of the large-scale vortex at high $Rm$ therefore probably limits the relevance of the large-scale-vortex dynamo to astrophysical objects with moderate values of $Rm$, such as planets. In this context, the ability of the large-scale-vortex dynamo to operate at low magnetic Prandtl numbers is of great interest.
APA, Harvard, Vancouver, ISO, and other styles
9

Guslienko, K. Yu. "Magnetic Vortex State Stability, Reversal and Dynamics in Restricted Geometries." Journal of Nanoscience and Nanotechnology 8, no. 6 (June 1, 2008): 2745–60. http://dx.doi.org/10.1166/jnn.2008.18305.

Full text
Abstract:
Magnetic vortices are typically the ground states in geometrically confined ferromagnets with small magnetocrystalline anisotropy. In this article I review static and dynamic properties of the magnetic vortex state in small particles with nanoscale thickness and sub-micron and micron lateral sizes (magnetic dots). Magnetic dots made of soft magnetic material shaped as flat circular and elliptic cylinders are considered. Such mesoscopic dots undergo magnetization reversal through successive nucleation, displacement and annihilation of magnetic vortices. The reversal process depends on the stability of different possible zero-field magnetization configurations with respect to the dot geometrical parameters and application of an external magnetic field. The interdot magnetostatic interaction plays an important role in magnetization reversal for dot arrays with a small dot-to-dot distance, leading to decreases in the vortex nucleation and annihilation fields. Magnetic vortices reveal rich, non-trivial dynamical properties due to existance of the vortex core bearing topological charges. The vortex ground state magnetization distribution leads to a considerable modification of the nature of spin excitations in comparison to those in the uniformly magnetized state. A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized lateral dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. The translation motions of coupled vortices are considered. There are, above the vortex translation mode eigenfrequencies, several dynamic magnetization eigenmodes localized outside the vortex core whose frequencies are determined principally by dynamic demagnetizing fields appearing due to restricted dot geometry. The vortex excitation modes are classified as translation modes and radially or azimuthally symmetric spin waves over the vortex ground state. Studying the spin eigenmodes in such systems provides valuable information to relate the particle dynamical response to geometrical parameters. Unresolved problems are identified to attract attention of researchers working in the area of nanomagnetism.
APA, Harvard, Vancouver, ISO, and other styles
10

REED, D. S., N. C. YEH, W. JIANG, U. KRIPLANI, M. KONCZYKOWSKI, and F. HOLTZBERG. "ANISOTROPIC VORTEX DYNAMICS AND PHASE DIAGRAM OF YBa2Cu3O7 SINGLE CRYSTALS WITH CANTED COLUMNAR DEFECTS." International Journal of Modern Physics B 10, no. 22 (October 10, 1996): 2723–43. http://dx.doi.org/10.1142/s0217979296001215.

Full text
Abstract:
The anisotropic vortex dynamics and phase diagram are determined for a YBa 2 Cu 3 O 7 single crystal with columnar defects oriented at ±7.5° relative to the crystalline c-axis. A second-order splayed-glass to vortex-liquid transition is manifested for magnetic fields nearly parallel to the columns via the critical scaling of vortex AC and DC transport properties. In contrast, for magnetic fields aligned close to the ab-plane, an XY-like vortex-glass transition prevails. For magnetic fields at intermediate angles, there is no evidence of any vortex phase transition, and the vortex dynamics is described in terms of the thermally activated flux flow model.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetické vortexy"

1

Flajšman, Lukáš. "Vektorová Kerrova magnetometrie." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232044.

Full text
Abstract:
Increased complexity of novel magnetic materials in the last decade has placed high demands on the manufacturing process as well as on the characterization. One of the possibilities for characterization of magnetic samples is to exploit the magneto-optical effects. The presented work uses the magneto-optical Kerr effect as a major characterization technique to probe the magnetic properties of samples. We have developed a mathematical model describing the effect of the magnetization on the polarized light and present an apparatus capable of measuring the response given by the light-matter interaction. The experimental results show the performance of the apparatus on the various magnetic systems including meta-stable iron layers, Stoner-Wohlfarth particles and magnetic vortices. The scanning vectorial Kerr magnetometer allowed us to probe the vector of magnetization with diffraction limited resolution below 500 nm.
APA, Harvard, Vancouver, ISO, and other styles
2

Balajka, Jan. "Přepínání chirality vortexů v magnetostaticky svázaných permalloyových nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230609.

Full text
Abstract:
The diploma thesis is concerned with switching of vortex circulation in magnetic nanodisks. The results of micromagnetic simulations of hysteresis loops of individual disks with different degrees of asymmetry are presented. The influence of geometric asymmetry of the disk on the shape of the hysteresis loop is discussed as well as switching of vortex circulation in asymmetric nanodisks by external in-plane magnetic field. Simulations of pairs of magnetostatically coupled nanodisks were carried out for different interdisk distances and degrees of asymmetry. By analysing the results of the simulations, the effects of magnetostatic coupling and the asymmetry on resultant circulation of individual vortices were compared and the range of magnetostatic interaction between nanodisks of given dimensions and asymmetry was estimated. Experimental techniques used for fabrication and measurement of the samples are briefly summarized.
APA, Harvard, Vancouver, ISO, and other styles
3

Hladík, Lukáš. "Přepínání spinových vortexů v magnetických nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230257.

Full text
Abstract:
The diploma thesis deals with the switching of spin vortices in magnetic nanodisks. First, the basic concepts of (micro)magnetism are defined and existing theoretical and experimental achievements in the field of switching of the two basic characteristics (chirality and polarity) of magnetic vortex are summarized. Then the principle of dynamic switching of magnetic vortex chirality using in-plane magnetic field pulse with a well defined amplitude and duration is presented. There is no need to use a certain shape of nanodisks or asymmetry in magnetic field distribution. Nanostructures were prepared by the multi-step electron beam lithography and ion beam sputtering. Individual steps of sample preparation and optimization for the magnetization dynamics measurements are described. Finally, the experimental measurements of the dynamic switching of chirality on prepared samples obtained by transmission x-ray microscopy at the synchrotron Advanced Light Source at Berkeley, USA are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Pigeau, Benjamin. "Magnetic vortex dynamics nanostructures." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00779597.

Full text
Abstract:
This thesis is aimed at studying experimentally the magnetisationdynamics of discs in the sub-micron range made of low dampingferromagnetic materials. For this purpose, an extremely sensitivetechnique has been used: the ferromagnetic resonance force microscopy. A firstpart is devoted to the measurement of the eigenmodes of NiMnSb discstaken in their remanent state: a vortex. The influence of aperpendicular magnetic field on the spin wave modes in the vortex state willbe detailled. Then, the coupling mechanism between the vortex core andthese spin wave, eventually leading to its dynamical reversal, ishighlighted. A theoretical framework of the vortex state is presented,allowing to model the experimental observations. In a second part,the problem of the collective magnetisation dynamics in several FeVdiscs is addressed. Measurements of the collective modes coupled bythe dynamical dipolar interaction are presented, associated with atheoretical modelisation which explain quantitatively the experimentalresults.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Zhengnan. "Vortex magnetic separation (VMS)." Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vaňatka, Marek. "Studium vortexových stavů v magnetostaticky svázaných magnetických nanodiscích." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-231770.

Full text
Abstract:
Magnetic vortices in ferromagnetic disks are curling magnetization structures characterized by the sense of the spin circulation in the plane of the disk and by the direction of the magnetization in the vortex core. Concepts of memory devices using the magnetic vortices as multibit memory cells have been presented, which brought the high demand for their research in many physical aspects. This work investigates the magnetostatic coupling in pairs of ferromagnetic disks to clarify the influence of nearby disks or other magnetic structures to the vortex nucleation mechanism. To ensure that the vortex nucleation is influenced only by the neighbouring magnetic structures, the randomness of the nucleation process was studied in single disks prior to the work on pairs of disks. We had to ensure that the vortex nucleation is influenced only by the neighbouring magnetic structures and not by an unwanted geometrical asymmetry in the studied disk. Lithographic capabilities were inspected in order to achieve the best possible geometry. Further we present a concept of electrical readout of the spin circulation using the anisotropic magnetoresistance, which allows automated measurements to provide sufficient statistics. To explain the magnetoresistance behaviour, numerical calculations together with magnetic force microscopy measurements are presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Staňo, Michal. "Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231312.

Full text
Abstract:
The thesis deals with magnetic force microscopy of soft magnetic nanostructures, mainly NiFe nanowires and thin-film elements such as discs. The thesis covers almost all aspects related to this technique - i.e. from preparation of magnetic probes and magnetic nanowires, through the measurement itself to micromagnetic simulations of the investigated samples. We observed the cores of magnetic vortices, tiny objects, both with commercial and our home-coated probes. Even domain walls in nanowires 50 nm in diameter were captured with this technique. We prepared functional probes with various magnetic coatings: hard magnetic Co, CoCr and soft NiFe. Hard probes give better signal, whereas the soft ones are more suitable for the measurement of soft magnetic structures as they do not influence significantly the imaged sample. Our probes are at least comparable with the standard commercial probes. The simulations are in most cases in a good agreement with the measurement and the theory. Further, we present our preliminary results of the probe-sample interaction modelling, which can be exploited for the simulation of magnetic force microscopy image even in the case of probe induced perturbations of the sample.
APA, Harvard, Vancouver, ISO, and other styles
8

Doupal, Antonín. "Studium vlastností kovových tenkých vrstev a nanostruktur pomocí rastrovací sondové mikroskopie." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229111.

Full text
Abstract:
This diploma thesis is focused on investigation of metallic thin films and nanostructures using scanning probe microscopy. Magnetic properties of these objects are studied by magnetic force microscopy, which is modification of scanning probe microscopy. In the theoretical part basic principles of scanning probe microscopy and magnetic force microscopy are summarized, and also principle of creation of magnetic domains and some special properties of ferromagnetic and antiferromagnetic materials. Further, two techniques of fabricating nanostructures are described. Experimental part is focused on imaging and simulating of magnetic domains. Further, exchange bias is revealed. This phenomenon is present in systems composed from ferromagnetic and antiferromagnetic materials. One part of this diploma thesis is also focused on discussion of problems with magnetic force microscopy.
APA, Harvard, Vancouver, ISO, and other styles
9

Dhankhar, Meena. "Paměťová buňka založená na magnetických vortexech." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2021. http://www.nusl.cz/ntk/nusl-442336.

Full text
Abstract:
Magnetické vortexy jsou charakterizovány směrem stáčení magnetizace a polarizací vortexového jádra, přičemž každá z těchto veličin nabývá dvojice stavů. Ve výsledku jsou tak k dispozici čtyři možné stabilní konfigurace, čehož může být využito v multibitových paměťových zařízeních. Tato dizertační práce se zabývá selektivním zápisem stavů magnetického vortexu v magnetickém disku pulzem elektrického proudu stejně jako jejich následným elektrickým čtením. Před samotnou realizací elektrických měření byla provedena statická měření přepínání stavů vortexu pomocí různých proudových pulzů v kombinaci s technikami MFM a následně MTXM. Následně byl realizován dynamický odečet stavu vortexu kompletně založený na elektrických měřeních. Ovládání cirkulace vortexu je založeno na geometrické asymetrii vytvořené oříznutím magnetického disku a vytvořením fazety. Plochý okraj disku definuje preferenční smysl stáčení cirkulace během procesu nukleace vortexu. Řízení polarity se obvykle provádí ve dvou krocích. V prvním kroku, homogenně magnetizovaná vrstva s kolmou magnetickou anizotropií umístěná na dně disku definuje výchozí polaritu vortexu v době nukleace. V druhém kroku, je-li to nutné, je polarita vortexu přepnuta pomocí rychlého proudového pulzu. Proto je možné nastavit požadovaný stav cirkulace vysláním nanosekundového pulsu s nízkou amplitudou, následované nastavením polarity pikosekundovým pulsem s vysokou amplitudou. Stavy vortexů jsou pak detekovány elektrickou spektroskopií prostřednictvím anizotropní magnetorezistence. Vzorky pro všechna statická a dynamická měření byly připraveny pomocí elektronové litografie v kombinaci s lift-off procesem.
APA, Harvard, Vancouver, ISO, and other styles
10

Dapore-Schwartz, Samuel. "An atomic beam magnetic resonance study of a superconductor's magnetic vortex lattice /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487856906257537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetické vortexy"

1

service), SpringerLink (Online, ed. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rabinovich, B. I. Vortex processes and solid body dynamics: The dynamic problems of spacecrafts and magnetic levitation systems. Dordrecht: Kluwer Academic, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

G, Lebedev V., and Mytarev Alexander I, eds. Vikhrevye prot͡s︡essy i dinamika tverdogo tela: Zadachi dinamiki kosmicheskikh apparatov i sistem na magnitnoĭ podveske. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Antos, R., and Y. Otani. The dynamics of magnetic vortices and skyrmions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0022.

Full text
Abstract:
This chapter argues that control of magnetic domains and domain wall structures is one of the most important issues from the viewpoint of both applied and basic research in magnetism. Its discussion is however limited to static and dynamic properties of magnetic vortex structures. It has been revealed both theoretically and experimentally that for particular ranges of dimensions of cylindrical and other magnetic elements, a curling in-plane spin configuration is energetically favored, with a small region of the out-of-plane magnetization appearing at the core of the vortex. Such a system, which is sometimes referred to as a magnetic soliton, is characterized by two binary properties: A chirality and a polarity, each of which suggests an independent bit of information in future high-density nonvolatile recording media.
APA, Harvard, Vancouver, ISO, and other styles
5

Kokubo, N., S. Okayasu, and K. Kadowaki. Multi-Vortex States in Mesoscopic Superconductors. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.3.

Full text
Abstract:
This article investigates multi-vortex states in mesoscopic amorphous superconductors with different geometries by means of scanning SQUID microscopy. It first describes the setup of the scanning SQUID microscope used in magnetic imaging of superconducting vortices before discussing the physical properties of amorphous superconducting thin films. It then presents the results of experiments showing the formation of multi-vortex states in mesoscopic dots of weak pinning, amorphous MoGe thin films, along with the formation of vortex polygons and concentric vortex rings in mesoscopic disks. It also considers the concept of multiple vortex shells and its applicability to vortex patterns observed in mesoscopic circle and square dots. The article highlights some of the key features of mesoscopic superconducting dots, including commensurability effect, multiple shell structures, repeated packing sequences, inclusion structural hierarchy, and pinning effect.
APA, Harvard, Vancouver, ISO, and other styles
6

Scanning Squid Microscope for Studying Vortex Matter in TypeII Superconductors Springer Theses. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ono, T. Spin-transfer torque in nonuniform magnetic structures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0023.

Full text
Abstract:
This chapter defines a magnetic domain wall (DW) as the transition region where the direction of magnetic moments gradually change between two neighbouring domains. It has been pointed out that ferromagnetic materials are not necessarily magnetized to saturation in the absence of an external magnetic field. Instead, they have magnetic domains, within each of which magnetic moments align. The formation of the magnetic domains is energetically favourable because this structure can lower the magnetostatic energy originating from the dipole–dipole interaction. A magnetic vortex realized in a ferromagnetic disk is a typical example of nonuniform magnetic structure. In very small ferromagnetic systems, where a curling spin configuration has been proposed to occur in place of domains, the formation of DWs is not energetically favored.
APA, Harvard, Vancouver, ISO, and other styles
8

Finkler, Amit. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Finkler, Amit. Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narlikar, Anant V. Vortex Physics And Flux Pinning: Studies of High Temperature Superconductors. Nova Science Publishers, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetické vortexy"

1

Giamarchi, T., and S. Bhattacharya. "Vortex Phases." In High Magnetic Fields, 314–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45649-x_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kes, P. H. "Pinning and Dynamics of Magnetic Vortices." In The Vortex State, 159–74. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0974-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bishop, David J., Peter L. Gammel, and Cherry A. Murray. "Magnetic Decoration Studies of Flux Line Lattices in the Cuprate Superconductors." In The Vortex State, 99–123. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0974-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Browne, P. F. "Magnetic Vortex Tubes and Charge Acceleration." In Interstellar Magnetic Fields, 211–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72621-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Browne, P. F. "Phenomena Involving Magnetic Vortex Tubes." In Galactic and Intergalactic Magnetic Fields, 136–38. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0569-6_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papanicolaou, N. "Dynamics of Magnetic Vortex Rings." In Singularities in Fluids, Plasmas and Optics, 151–58. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2022-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, L. R., and P. C. E. Stamp. "Effective Magnus Force on a Magnetic Vortex." In NATO Science for Peace and Security Series B: Physics and Biophysics, 175–92. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8512-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabinovich, Boris I., Valeryi G. Lebedev, and Alexander I. Mytarev. "Some Dynamics Problems for a Solid Body with Electrically Conductive Liquid Moving in Magnetic Field." In Vortex Processes and Solid Body Dynamics, 245–86. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1038-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ling, Xinsheng, and Joseph I. Budnick. "A.C. Susceptibility Studies of Type-II Superconductors: Vortex Dynamics." In Magnetic Susceptibility of Superconductors and Other Spin Systems, 377–88. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2379-0_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dewhurst, C. D., S. S. James, N. Saha, R. Surdeanu, Y. Paltiel, E. Zeldov, and D. Mck Paul. "Vortex Pinning and Dynamics in Magnetic and Non- Magnetic (RE)Ni2B2C Superconductors." In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties, 347–56. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetické vortexy"

1

Swoboda, C., N. Breckwoldt, A. Kobs, J. Jacobsohn, A. Vogel, H. P. Oepen, and G. Meier. "Polarization control in magnonic vortex crystals." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levy, J. S. "Magnetic structures and low frequency dynamics of cubic nanoparticles: Vortex line networks and vortex line dances." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watson, J. H. P., and A. S. Bahaj. "Vortex capture in high gradient magneetic separators at moderate Reynolds number." In International Magnetics Conference. IEEE, 1989. http://dx.doi.org/10.1109/intmag.1989.690181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Y., C. Zhou, and Y. Wu. "Effects of Dzyaloshinskii-Moriya interaction on magnetic vortex gyration." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ki-Suk Lee, Byoung-Woo Kang, and Sang-Koog Kim. "Vortex-antivortex pair driven magnetization dynamics." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Xiaoxi, Shinsaku Isomura, and Akimitsu Morisako. "Magnetic vortex core for high resolution magnetic force microscopy." In 2013 IEEE 13th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2013. http://dx.doi.org/10.1109/nano.2013.6720870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wittrock, S., S. Tsunegi, K. Yakushiji, A. Fukushima, H. Kubota, P. Bortolotti, U. Ebels, et al. "Low frequency noise in vortex spin torque nano-oscillators." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bance, S., G. Hrkac, D. Suess, C. Brownlie, S. McVitie, and T. Schrefl. "Transition from vortex to transverse walls in NiFe nano-structures." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.374974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hao, F., M. Zhang, M. Teng, Y. Yin, W. Jiao, G. Cao, and X. Li. "Angular dependent vortex glass phase transition in BaFe1.8Co0.2As2 single crystal." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buchanan, K. S., P. E. Roy, M. Grimsditch, F. Y. Fradin, K. Y. Guslienko, S. D. Bader, and V. Novosad. "Magnetic vortex dynamics in elliptical dots: Field dependence and interaction effects." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376479.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetické vortexy"

1

Im, Mi-Young, Peter Fischer, Yamada Keisuke, and Shinya Kasai. Statistical Behavior of Formation Process of Magnetic Vortex State in Ni80Fe20 Nanodisks. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1011040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Civale, Leonardo, Ivan Nekrashevich, and Vivien Zapf. Using vortex dynamics tools to explore magnetic configurations in non-superconducting materials. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1798088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moll, Philip J. W., Nikolai D. Zhidadlo, J. Karpinski, B. Batlog, Fedor F. Balakirev, Ross David McDonald, and Jonathan B. Betts. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1114402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kouzoudis, D. Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography