Academic literature on the topic 'Magnetization dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetization dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetization dynamics"

1

Kovacs, Alexander, Johann Fischbacher, Harald Oezelt, et al. "Learning magnetization dynamics." Journal of Magnetism and Magnetic Materials 491 (December 2019): 165548. http://dx.doi.org/10.1016/j.jmmm.2019.165548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kovalev, Alexey A., Gerrit E. W. Bauer, and Arne Brataas. "Magnetovibrational magnetization dynamics." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E1593—E1594. http://dx.doi.org/10.1016/j.jmmm.2003.12.890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

WANG, XIAOBIN. "RADIO FREQUENCY MAGNETIZATION NONVOLATILITY." SPIN 02, no. 03 (2012): 1240009. http://dx.doi.org/10.1142/s2010324712400097.

Full text
Abstract:
Long time magnetization thermal switching under small amplitude high frequency excitation is analyzed. Approaches based upon conventional time-dependent energy barrier are not sufficient to describe magnetization nonvolatility under GHz excitations. Methods based upon large angle nonlinear magnetization dynamics are developed for both coherent and noncoherent magnetization switching. This dynamic approach is not only important for fundamental understanding of magnetization dynamics under combined radio frequency excitations and thermal fluctuations, but also critical for practical design of em
APA, Harvard, Vancouver, ISO, and other styles
4

Tajik, F., N. Allameh, A. A. Masoudi, and G. Palasantzas. "Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 9 (2022): 093149. http://dx.doi.org/10.1063/5.0100542.

Full text
Abstract:
We have investigated the dynamical actuation of micro-electromechanical systems under the influence of attractive and repulsive Casimir forces between topological insulator plates as a function of their dielectric function and coating magnetization. The analysis of the Casimir force in the limit of strong and weak magnetization shows that the attractive force, which is produced for plate magnetizations in the same direction, is greater than the repulsive force that is produced for opposite magnetizations. However, both forces remain comparable for intermediate magnetizations. Moreover, for wea
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Kuntal. "Ultra-Low-Energy Electric Field-Induced Magnetization Switching in Multiferroic Heterostructures." SPIN 06, no. 03 (2016): 1630001. http://dx.doi.org/10.1142/s2010324716300012.

Full text
Abstract:
Electric field-induced magnetization switching in multiferroics is intriguing for both fundamental studies and potential technological applications. Here, we review the recent developments on electric field-induced magnetization switching in multiferroic heterostructures. Particularly, we study the dynamics of magnetization switching between the two stable states in a shape-anisotropic single-domain nanomagnet using stochastic Landau–Lifshitz–Gilbert (LLG) equation in the presence of thermal fluctuations. For magnetostrictive nanomagnets in strain-coupled multiferroic composites, such study of
APA, Harvard, Vancouver, ISO, and other styles
6

Valcu, B., and H. N. Bertram. "Soft Underlayer Magnetization Dynamics." IEEE Transactions on Magnetics 40, no. 4 (2004): 2377–79. http://dx.doi.org/10.1109/tmag.2004.832671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manfred, Fähnle. "Various Theories of Fast and Ultrafast Magnetization Dynamics." International Journal of Physics Research and Applications 7, no. 2 (2024): 154–58. http://dx.doi.org/10.29328/journal.ijpra.1001101.

Full text
Abstract:
The background of my paper is that magnetization dynamics is a very important subject of basic and technological research. The purpose of the paper is to review various theories of magnetization dynamics. There are many important technological applications of magnetization dynamics.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xiaobin. "Magnetization Dynamics Symmetry in Spin Torque Induced Magnetization Switching." Symmetry 2, no. 2 (2010): 999–1021. http://dx.doi.org/10.3390/sym2020999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kovalev, A. S., and E. V. Ezerskaya. "Dissipative nonlinear dynamics of ferromagnetic bilayer." Low Temperature Physics 50, no. 10 (2024): 870–74. http://dx.doi.org/10.1063/10.0028632.

Full text
Abstract:
Within the framework of the classical Landau–Lifshitz equations with damping in the Landau form, the relaxation of highly excited magnetic multilayers, consisting of two ferromagnetic layers with magnetic anisotropy of the easy plane type and ferromagnetic exchange interaction between the layers, is analytically and numerically studied. It is shown that the relaxation of the energy and magnetization of the system is of a non-trivial behavior. In the region of strong excitation of the system, the time dependence of the magnetization is non-monotonic, and the smooth time dependencies of energy a
APA, Harvard, Vancouver, ISO, and other styles
10

Shytyi. A.M., Vasilevskaya T. M., and Sementsov D. I. "Resonant dynamics of the magnetization of uniaxial nanoparticle." Physics of the Solid State 64, no. 6 (2022): 635. http://dx.doi.org/10.21883/pss.2022.06.53825.279.

Full text
Abstract:
Analysis of equilibrium conditions was carried out and resonant precessional dynamics of magnetization of a single-domain magnetically uniaxial ellipsoidal particle. Considered the case when magnetic field is along the easy magnetization axis. the easy magnetization axis is directed parallel to the axis of symmetry of the ellipsoid and transverse to pumping by a weak high-frequency field. Features of the behavior of the magnetization were discovered. It has been revealed that the magnetization has features of resonant behavior: large resonant precession angles with amplitude 0.5M0, elliptical
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetization dynamics"

1

Sorea, Stanescu Dana Elena. "Magnetization dynamics in magnetic nanostructures." Phd thesis, Université Joseph Fourier (Grenoble), 2003. http://tel.archives-ouvertes.fr/tel-00006021.

Full text
Abstract:
En utilisant la technique pompe-sonde résolue en temps, nous avons étudié la dynamique de l'aimantation dans des couches minces magnétiques avec une résolution temporelle de 20ps. La pompe est constituée par les champs magnétiques de hautes fréquences induits par des impulsions de tension appliquées sur une ligne coplanaire. Comme sonde, nous avons utilisé l'effet Kerr magnéto-optique et l'effet magnéto-résistif. Nous présentons la préparation des échantillons en utilisant le dépôt de couches minces par pulvérisation cathodique, la lithographie UV, ainsi que différentes techniques de gravure.
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Lei. "Magnetization Dynamics at Elevated Temperatures." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311342.

Full text
Abstract:
The area of ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic elements and thin films, usually driven by a strong femtosecond laser pulse, has experienced intense research interest. In this dissertation, laser-induced demagnetization is theoretically studied by taking into account interactions among electrons, spins, and lattice. We propose a microscopic approach under the three temperature framework and derive the equations that govern the demagnetization at arbitrary temperatures.To address the question of magnetization reversal at high temperatures, the conventional Landau-
APA, Harvard, Vancouver, ISO, and other styles
3

Rantaharju, J. (Jyrki). "Magnetization dynamics in paramagnetic systems." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526221205.

Full text
Abstract:
Abstract This thesis reports simulations of direct observables in electron and nuclear spin relaxation experiments in an example paramagnetic system, as well as polarization transfer occurring in a spin-exchange optical pumping (SEOP) experiment. Studies of paramagnetic relaxation are important, e.g., in the development of agents used for enhanced contrast in magnetic resonance imaging. SEOP is used to produce hyperpolarized noble gases, which are then used to, e.g., enhance sensitivity in structural studies of matter with nuclear magnetic resonance. Presently the theory, available software a
APA, Harvard, Vancouver, ISO, and other styles
4

Méndez, Édgar. "Effective Visualization of Magnetization Dynamics." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-372080.

Full text
Abstract:
Simulations on magnetization dynamics are of great interest on current research. Unlike computational fluid dynamics, magnetization dynamics has not received much attention from the visualization community. In this work a design and preliminary implementation of a visualization tool for magnetization dynamics simulations is introduced, based on methods used in the literature of the field. Although immature, the introduced design and implementation provide some advantages over some tools in use, and further development could lead to a unified and complete visualization utility.
APA, Harvard, Vancouver, ISO, and other styles
5

Neudecker, Ingo. "Magnetization dynamics of confined ferromagnetic systems." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980172160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kesserwan, Hassan. "Ultrafast magnetization dynamics of magnetic nanostructures." Strasbourg, 2011. http://www.theses.fr/2011STRA6034.

Full text
Abstract:
Divisé en deux parties, cette thèse décrit la dynamique d'aimantation de nanoparticules magnétiques. Dans la première partie, nous avons décrit une étude expérimentale détaillée de la dynamique d'aimantation dans des nanoparticules de CoPt sous forme de coeur/coquille. Pour cela, nous avons effectué des mesures d’effet Kerr magnéto-optique résolues en temps utilisant une pompe de 150 fs à 400 nm et une sonde de 150 fs à 800 nm. Nous avons étudié les différents processus qui ont lieu sur des échelles de temps bref : comme la démagnétisation ultrarapide et la précession du vecteur d’aimantation.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Suqin. "Magnetization dynamics of single domain nanomagnets /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2007. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rumberger, Evan Michael Wong. "Magnetization dynamics in single-molecule magnets /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3153694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Uhlíř, Vojtěch. "Current Induced Magnetization Dynamics in Nanostructures." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233903.

Full text
Abstract:
Předkládaná dizertační práce pojednává o problematice pohybu doménových stěn (DS) vyvolaného spinově polarizovaným proudem v magnetických nanodrátech na bázi spinového ventilu NiFe/Cu/Co. Jedná se o tzv. efekt přenosu spinového momentu. Multivrstevnatý systém NiFe/Cu/Co, kde se doménová stěna pohybuje ve vrstvě NiFe, vykazuje velmi vysokou účinnost přenosu spinového momentu, což bylo v literatuře potvrzeno na základě magnetotransportních měření. Tato práce má za cíl pozorovat stav DS během jejich pohybu, pomocí fotoelektronové mikroskopie kombinované s kruhovým magnetickým dichroismem. Tato te
APA, Harvard, Vancouver, ISO, and other styles
10

Kneip, Martin K. "Magnetization dynamics in diluted magnetic semiconductor heterostructures." kostenfrei, 2008. http://hdl.handle.net/2003/25822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetization dynamics"

1

D, Mayergoyz I., and Serpico Claudio, eds. Nonlinear magnetization dynamics in nanosystems. Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Outlook on Magnetization Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0012.

Full text
Abstract:
Since its original formulation in the mid-1990's, atomistic spin-dynamics has become an important tool for modelling of dynamic processes in magnetic materials. So far this book has described current methodological methods and functionalities of atomistic spin-dynamics simulations. Applications of DFT and ASD techniques to selected topics have been presented in this book, for instance methods for calculation of the microscopic Heisenberg and Gilbert parameter from first principles (Chapters 2 and 6), multiscale modelling of magnon spectra in bulk and thin film magnets (Chapter 9), and theoreti
APA, Harvard, Vancouver, ISO, and other styles
3

Nonlinear Magnetization Dynamics in Nanosystems. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-08-044316-4.x0001-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bertotti, Giorgio, Isaak D. Mayergoyz, and Claudio Serpico. Nonlinear Magnetization Dynamics in Nanosystems. Elsevier Science & Technology Books, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kneip, Martin. Magnetization Dynamics in Diluted Magnetic Semiconductor Heterostructures. GRIN Verlag GmbH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stamenova, M., and S. Sanvito. Atomistic spin-dynamics. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.7.

Full text
Abstract:
This article reviews recent advances towards the development of a truly atomistic time-dependent theory for spin-dynamics. The focus is on the s-d tight-binding model [where conduction electrons (s) are exchange-coupled to a number of classical spins (d)], including electrostatic corrections at the Hartree level, as the underlying electronic structure theory. In particular, the article considers one-dimensional (1D) magnetic atomic wires and their electronic structure, described by means of the s-d model. The discussion begins with an overview of the model spin Hamiltonian, followed by molecul
APA, Harvard, Vancouver, ISO, and other styles
7

Atomistic Spin Dynamics: Foundations and Applications. Oxford University Press, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. The Atomistic Spin Dynamics Equation of Motion. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0004.

Full text
Abstract:
From the information obtained in DFT, in particular the magnetic moments and the Heisenberg exchange parameters, one has the possibility to make a connection to atomistic spin-dynamics. In this chapter the essential features of this connection is described. It is also discussed under what length and time-scales that this approach is a relevant approximation. The master equation of atomistic spin-dynamics is derived, and discussed in detail. In addition we give examples of how this equation describes the magnetization dynamics of a few model systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.

Full text
Abstract:
The purpose of this book is to provide a theoretical foundation and an understanding of atomistic spin-dynamics, and to give examples of where the atomistic Landau-Lifshitz-Gilbert equation can and should be used. The contents involve a description of density functional theory both from a fundamental viewpoint as well as a practical one, with several examples of how this theory can be used for the evaluation of ground state properties like spin and orbital moments, magnetic form-factors, magnetic anisotropy, Heisenberg exchange parameters, and the Gilbert damping parameter. This book also outl
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Ferromagnetic Resonance. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0008.

Full text
Abstract:
In the previous chapters we covered theoretical aspects of magnetism and magnetization dynamics, as well as practical aspects of implementation of the SLL equation in efficient softwares. In this chapter we focus on the most natural and frequently used experimental method to study magnetization dynamics, namely ferromagnetic resonance (FMR). This experimental technique has evolved into a powerful experimental technique for studies of magnetization dynamics of materials. It is, by far, the most common method for extracting damping parameters in materials, and is also a reliable technique for es
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetization dynamics"

1

Ansermet, Jean-Philippe. "Magnetization Dynamics." In Spintronics. CRC Press, 2024. http://dx.doi.org/10.1201/9781003370017-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bailey, William E. "Magnetization Dynamics." In Introduction to Magnetic Random&;#x02010;Access Memory. John Wiley &;#38; Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119079415.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kent, Andrew D., Hendrik Ohldag, Hermann A. Dürr, and Jonathan Z. Sun. "Magnetization Dynamics." In Handbook of Magnetism and Magnetic Materials. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kent, Andrew D., Hendrik Ohldag, Hermann A. Dürr, and Jonathan Z. Sun. "Magnetization Dynamics." In Handbook of Magnetism and Magnetic Materials. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_27-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aeschlimann, M., D. Steil, M. Cinchetti, and H. C. Schneider. "Electronic Scattering Dynamics and Ultrafast Magnetization Dynamics." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rasing, Theo, Hugo van den Berg, Thomas Gerrits, and Julius Hohlfeld. "Ultrafast Magnetization and Switching Dynamics." In Topics in Applied Physics. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-46097-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krause, Stefan, and Roland Wiesendanger. "Magnetization Dynamics on the Atomic Scale." In Atomic- and Nanoscale Magnetism. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99558-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ostler, T. A., J. Barker, R. F. L. Evans, et al. "Multiscale Modeling of Ultrafast Magnetization Dynamics." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wikberg, J. M., I. Razdolski, A. Kirilyuk, et al. "Evolving Magnetization Dynamics in Mn3-xGa." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Korostil, A. M., and M. M. Krupa. "Electric-Driven Magnetization Dynamics of Multilayer Nanostructures." In Springer Proceedings in Physics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30737-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetization dynamics"

1

Ando, Kazuya. "Orbital currents and magnetization dynamics in metallic systems." In Spintronics XVII, edited by Henri Jaffrès, Jean-Eric Wegrowe, Manijeh Razeghi, and Joseph S. Friedman. SPIE, 2024. http://dx.doi.org/10.1117/12.3026935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tapani, Tlek, Nils Henriksson, Thomas Deckert, et al. "Ultrafast Plasmon-driven Charge and Spin Dynamics in Au-Ni Magnetoplasmonic Nanostructures." In CLEO: Fundamental Science. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm1n.1.

Full text
Abstract:
We study ultrafast charge and spin dynamics in magnetoplasmonic Au-Ni nanostructures. Experiments reveal modification of the ultrafast magnetization dynamics time induced by a strong plasmonic response, and the results are supported by numerical modelling.
APA, Harvard, Vancouver, ISO, and other styles
3

Gessner, Julia Anthea, Ulrike Martens, John K. Dewhurst, et al. "Petahertz Magnetization Dynamics." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RASING, THEO. "ULTRAFAST MAGNETIZATION SWITCHING DYNAMICS." In Proceedings of the 24th Course of the International School of Solid State Physics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702982_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acremann, Yves. "Magnetization Dynamics on the Nanoscale." In Laser Science. OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsmh2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koopmans, Bert. "Ultrafast Laser-Induced Magnetization Dynamics." In Laser Science. OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lswj2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blachowicz, Tomasz, Pawel Steblinski, Jacek Grzybowski, and Andrea Ehrmann. "Magnetization Dynamics in Nanofiber Networks." In 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2021. http://dx.doi.org/10.1109/nap51885.2021.9568612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hasse Urel, Guilherme, Rafael Gontijo, and Francisco Ricardo Cunha. "MAGNETIZATION DYNAMICS IN FERROFLUIDS: A DYNAMICAL SYSTEM APPROACH." In Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2018. http://dx.doi.org/10.26678/abcm.encit2018.cit18-0202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Merdji, Hamed. "Ultrafast nanoscale imaging of magnetization dynamics." In Laser Science. OSA, 2011. http://dx.doi.org/10.1364/ls.2011.lwk4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ki-Suk Lee, Byoung-Woo Kang, and Sang-Koog Kim. "Vortex-antivortex pair driven magnetization dynamics." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1463843.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetization dynamics"

1

Zhang, Shufeng. Quantitative Modeling of High Temperature Magnetization Dynamics. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/1170234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Langner, Matthew C. Ultrafast Magnetization Dynamics of SrRuO3 Thin Films. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/961838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slavin, Andrei M. Stochastic Magnetization Dynamics Excited by Spin-Polarized Current in Magnetic Nano-Structures. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada496844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Siegmann, Hans C. The Dynamic Response of Magnetization to Hot Spins. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/813276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!