Academic literature on the topic 'Magnetization dynamics of the nanoparticle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetization dynamics of the nanoparticle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetization dynamics of the nanoparticle"

1

Shytyi. A.M., Vasilevskaya T. M., and Sementsov D. I. "Resonant dynamics of the magnetization of uniaxial nanoparticle." Physics of the Solid State 64, no. 6 (2022): 635. http://dx.doi.org/10.21883/pss.2022.06.53825.279.

Full text
Abstract:
Analysis of equilibrium conditions was carried out and resonant precessional dynamics of magnetization of a single-domain magnetically uniaxial ellipsoidal particle. Considered the case when magnetic field is along the easy magnetization axis. the easy magnetization axis is directed parallel to the axis of symmetry of the ellipsoid and transverse to pumping by a weak high-frequency field. Features of the behavior of the magnetization were discovered. It has been revealed that the magnetization has features of resonant behavior: large resonant precession angles with amplitude 0.5M0, elliptical
APA, Harvard, Vancouver, ISO, and other styles
2

Syed, Maarij, and John Moore. "Magnetic Response of Iron Oxide Nanoparticles as Measured by AC Faraday Rotation." MRS Proceedings 1552 (2013): 59–64. http://dx.doi.org/10.1557/opl.2013.921.

Full text
Abstract:
ABSTRACTMetal ferrite nanoparticles are of considerable technological and theoretical interest. Magnetic response of these systems is a function of various system properties like saturation magnetization, growth orientation, average particle size and size distribution, volume concentration, etc. [1]. This preliminary study investigates the magnetization dynamics (and thereby the Verdet constant) of aqueous Fe3O4 nanoparticle solutions through precision AC measurements of the Faraday Rotation (FR) at 633 nm for three different Fe3O4 nanoparticle solutions that are all prepared to have the same
APA, Harvard, Vancouver, ISO, and other styles
3

Du, Zhongzhou, Dandan Wang, Yi Sun, Yuki Noguchi, Shi Bai, and Takashi Yoshida. "Empirical Expression for AC Magnetization Harmonics of Magnetic Nanoparticles under High-Frequency Excitation Field for Thermometry." Nanomaterials 10, no. 12 (2020): 2506. http://dx.doi.org/10.3390/nano10122506.

Full text
Abstract:
The Fokker–Planck equation accurately describes AC magnetization dynamics of magnetic nanoparticles (MNPs). However, the model for describing AC magnetization dynamics of MNPs based on Fokker-Planck equation is very complicated and the numerical calculation of Fokker-Planck function is time consuming. In the stable stage of AC magnetization response, there are differences in the harmonic phase and amplitude between the stable magnetization response of MNPs described by Langevin and Fokker–Planck equation. Therefore, we proposed an empirical model for AC magnetization harmonics to compensate th
APA, Harvard, Vancouver, ISO, and other styles
4

Berkov, D. V., N. L. Gorn, and P. G�rnert. "Magnetization Dynamics in Nanoparticle Systems: Numerical Simulation Using Langevin Dynamics." physica status solidi (a) 189, no. 2 (2002): 409–21. http://dx.doi.org/10.1002/1521-396x(200202)189:2<409::aid-pssa409>3.0.co;2-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Titov, S. V., Yu P. Kalmykov, K. D. Kazarinov, M. A. Cherkasskii, and A. S. Titov. "Inertial Magnetization Dynamics in Ferromagnetic Nanoparticles Near Saturation." Радиотехника и электроника 68, no. 5 (2023): 454–60. http://dx.doi.org/10.31857/s0033849423050169.

Full text
Abstract:
Analytical solutions of the inertial Landau‒Lifshitz‒Gilbert equation for the longitudinal and transverse components of the magnetization of a single-domain ferromagnetic nanoparticle under near-saturation conditions are obtained. The solution method is based on simplifying the equation using the first integrals, which are determined using the analogy between the inertial motion of magnetization and the mechanical rotation of a solid. It is shown that accounting for the magnetization inertia causes the nutation at a frequency represented by means of a complete elliptic integral of the first ki
APA, Harvard, Vancouver, ISO, and other styles
6

Shutyi A. M., Vasilevskaya T. M., Sementsov D. I., and Eliseeva S.V. "Precession Dynamics of the Uniaxial Nanoparticle Magnetization in the Ferromagnetic Resonance Region." Physics of the Solid State 65, no. 6 (2023): 1002. http://dx.doi.org/10.21883/pss.2023.06.56115.56.

Full text
Abstract:
The influence of the shape parameter (oblateness) of a uniaxial ellipsoidal nanoparticle on the dynamics of its magnetic moment upon magnetization along the symmetry axis and excitation by a weak transverse high-frequency field in the region of parameters where the equilibrium magnetic moment of the nanoparticle and the external static field is noncollinear has been studied. It is shown that as the oblateness increases, the irregularity of the oscillations increases, which at first affects only their amplitude, but then also the time dependence. The intervals of the shape parameter (or frequen
APA, Harvard, Vancouver, ISO, and other styles
7

Sadat, Md Ehsan, Sergey L. Bud’ko, Rodney C. Ewing, et al. "Effect of Dipole Interactions on Blocking Temperature and Relaxation Dynamics of Superparamagnetic Iron-Oxide (Fe3O4) Nanoparticle Systems." Materials 16, no. 2 (2023): 496. http://dx.doi.org/10.3390/ma16020496.

Full text
Abstract:
The effects of dipole interactions on magnetic nanoparticle magnetization and relaxation dynamics were investigated using five nanoparticle (NP) systems with different surfactants, carrier liquids, size distributions, inter-particle spacing, and NP confinement. Dipole interactions were found to play a crucial role in modifying the blocking temperature behavior of the superparamagnetic nanoparticles, where stronger interactions were found to increase the blocking temperatures. Consequently, the blocking temperature of a densely packed nanoparticle system with stronger dipolar interactions was f
APA, Harvard, Vancouver, ISO, and other styles
8

Markovich, Gil. "Magneto-transport and magnetization dynamics in magnetic nanoparticle assemblies." MRS Bulletin 38, no. 11 (2013): 939–44. http://dx.doi.org/10.1557/mrs.2013.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shutyi A. M. and Sementsov D. I. "Dynamics of magnetization of a uniaxial nanoparticle in the region of noncollinear ferromagnetic resonance." Physics of the Solid State 64, no. 12 (2022): 1904. http://dx.doi.org/10.21883/pss.2022.12.54384.448.

Full text
Abstract:
Resonance dynamics of the magnetic moment of a uniaxial ellipsoidal nanoparticle under its magnetic biasing along the symmetry axis and excitation by a transverse high-frequency field is studied with the parameters (frequency, magnetic bias field and shape parameter), corresponding to the noncollinear orientation of equilibrium magnetization and the external static field. We revealed the frequency regions where precession becomes nonlinear at a weak alternating field and dynamic bistability, as well as complex spatial attractors and chaos are implemented. Keywords: ellipsoidal nanoparticle, fe
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Ke. "Micromagnetic Simulation of Ferromagnetic Resonance in Nanoparticle with Lateral Gradient Magnetization." Advanced Materials Research 677 (March 2013): 113–18. http://dx.doi.org/10.4028/www.scientific.net/amr.677.113.

Full text
Abstract:
Micromagnetic simulation is performed on a ferromagnetic nanoparticle with lateral gradient magnetization in order to study its resonance modes and magnetizaiton dynamics mechenism under microwave frequency. The ferromagnetic resonance spectra and magnetzation reversal are calculated with dc magnetic field from 0 to 600 mT. The simulations show that an obvious border spin wave resnonace mode arises under a greater magnetic external field, which provide a new method to excite spin wave in magnonics; the hard phase determines the process of dynamical magnetization reversal under microwave freque
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetization dynamics of the nanoparticle"

1

Kesserwan, Hassan. "Ultrafast magnetization dynamics of magnetic nanostructures." Strasbourg, 2011. http://www.theses.fr/2011STRA6034.

Full text
Abstract:
Divisé en deux parties, cette thèse décrit la dynamique d'aimantation de nanoparticules magnétiques. Dans la première partie, nous avons décrit une étude expérimentale détaillée de la dynamique d'aimantation dans des nanoparticules de CoPt sous forme de coeur/coquille. Pour cela, nous avons effectué des mesures d’effet Kerr magnéto-optique résolues en temps utilisant une pompe de 150 fs à 400 nm et une sonde de 150 fs à 800 nm. Nous avons étudié les différents processus qui ont lieu sur des échelles de temps bref : comme la démagnétisation ultrarapide et la précession du vecteur d’aimantation.
APA, Harvard, Vancouver, ISO, and other styles
2

Денисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, et al. "Effective Landau-Lifshitz-Gilbert Equation for a Conducting Nanoparticle." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35362.

Full text
Abstract:
We study the role of conductivity in the magnetization dynamics of single-domain ferromagnetic particles. Our approach is based on the coupled system of Maxwell’s and Landau-Lifshitz-Gilbert (LLG) equations that describes both the induced electromagnetic field and the magnetization dynamics. We show that the effective LLG equation for a conducting particle contains two additional terms compared to the ordinary LLG equation. One of these terms accounts for the magnetic field of eddy currents induced by an external magnetic field, and the other is magnetization dependent and is responsible
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Jie. "Field-driven magnetization dynamics of nanoparticles and nanowires /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202009%20LUJ.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, Yoh. "Metastability of Magnetic Nanoparticles in Magnetization Relaxation with Different Dynamics and Distributions of Magnetic Anisotropy." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/50969.

Full text
Abstract:
We study the metastability of magnetic nanoparticles with size distributions. We simulate an array of magnetic nanoparticles with a spin S = 1 ferromagnetic Blume-Capel model on a square lattice. Studying decays of the metastable state in the Blume-Capel model at low temperatures requires an extremely long computational time in kinetic Monte Carlo simulations. Therefore, we use an advanced algorithm adapted from the Monte Carlo with absorbing Markov chain algorithm for the Ising model in order to study the Blume-Capel model with size distributions. We modeled the particle size distributions as
APA, Harvard, Vancouver, ISO, and other styles
5

Morales, Marienette B. "Magnetization Dynamics and Interparticle Interactions in Ferrofluids and Nanostructures." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/3913.

Full text
Abstract:
Nanoparticle assemblies are of current interest as they are used in a wide variety of industrial and biomedical applications. This work presents two studies aimed at understanding the magnetization dynamics and interparticle interactions in nanoparticle assemblies and various types of ferrofluids. First, we studied the influence of varying strengths of dipolar interaction on the static and dynamic magnetic properties of surfactant-coated monodispersed manganese-zinc ferrite nanoparticles using reversible transverse susceptibility. We tracked the evolution of the anisotropy peaks with varying m
APA, Harvard, Vancouver, ISO, and other styles
6

Liutyi, Taras Volodymyrovych, Тарас Владимирович Лютый, Тарас Володимирович Лютий, Oleksandr Yuriiovych Poliakov, Александр Юрьевич Поляков та Олександр Юрійович Поляков. "Стохастическая динамика намагниченности наночастицы во вращающемся магнитном поле". Thesis, Видавництво СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/4223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Piquerel, Raoul. "Retournement de l'aimantation assisté par un champ micro-onde d'une nanoparticule individuelle." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767410.

Full text
Abstract:
Un magnétomètre microSQUID basse température couplé à une antenne micro-onde a été utilisé pour sonder la dynamique du retournement assisté de l'aimantation d'une nanoparticule ferromagnétique. Grâce au développement d'une technique de mesure originale, basée notamment sur le contrôle de l'amplitude et de la phase du champ micro-onde, nous avons pu mettre en évidence les bassins d'attraction liés aux modes de précession présents dans la dynamique de l'aimantation. Il devient possible de contrôler le retournement de l'aimantation selon que l'amplitude et la phase du champ AC sont judicieusement
APA, Harvard, Vancouver, ISO, and other styles
8

Lendínez, Escudero Sergi. "Magnetization dynamics at the nanoscale in nanoparticles and thin films: single-molecule magnets, magnetic vortices, and magnetic droplet solutions." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/395194.

Full text
Abstract:
Research in magnetic materials leads to new devices and technologies. As the technology progresses, the devices become smaller and this miniaturization allows more storage capacity and lower costs in the production of new technologies. As new and smaller materials are fabricated, new phenomena appear and thus new physics is needed to describe them. Nanomaterials meet characteristics of both the microscopic quantum world and the macroscopic classic world. This intermediate length scale is known as mesoscale. Nanomaterials can be obtained in a variety of forms, being nanoparticles and magnetic u
APA, Harvard, Vancouver, ISO, and other styles
9

Sorea, Stanescu Dana Elena. "Magnetization dynamics in magnetic nanostructures." Phd thesis, Université Joseph Fourier (Grenoble), 2003. http://tel.archives-ouvertes.fr/tel-00006021.

Full text
Abstract:
En utilisant la technique pompe-sonde résolue en temps, nous avons étudié la dynamique de l'aimantation dans des couches minces magnétiques avec une résolution temporelle de 20ps. La pompe est constituée par les champs magnétiques de hautes fréquences induits par des impulsions de tension appliquées sur une ligne coplanaire. Comme sonde, nous avons utilisé l'effet Kerr magnéto-optique et l'effet magnéto-résistif. Nous présentons la préparation des échantillons en utilisant le dépôt de couches minces par pulvérisation cathodique, la lithographie UV, ainsi que différentes techniques de gravure.
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Lei. "Magnetization Dynamics at Elevated Temperatures." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/311342.

Full text
Abstract:
The area of ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic elements and thin films, usually driven by a strong femtosecond laser pulse, has experienced intense research interest. In this dissertation, laser-induced demagnetization is theoretically studied by taking into account interactions among electrons, spins, and lattice. We propose a microscopic approach under the three temperature framework and derive the equations that govern the demagnetization at arbitrary temperatures.To address the question of magnetization reversal at high temperatures, the conventional Landau-
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetization dynamics of the nanoparticle"

1

D, Mayergoyz I., and Serpico Claudio, eds. Nonlinear magnetization dynamics in nanosystems. Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mørup, Steen, Cathrine Frandsen, and Mikkel F. Hansen. Magnetic properties of nanoparticles. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.20.

Full text
Abstract:
This article discusses the magnetic properties of nanoparticles. It first considers magnetic domains and the critical size for single-domain behavior of magnetic nanoparticles before providing an overview of magnetic anisotropy in nanoparticles. It then examines magnetic dynamics in nanoparticles, with particular emphasis on superparamagnetic relaxation and the use of Mössbauer spectroscopy, dc magnetization measurements, and ac susceptibility measurements for studies of superparamagnetic relaxation. It also describes magnetic dynamics below the blocking temperature, magnetic interactions betw
APA, Harvard, Vancouver, ISO, and other styles
3

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Outlook on Magnetization Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0012.

Full text
Abstract:
Since its original formulation in the mid-1990's, atomistic spin-dynamics has become an important tool for modelling of dynamic processes in magnetic materials. So far this book has described current methodological methods and functionalities of atomistic spin-dynamics simulations. Applications of DFT and ASD techniques to selected topics have been presented in this book, for instance methods for calculation of the microscopic Heisenberg and Gilbert parameter from first principles (Chapters 2 and 6), multiscale modelling of magnon spectra in bulk and thin film magnets (Chapter 9), and theoreti
APA, Harvard, Vancouver, ISO, and other styles
4

Nonlinear Magnetization Dynamics in Nanosystems. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-08-044316-4.x0001-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bertotti, Giorgio, Isaak D. Mayergoyz, and Claudio Serpico. Nonlinear Magnetization Dynamics in Nanosystems. Elsevier Science & Technology Books, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kneip, Martin. Magnetization Dynamics in Diluted Magnetic Semiconductor Heterostructures. GRIN Verlag GmbH, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abraham, J. P., W. J. Minkowycz, and E. Sparrow. Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Minkowycz, W. J. Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abraham, J. P., W. J. Minkowycz, and E. Sparrow. Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nanoparticle Heat Transfer and Fluid Flow. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Magnetization dynamics of the nanoparticle"

1

Sharma, Monika, and Bijoy K. Kuanr. "Magnetization Dynamics of Ferromagnetic Nanostructures for Spintronics and Biomedical Applications." In Nanoparticles in Diagnosis, Drug Delivery and Nanotherapeutics. CRC Press, 2023. http://dx.doi.org/10.1201/9781003316398-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rikvold, Per Arne, Gregory Brown, Steven J. Mitchell, and M. A. Novotny. "Dynamics of Magnetization Reversal in Models of Magnetic Nanoparticles and Ultrathin Films." In Nanostructured Magnetic Materials and Their Applications. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36872-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ansermet, Jean-Philippe. "Magnetization Dynamics." In Spintronics. CRC Press, 2024. http://dx.doi.org/10.1201/9781003370017-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bailey, William E. "Magnetization Dynamics." In Introduction to Magnetic Random&;#x02010;Access Memory. John Wiley &;#38; Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119079415.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kent, Andrew D., Hendrik Ohldag, Hermann A. Dürr, and Jonathan Z. Sun. "Magnetization Dynamics." In Handbook of Magnetism and Magnetic Materials. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kent, Andrew D., Hendrik Ohldag, Hermann A. Dürr, and Jonathan Z. Sun. "Magnetization Dynamics." In Handbook of Magnetism and Magnetic Materials. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_27-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klughertz, G., P. A. Hervieux, and G. Manfredi. "Magnetization Reversal in a Cobalt Nanoparticle." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aeschlimann, M., D. Steil, M. Cinchetti, and H. C. Schneider. "Electronic Scattering Dynamics and Ultrafast Magnetization Dynamics." In Springer Proceedings in Physics. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rasing, Theo, Hugo van den Berg, Thomas Gerrits, and Julius Hohlfeld. "Ultrafast Magnetization and Switching Dynamics." In Topics in Applied Physics. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-46097-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Krause, Stefan, and Roland Wiesendanger. "Magnetization Dynamics on the Atomic Scale." In Atomic- and Nanoscale Magnetism. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99558-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetization dynamics of the nanoparticle"

1

Ando, Kazuya. "Orbital currents and magnetization dynamics in metallic systems." In Spintronics XVII, edited by Henri Jaffrès, Jean-Eric Wegrowe, Manijeh Razeghi, and Joseph S. Friedman. SPIE, 2024. http://dx.doi.org/10.1117/12.3026935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kishimoto, Tatsunori, Yasushi Tanimoto, Kyoko Masui, Chie Hosokawa, and Kentaro Doi. "Nanoparticle assembly dynamics using Laguerre-Gaussian beams." In Optics and Photonics International Congress 2024, edited by Kishan Dholakia, Toyohiko Yatagai, Shuji Sakabe, Irina Sorokina, and Din Ping Tsai. SPIE, 2025. https://doi.org/10.1117/12.3057788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Titov, Sergei V., William Coffey, William J. Dowling, Yuri Kalmykov, Marios Zarifakis, and Anton Titov. "Inertial magnetization dynamics of ferromagnetic nanoparticles including thermal agitation." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2598253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peddis, Davide. "SUPERSPIN GLASS: A USELESS PIECE OF MATERIALS." In 17th International Conference on Fundamental and Applied Aspects of Physical Chemistry. Society of Physical Chemists of Serbia, 2024. https://doi.org/10.46793/phys.chem24i.023p.

Full text
Abstract:
In a magnetic nanoparticles the thermal evolution of the magnetization dynamics depends on the particle concentration and the nature of the inter-particle interactions1. In sufficiently concentrated nanoparticle systems, strong dipolar interaction combined with random orientation of anisotropy axes determine a competition between different moment alignments leading to a collective freezing of particle moments in a disordered magnetic state, known as superspin glass (SSG), below a characteristic glass temperature (Tg).2 SSG exhibits slow dynamics which is qualitatively indistinguishable from th
APA, Harvard, Vancouver, ISO, and other styles
5

Bregar, Vladimir B., Mojca Pavlin, Andrej Žnidaršič, Urs Häfeli, Wolfgang Schütt, and Maciej Zborowski. "Magnetization State in Magnetic Nanoparticle Agglomerates." In 8TH INTERNATIONAL CONFERENCE ON THE SCIENTIFIC AND CLINICAL APPLICATIONS OF MAGNETIC CARRIERS. AIP, 2010. http://dx.doi.org/10.1063/1.3530061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gessner, Julia Anthea, Ulrike Martens, John K. Dewhurst, et al. "Petahertz Magnetization Dynamics." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Obana, Hiroki, Satoshi Ota, Seiji Takeuchi, Suko Bagus Trisnanto, and Yasushi Takemura. "Dynamic magnetization and specific loss powers of commercial magnetic nanoparticles." In 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers). IEEE, 2023. http://dx.doi.org/10.1109/intermagshortpapers58606.2023.10228203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

RASING, THEO. "ULTRAFAST MAGNETIZATION SWITCHING DYNAMICS." In Proceedings of the 24th Course of the International School of Solid State Physics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702982_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weaver, John B., Adam M. Rauwerdink, and Eric W. Hansen. "The analysis of nanoparticle magnetization vibration using magnetic spectroscopy." In SPIE Medical Imaging, edited by Xiaoping P. Hu and Anne V. Clough. SPIE, 2009. http://dx.doi.org/10.1117/12.816406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Acremann, Yves. "Magnetization Dynamics on the Nanoscale." In Laser Science. OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsmh2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetization dynamics of the nanoparticle"

1

Zhang, Shufeng. Quantitative Modeling of High Temperature Magnetization Dynamics. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/1170234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moyers, Aidan, Derek Davies, Michael Becker, and Desiderio Kovar. Molecular dynamics simulation of yttria (Y2O3) nanoparticle impacts. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1846111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Langner, Matthew C. Ultrafast Magnetization Dynamics of SrRuO3 Thin Films. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/961838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, M. D. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/893273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, M. D. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/839150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Slavin, Andrei M. Stochastic Magnetization Dynamics Excited by Spin-Polarized Current in Magnetic Nano-Structures. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada496844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Meng-Dawn. PHYSICO-CHEMICAL DYNAMICS OF NANOPARTICLE FORMATION DURING LASER DECONTAMINATION AND CHARACTERIZATION. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/835402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Meng-Dawn. PHYSICO-CHEMICAL DYNAMICS OF NANOPARTICLE FORMATION DURING LASER DECONTAMINATION AND CHARACTERIZATION. Office of Scientific and Technical Information (OSTI), 2003. http://dx.doi.org/10.2172/835403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kelley, David F. Photophysics and Charge Separation Dynamics in Two-Dimensional Semiconductor Nanoparticle Junctions and Heterojunctions. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1124603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tully, John C. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1362289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!