To see the other types of publications on this topic, follow the link: Magneto-optic effect.

Journal articles on the topic 'Magneto-optic effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magneto-optic effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ILISCA, Ernest. "MAGNETO-OPTIC AND MAGNETO-CATALYTIC EFFECT." Journal of the Magnetics Society of Japan 11, S_1_ISMO (1987): S1_13–18. http://dx.doi.org/10.3379/jmsjmag.11.s1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dattagupta, S., R. Ghosh, and J. Singh. "Magneto-Optic Piston Effect." Physical Review Letters 83, no. 4 (July 26, 1999): 710–13. http://dx.doi.org/10.1103/physrevlett.83.710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qiu, Z. Q., and S. D. Bader. "Surface magneto-optic Kerr effect." Review of Scientific Instruments 71, no. 3 (March 2000): 1243–55. http://dx.doi.org/10.1063/1.1150496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hasan, Zaid A. "Effect Magneto – Optic on Ferromagnetic Nanoparticle Polymer Composite Films." NeuroQuantology 19, no. 6 (July 14, 2021): 25–29. http://dx.doi.org/10.14704/nq.2021.19.6.nq21063.

Full text
Abstract:
Optical properties of a composite material made of ferromagnetic matel nanoparticles embedded in dielectric host are studied. A nonlinear dependence of the optical rotation on magnetic field resulting from the reorientation of nanoparticles is demonstrated. The data of optical properties finding were applied to the magneto – optic experimental data of nickel ferrite (NiFe2 O4) ferromagnetic nanoparticles embedded in polymer (PMMA) host. The magneto – optic is applied at wavelength (540 nm) and magnetic field intensity (450 m T), from result we found the affect magneto – optical on samples.
APA, Harvard, Vancouver, ISO, and other styles
5

Qiu, Z. Q., and S. D. Bader. "Surface magneto-optic Kerr effect (SMOKE)." Journal of Magnetism and Magnetic Materials 200, no. 1-3 (October 1999): 664–78. http://dx.doi.org/10.1016/s0304-8853(99)00311-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Semchuk, A. Y. "Magneto-optic effect in ferromagnetic semiconductors." IEEE Transactions on Magnetics 29, no. 6 (November 1993): 3420–21. http://dx.doi.org/10.1109/20.281182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hwang, Chan-Yong. "Understanding the Surface Magneto-optic Kerr Effect." Journal of the Korean Magnetics Society 21, no. 4 (August 31, 2011): 141–46. http://dx.doi.org/10.4283/jkms.2011.21.4.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qiu, Z. Q., and S. D. Bader. "Surface Magnetism and Kerr Spectroscopy." MRS Bulletin 20, no. 10 (October 1995): 34–37. http://dx.doi.org/10.1557/s0883769400045322.

Full text
Abstract:
Magneto-optic effects were first discovered in 1845 by Michael Faraday, but these effects continue to make a major impact on the materials community to this day. The need for new magnetic information-storage media has stimulated new approaches and opened new scientific opportunities in the exploration of thin-film and surface magnetism. This article provides background to some of these developments and highlights examples of contemporary issues that provide a focus for the field. In the Faraday effect, the polarization plane of linearly polarized light rotates when a magnetic field is applied in the propagation direction. The analogous phenomenon was subsequently discovered by the Rev. John Kerr in 1877 for light reflected from opaque materials. The works of Faraday and Kerr serve as cornerstones for our present understanding of magneto-optic effects in magnetic materials. Magnetooptics is presently described in the context of either microscopic quantum theory or macroscopic dielectric theory. Microscopically, the coupling between the electric field of the propagating light and the electron spin in a magnetic medium occurs through the spin-orbit interaction. Macroscopically, magneto-optic effects arise from the antisymmetric, off-diagonal elements in the dielectric tensor, as discussed in the next section.Magneto-optic characterizations of surface magnetism began only a decade ago. The first surface magneto-optic Kerr-effect study, better known by its acronym SMOKE, concerned the magnetichysteresis loops for ultrathin Fe films grown epitaxially on Au(100). Since then, SMOKE has emerged as a premier surface-magnetism technique. SMOKE has been applied to various topics in low-dimensional magnetism, ranging from the detection of magnetic order to the characterization of critical behavior, magnetic surface anisotropies, and the oscillatory antiferromagnetic coupling exhibited by giant-magnetoresistanceheterostructures. Additional interest in SMOKE has been generated by the recent commercialization of high-density, magneto-optic information-storage media, and especially by the next-generation candidate material based on Co/Pt superlattices.
APA, Harvard, Vancouver, ISO, and other styles
9

MAEDA, T., K. TAKEDA, S. SAITO, and T. SOUMURA. "MAGNETO-OPTIC KERR EFFECT IN Fe-Ni ALLOYS." Journal of the Magnetics Society of Japan 15, S_1_MORIS_91 (1991): S1_109–112. http://dx.doi.org/10.3379/jmsjmag.15.s1_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang Li-Cen, Qiu Xiao-Dong, Zhang Zhi-You, and Shi Rui-Ying. "Photon spin splitting in magneto-optic Kerr effect." Acta Physica Sinica 64, no. 17 (2015): 174202. http://dx.doi.org/10.7498/aps.64.174202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Frey, Robert, Maxime Clusel, Adrian Radu, Régis André, and Christos Flytzanis. "Nonlinear magneto-optic Kerr effect in semiconductor microcavities." Solid State Communications 123, no. 1-2 (July 2002): 59–62. http://dx.doi.org/10.1016/s0038-1098(02)00198-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sassaroli, E., C. A. DiMarzio, Y. He, and S. A. Oliver. "Magneto-optic Kerr effect in a slab waveguide." Journal of Applied Physics 90, no. 12 (December 15, 2001): 6054–60. http://dx.doi.org/10.1063/1.1418006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lawler, J. F., J. G. Lunney, and J. M. D. Coey. "Magneto‐optic Faraday effect in (La1−xCax)MnO3films." Applied Physics Letters 65, no. 23 (December 5, 1994): 3017–18. http://dx.doi.org/10.1063/1.112494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nishizawa, Hideki, and Takashi Nakayama. "Magneto-Optic Anisotropy Effect on Photonic Band Structure." Journal of the Physical Society of Japan 66, no. 3 (March 15, 1997): 613–17. http://dx.doi.org/10.1143/jpsj.66.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kabos, P., A. B. Kos, and T. J. Silva. "Vectorial second-harmonic magneto-optic Kerr effect measurements." Journal of Applied Physics 87, no. 9 (May 2000): 5980–82. http://dx.doi.org/10.1063/1.372586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

McAven, Luke F., Hughan J. Ross, Kiminari Shinagawa, and Philip H. Butler. "The Kerr magneto-optic effect in ferromagnetic CrBr3." Journal of Physics B: Atomic, Molecular and Optical Physics 32, no. 3 (January 1, 1999): 563–76. http://dx.doi.org/10.1088/0953-4075/32/3/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Brubaker, Mary E., E. R. Moog, C. H. Sowers, J. Zak, and S. D. Bader. "Transverse magneto-optic Kerr effect in ultrathin films." Journal of Magnetism and Magnetic Materials 103, no. 1-2 (January 1992): L7—L12. http://dx.doi.org/10.1016/0304-8853(92)90227-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dadoenkova, Yuliya S., Igor L. Lyubchanskii, YoungPak Lee, and Theo Rasing. "Electric Field Controlled Magneto-Optical Kerr Effect at Light Reflection From an Electro-Optic/Magneto-Optic Bilayer." IEEE Transactions on Magnetics 47, no. 6 (June 2011): 1623–26. http://dx.doi.org/10.1109/tmag.2011.2106766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rizal, Conrad, Pavel O. Kapralov, Daria Ignatyeva, Vladimir Belotelov, and Simone Pisana. "Comparison of the effects of surface plasmon resonance and the transverse magneto-optic Kerr effect in magneto-optic plasmonic nanostructures." Journal of Physics D: Applied Physics 53, no. 2 (October 31, 2019): 02LT02. http://dx.doi.org/10.1088/1361-6463/ab4ec0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

POLUSHIN, SERGEY, EVGENY RJUMTSEV, VLADIMIR NIKITIN, ANDREY PONOMAREV, and DMITRY LETENKO. "MAGNETO-OPTIC PROPERTIES OF CARBON NANOPARTICLES IN SUSPENSION." International Journal of Nanoscience 01, no. 03n04 (June 2002): 269–75. http://dx.doi.org/10.1142/s0219581x02000346.

Full text
Abstract:
The magnetic birefringence of the water suspension of materials containing up to 5% of multi-walled carbon nanotubes (MWNTs) was investigated in this work. The observed magneto-optic effect may be considered as a superposition of competitive effects. The negative one is due to the presence of graphite nanoclusters in the suspension, and the positive effect is due to the stick-like nanostructures such as MWNTs and their aggregates. It was found that the speed of sedimentation for nanotubes is less than it for graphite-like particles. As a result, the enrichment process takes place.
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Shu Hui, and Xiao Jun Li. "An Experimental Research on Faraday Effect of Magneto-Optical Medium." Key Engineering Materials 500 (January 2012): 45–51. http://dx.doi.org/10.4028/www.scientific.net/kem.500.45.

Full text
Abstract:
The Verdet constant is the essential parameter of Faraday Effect. Study on Verdet constant of magnetic optical medium is very important in Faraday Effect research and application. In this paper, Verdet constant of liquid and solid medium were investigated with light extinction method with the help of photoelectric detector. Using the square wave magneto-optic modulation method which we established, Verdet constant of air was measured. Variation of Verdet constant of these materials with changes of light wavelength and temperature was investigated. These experimental data may provide reference for research and application of magneto-optic effect. Meanwhile, the experiment in this paper is also one of the key works of magnetic rotation imaging method for geomagnetic field measurement which we proposed. It will provide experimental support for this new geomagnetic field measurement method.
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, J. S., J. W. Roh, W. Y. Lee, S. H. Ok, D. H. Woo, Y. T. Byun, Y. M. Jhon, T. Mizumoto, and S. Lee. "A Magneto-Optic Waveguide Isolator Using Multimode Interference Effect." Journal of Magnetics 10, no. 2 (June 1, 2005): 41–43. http://dx.doi.org/10.4283/jmag.2005.10.2.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lim, S. P., and B. R. Cooper. "Calculation of magneto‐optic Kerr effect in CeSb (abstract)." Journal of Applied Physics 69, no. 8 (April 15, 1991): 4586. http://dx.doi.org/10.1063/1.348318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fumagalli, P., C. Spaeth, U. Rudiger, and R. J. Gambino. "A new magneto-optic enhancement effect in macroscopic ferrimagnets." IEEE Transactions on Magnetics 31, no. 6 (1995): 3319–24. http://dx.doi.org/10.1109/20.490370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cheng, Yu-hua, and Zhao-fei Zhou. "Application of the magneto-optic Faraday effect in NDT." Insight - Non-Destructive Testing and Condition Monitoring 48, no. 5 (May 2006): 290–93. http://dx.doi.org/10.1784/insi.2006.48.5.290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tsunashima, S., M. Nakamura, T. Ishida, and S. Uchiyama. "Magneto-optic Kerr effect of amorphous Gd-Fe films." IEEE Transactions on Magnetics 23, no. 5 (September 1987): 3205–7. http://dx.doi.org/10.1109/tmag.1987.1065251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Oliver, Steven A. "Magnetic field measurements using magneto-optic Kerr effect sensors." Optical Engineering 33, no. 11 (November 1, 1994): 3718. http://dx.doi.org/10.1117/12.181938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Daalderop, G. H. O., F. M. Mueller, R. C. Albers, and A. M. Boring. "Theory of the magneto-optic kerr-effect in NiUSn." Journal of Magnetism and Magnetic Materials 74, no. 2 (September 1988): 211–18. http://dx.doi.org/10.1016/0304-8853(88)90070-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zheng, Zhen, and Z. D. Wang. "Emulation of magneto-optic Faraday effect using ultracold atoms." New Journal of Physics 23, no. 2 (February 1, 2021): 023033. http://dx.doi.org/10.1088/1367-2630/abdce4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chang, Lin, and Jie Lian. "The extended magneto optic method to explore the Longitude Magneto Optic Kerr effect of the ultrathin magnetic film grown on optic uniaxial substrate." Optik 124, no. 21 (November 2013): 4921–24. http://dx.doi.org/10.1016/j.ijleo.2013.03.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Papaioannou, E. Th, M. Angelakeris, P. Poulopoulos, I. Tsiaoussis, C. Rüdt, P. Fumagalli, and N. K. Flevaris. "Structural, Magnetic, and Magneto-Optical Properties of Nanocrystalline Face Centered Cubic Co70Cr30/Pt Multilayers with Perpendicular Magnetic Anisotropy." Journal of Nanoscience and Nanotechnology 7, no. 12 (December 1, 2007): 4278–84. http://dx.doi.org/10.1166/jnn.2007.901.

Full text
Abstract:
Co70Cr30 alloyed layers are combined with extremely thin Pt layers in order to produce novel face-centered-cubic multilayered films to be considered as a potential perpendicular magnetic recording medium. The films were grown on Si, glass and polyimide substrates by e-beam evaporation at a temperature slightly higher than room temperature. The multilayered structure of the films was verified by X-ray diffraction experiments. Plane-view transmission electron microscopy images have revealed the formation of very small grains in the range of 7–9 nm. Hysteresis loops as a function of temperature were recorded via the magneto-optic Kerr effect in the polar geometry configuration. The system exhibits perpendicular magnetic anisotropy, which enhances with decreasing temperature. Hysteresis loops with a squareness of 1 and a coercivity of 1.45 kOe were obtained at 10 K. Furthermore, complete magneto-optic spectra of the films are recorded, showing a strong magneto-optic enhancement in the ultraviolet region at around 4.5 eV.
APA, Harvard, Vancouver, ISO, and other styles
32

Fu, Wei, Xiaoxu Zhao, Ke Wang, Zhi Chen, Kai Leng, Deyi Fu, Peng Song, et al. "An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers." Nano Letters 20, no. 7 (June 5, 2020): 5330–38. http://dx.doi.org/10.1021/acs.nanolett.0c01704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hacyan, S., and R. Jáuregui. "Faraday effect and Bessel beams in a magneto-optic medium." Journal of Physics B: Atomic, Molecular and Optical Physics 41, no. 1 (December 20, 2007): 015402. http://dx.doi.org/10.1088/0953-4075/41/1/015402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wijngaard, J. W., J. Dijkstra, R. A. De Groot, H. Feil, and C. Haas. "MAGNETO-OPTIC KERR EFFECT AND ELECTRONIC STRUCTURE OF Fe1/3TaS2." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–1505—C8–1506. http://dx.doi.org/10.1051/jphyscol:19888693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Taura, Hiroshi, Yohei Shishido, Yuichiro Tanushi, Tomohiro Tokunaga, Takahiro Onimaru, and Shin Yokoyama. "Magneto-Optic Effect in Amorphous Bi3Fe5O12Waveguides Sputtered at Room Temperature." Japanese Journal of Applied Physics 47, no. 4 (April 25, 2008): 2915–20. http://dx.doi.org/10.1143/jjap.47.2915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Poduska, Kristin M., and Sylvie Morin. "Electrochemical cell for in situ magneto-optic Kerr effect measurements." Review of Scientific Instruments 74, no. 11 (November 2003): 4723–27. http://dx.doi.org/10.1063/1.1619583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nakayama, Satoru, Makoto Okano, Yukio Nozaki, and Shinichi Watanabe. "Magneto-optic Kerr effect CCD imaging with polarization modulation technique." AIP Advances 7, no. 5 (May 2017): 056802. http://dx.doi.org/10.1063/1.4974023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cai Wei, 蔡. 伟., 邢俊晖 Xing Junhui, 杨志勇 Yang Zhiyong, and 姚瑞桥 Yao Ruiqiao. "Mechanism Analysis of Faraday Effect Based on Magneto-Optic Coupling." Laser & Optoelectronics Progress 54, no. 6 (2017): 062601. http://dx.doi.org/10.3788/lop54.062601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lan, Tianshu, Baofu Ding, and Bilu Liu. "Magneto‐optic effect of two‐dimensional materials and related applications." Nano Select 1, no. 3 (August 7, 2020): 298–310. http://dx.doi.org/10.1002/nano.202000032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Prikryl, Ivan. "Effect of disk birefringence on a differential magneto-optic readout." Applied Optics 31, no. 11 (April 10, 1992): 1853. http://dx.doi.org/10.1364/ao.31.001853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tokumaru, H., and T. Nomura. "Effect of High Permeability Film in Magneto-optic Readout Head." IEEE Translation Journal on Magnetics in Japan 2, no. 9 (September 1987): 836–38. http://dx.doi.org/10.1109/tjmj.1987.4549625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zharov, Alexander A., and Vladislav V. Kurin. "Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials." Journal of Applied Physics 102, no. 12 (December 15, 2007): 123514. http://dx.doi.org/10.1063/1.2822192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Oliver, S. A., C. A. DiMarzio, S. C. Lindberg, S. W. McKnight, and A. B. Kale. "Measurement of magnetic fields using the magneto‐optic Kerr effect." Applied Physics Letters 63, no. 3 (July 19, 1993): 415–17. http://dx.doi.org/10.1063/1.110010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Peng, Jian-Ping, Yao-Ming Mu, Pu-Lin Liu, Xue-Chu Shen, and Shi-Xun Zhou. "A new magneto-optic effect of quasi-two-dimensional conductors." Journal of Physics: Condensed Matter 4, no. 2 (January 13, 1992): 525–29. http://dx.doi.org/10.1088/0953-8984/4/2/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chang, Lin, Jie Lian, Xiao Wang, and Zhaozong Sun. "Extended magneto optic method to explore the longitude magneto optic Kerr effect of the magnetic ultrathin film grown on optically anisotropic substrate." Journal of Magnetism and Magnetic Materials 333 (May 2013): 114–23. http://dx.doi.org/10.1016/j.jmmm.2012.12.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

LIU GONG-QIANG and HUANG YAN-PING. "QUANTUM THEORY OF FARADAY MAGNETO-OPTIC EFFECT IN THE PARAMAGNETIC MEDIA." Acta Physica Sinica 37, no. 10 (1988): 1626. http://dx.doi.org/10.7498/aps.37.1626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kortright, J. B., Sang-Koog Kim, E. E. Fullerton, J. S. Jiang, and S. D. Bader. "X-ray magneto-optic Kerr effect studies of spring magnet heterostructures." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468 (July 2001): 1396–403. http://dx.doi.org/10.1016/s0168-9002(01)00742-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tejedor, M., A. Fernández, and M. A. Cerdeira. "Enhancement of the transverse Kerr magneto-optic effect by multiple reflections." Review of Scientific Instruments 69, no. 11 (November 1998): 4000–4001. http://dx.doi.org/10.1063/1.1149222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zak, J., E. R. Moog, C. Liu, and S. D. Bader. "Elementary formula for the magneto‐optic Kerr effect from model superlattices." Applied Physics Letters 58, no. 11 (March 18, 1991): 1214–16. http://dx.doi.org/10.1063/1.104368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dyakov, S. A., F. Spitzer, I. Akimov, D. A. Yavsin, S. I. Pavlov, S. Y. Verbin, S. G. Tikhodeev, N. A. Gippius, A. B. Pevtsov, and M. Bayer. "Wide band enhancement of transverse magneto-optic Kerr effect in magnetite." Journal of Physics: Conference Series 1461 (March 2020): 012033. http://dx.doi.org/10.1088/1742-6596/1461/1/012033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography