Academic literature on the topic 'Magneto plasmonic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magneto plasmonic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magneto plasmonic"
Hu, Bin, Ying Zhang, and Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies." Nanophotonics 4, no. 4 (November 6, 2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Full textKazlou, A., T. Kaihara, I. Razdolski, and A. Stupakiewicz. "Surface plasmon-assisted control of the phase of photo-induced spin precession." Applied Physics Letters 120, no. 25 (June 20, 2022): 251101. http://dx.doi.org/10.1063/5.0097539.
Full textKuzmin, Dmitry A., Igor V. Bychkov, Vladimir G. Shavrov, and Vasily V. Temnov. "Plasmonics of magnetic and topological graphene-based nanostructures." Nanophotonics 7, no. 3 (February 23, 2018): 597–611. http://dx.doi.org/10.1515/nanoph-2017-0095.
Full textKhan, Pritam, Grace Brennan, James Lillis, Syed A. M. Tofail, Ning Liu, and Christophe Silien. "Characterisation and Manipulation of Polarisation Response in Plasmonic and Magneto-Plasmonic Nanostructures and Metamaterials." Symmetry 12, no. 8 (August 17, 2020): 1365. http://dx.doi.org/10.3390/sym12081365.
Full textYeneayehu, Kinde, Teshome Senbeta, and Belayneh Mesfin. "The effect of surface plasmonic resonances on magneto-plasmonic spherical core-shell nanocomposites." SINET: Ethiopian Journal of Science 45, no. 2 (August 30, 2022): 132–42. http://dx.doi.org/10.4314/sinet.v45i2.2.
Full textPineider, Francesco, Esteban Pedrueza-Villalmanzo, Michele Serri, Addis Mekonnen Adamu, Evgeniya Smetanina, Valentina Bonanni, Giulio Campo, et al. "Plasmon-enhanced magneto-optical detection of single-molecule magnets." Materials Horizons 6, no. 6 (2019): 1148–55. http://dx.doi.org/10.1039/c8mh01548a.
Full textDaya Shanker and Rashimi Yadav. "The impact of magnetic field on the surface of carbon-insulator-GaAs Semiconductors which is tunable with a frequency range in the presence of surface magneto Plasmon." International Journal of Science and Research Archive 7, no. 2 (December 30, 2022): 306–11. http://dx.doi.org/10.30574/ijsra.2022.7.2.0279.
Full textManera, Maria Grazia, Gabriele Giancane, Simona Bettini, Ludovico Valli, Victor Borovkov, Adriano Colombelli, Daniela Lospinoso, and Roberto Rella. "MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications." Chemosensors 9, no. 10 (September 22, 2021): 272. http://dx.doi.org/10.3390/chemosensors9100272.
Full textVavassori. "Magneto-Plasmonic Nanostructures and Crystals." Proceedings 26, no. 1 (September 5, 2019): 2. http://dx.doi.org/10.3390/proceedings2019026002.
Full textAtmatzakis, Evangelos, Nikitas Papasimakis, Vassili Fedotov, Guillaume Vienne, and Nikolay I. Zheludev. "Magneto-optical response in bimetallic metamaterials." Nanophotonics 7, no. 1 (January 1, 2018): 199–206. http://dx.doi.org/10.1515/nanoph-2016-0162.
Full textDissertations / Theses on the topic "Magneto plasmonic"
Li, Zhi. "Controlled nanotherapies using magneto-plasmonic nanodomes." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667779.
Full textWith the aim of improving the concentration of the therapeutic agents inside tumours and maximizing their therapeutic effects, this Thesis focused on developing novel versatile magneto-plasmonic nanodomes (i.e. dielectric nanoparticles with plasmonic and ferromagnetic semi-shells) externally actuated and controlled by light and magnetic fields for efficient nanotherapy activation, amplification and control. The innovative combination of bottom-up and top-down fabrication processes have enabled us: i) merging nanomaterials that could be hardly combined by chemical synthesis, ii) fine tuning the magnetic and optical properties, iii) achieving simple functionalization and direct dispersion in water solutions, and iv) keeping low cost and scalability. Firstly, we developed Fe/Au nanodomes with fluorescent cores for magnetically amplified photothermal therapies and multimodal imaging. The variation of the Fe and Au layers thickness enabled attaining colloidally stable single domain or vortex ferromagnetic nanoparticles with widely tunable optical properties. Thick Fe layers provided strongly supressed scattering and high optical absorption in the near infrared, which were key to demonstrate high photothermal conversion efficiencies (ca. 65%). The capacity to magnetically concentrate the nanodomes at the illuminated region enhanced even further the local heating efficiency. The Fe/Au semi-shell and the fluorescent polymer core provided intense contrasts in T2 nuclear magnetic resonance, X-ray absorption, and fluorescence. The in vitro results showed low cytotoxicity and magnetically enhanced photothermal effects for cancer cell eradication, which highlighted the biomedical potential. To gain control on the photothermal effects, in the second part we developed a novel simultaneous nano-heating/thermometry concept, based on the efficient magnetic rotation of highly anisotropic magneto-plasmonic nanodomes. By analyzing the nanodomes rotation as a function of the magnetic frequency, we quantified and monitored the viscosity reduction in the fluid surrounding the optically heated nanodomes, as novel nanothermometry concept. This nanothermometers showed a low detection limit of 0.05ºC, independence on their concentration, and much simpler and cost-effective detection setup than luminescent nanothermometers. The capacity to integrate heating and thermometry in a single nanostructure and using the same laser for heating and detecting were relevant advantages that could be demonstrated even in highly concentrated cell dispersions. The final goal of the Thesis was maximizing the biomedical potential of the nanodomes for cancer nanotherapies by developing fully biodegradable drug loaded PLGA@Fe/SiO2 magnetoplasmonic nanocapsules to achieve: i) improved biodegradability, ii) reinforced magnetic actuation, iii) high photothermal conversion efficiency in both near-infrared biological windows (63-67%), iv) higher T2 contrast in nuclear magnetic resonance, and v) integrated nanothermometry and biosensing. The unloaded nanocapsules showed very low toxicity in vitro in long-term cell cultures, and in vivo in mice. The high T2 contrast was exploited to monitor the in vivo biodistribution of the nanocapsules after intravenous injection, which showed accumulation in the liver 1h after the injection, and almost total recovery after 96h. These preliminary results are encouraging for their application in multi-active local therapies. In conclusion, we have shown how a hybrid nanofabrication strategy could exploited to develop nanostructures with strong ferromagnetic and plasmonic properties enabling external control and non-invasive visualization. The in vitro and preliminary in vivo results encourage further technological development of this novel nanotechnology for clinical applications.
George, Sebastian. "Optical and Magneto-Optical Measurements of Plasmonic Magnetic Nanostructures." Thesis, Uppsala universitet, Materialfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-229511.
Full textHuber, Jana. "Plasmonic resonances in metallic nanoarrays." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262269.
Full textBrynolf, Max, and Rohini Sengupta. "Magneto-Plasmonic Gold & Nickel Core-Shell Structures." Thesis, Uppsala universitet, Materialfysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-387353.
Full textLoughran, Thomas. "Exploration of plasmonic antennas, for sub-wavelength magneto-optical Kerr imaging." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/28077.
Full textBertorelle, Fabrizio. "Magneto-plasmonic nanostructures based on laser ablated nanoparticles of Au and FeOx for nanomedicine applications." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3422266.
Full textNegli ultimi anni, nanoparticelle di oro e ossido di ferro hanno ricevuto un interesse crescente in campi come la nanomedicina e la biotecnologia grazie alle loro proprietà. Le nanoparticelle di oro (AuNPs) sono biocompatibili e possiedono utili proprietà ottiche che le rendono un potente strumento di imaging usando, per esempio, la spettroscopia SERS.Le nanoparticelle di ossido di ferro (FeOxNP, in particolare quelle di magnetite) sono interessanti a causa delle loro proprietà magnetiche. Combinando i due tipi di particelle in un unico sistema si ottiene un materiale magneto-plasmonico, nel quale si manifestano le proprietà di entrambe le nanoparticelle. L'uso di materiali magneto-plasmonici in nanomedicina è un campo di ricerca abbastanza giovane e uno dei motivi è la sintesi elaborata che spesso questi materiali richiedono. Durante la sintesi sono necessari diversi passaggi di purificazione dalle sostanze chimiche impiegate, passaggi che sono fondamentali quando l'applicazione finale è la nanomedicina o la nanobiologia.In questa tesi mostreremo la sintesi di due sistemi magneto-plasmonici composti da nanoparticelle di oro e ossido di ferro. AuNPs e FeOxNPs sono sintetizzate con il metodo dell'ablazione laser in soluzione (LASiS). Con l'ablazione laser i passaggi di purificazione non sono necessari e non sono presenti sostanze chimiche che possono interferire in ambiente biologico. Nel capitolo due della tesi mostreremo la sintesi di nanocluster di nanoparticelle di oro e ossido di ferro nei quali i due tipi di particelle sono aggregate senza l'utilizzo di sostanze chimiche. Questi nanocluster saranno utilizzati per guidare magneticamente cellule in soluzione, per la selezione di cellule e imaging. Nel capitolo tre viene riportata la sintesi di un altro sistema magneto-plasmonico in cui AuNPs e FeOxNPs sono arrangiate in una struttura di tipo core-shell-satellite. Anche in questo caso i passaggi di purificazione sono ridotti grazie all'utilizzo dell'ablazione laser. Questo sistema viene poi completato coniugando un anticorpo e mostra ottime performance nella selezione immunomagnetica e nel trattamento fototermico di cellule cancerose. Gli argomenti trattati nella tesi sono introdotti nel primo capitolo.
Spitzer, Felix [Verfasser], Ilya [Akademischer Betreuer] Akimov, and Manfred [Gutachter] Bayer. "Magneto-optical intensity effects in hybrid plasmonic structures / Felix Spitzer ; Gutachter: Manfred Bayer ; Betreuer: Ilya Akimov." Dortmund : Universitätsbibliothek Dortmund, 2019. http://d-nb.info/1178115887/34.
Full textPiatek, Anna [Verfasser], and Stephan [Akademischer Betreuer] Barcikowski. "Laser generated magneto-plasmonic Fe-Au Nanoparticles : Formation, Real Structure and Properties / Anna Piatek ; Betreuer: Stephan Barcikowski." Duisburg, 2020. http://d-nb.info/1218465328/34.
Full textPohl, Martin [Verfasser], Ilya [Akademischer Betreuer] Akimov, and Heinz [Gutachter] Hövel. "Ultrafast optical phenomena in magneto-plasmonic crystals and magnetically ordered materials / Martin Pohl. Betreuer: Ilya Akimov. Gutachter: Heinz Hövel." Dortmund : Universitätsbibliothek Dortmund, 2014. http://d-nb.info/1105476111/34.
Full textLoiselet, Ophelliam. "Synthèse et caractérisation d’agrégats bimétalliques pour la magnéto-plasmonique." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1033/document.
Full textFor several years condensed matter physicists have been interested in the optical and magnetic properties of metallic nanoparticles. Two properties remain largely studied: localized plasmon resonances and magnetic anisotropy at the nanoscale. These two effects resulting from very different electronic properties which are usually encountered in separate nanosystems. Since the 2000's, studies have shown that it is possible to benefit from these two characteristics in a single nanometric system. In this thesis, we will focus on the combination of magnetic and plasmonic properties in systems of size less than ten nanometers: bimetallic clusters of CoAg and CoAu synthesized physically under ultrahigh vacuum and embedded in a matrix (alumina and carbon). We will study the structure of these bimetallic clusters of different stoichiometries and the effect of their environment through the investigation of their optical, magnetic and electronic properties (by electron energy loss spectroscopy (EELS) on individual particles ). We will show the effect of the matrix, carbon or alumina, on the structure of the clusters as well as on their magnetic properties (moment by cluster, anisotropy). In optics we will also see the importance of stoichiometry between noble metal and cobalt on the phenomena of the damping and shifting of the plasmon resonance. Finally we will show the spatial distribution of surface plasmons on single particles by STEM-EELS measurements
Books on the topic "Magneto plasmonic"
Denkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28793-5.
Full textManisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67609-8.
Full textservice), SpringerLink (Online, ed. Electromagnetic Radiation of Electrons in Periodic Structures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textWohlbier, Thomas. Nanohybrids. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076.
Full textHoring, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.
Full textDenkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer, 2018.
Find full textDenkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer, 2016.
Find full textDenkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer London, Limited, 2016.
Find full textSingh, M. R. Electronic, Photonic, Plasmonic, Phononic and Magnetic Properties of Nanomaterials: London, Canada, 12-16 August 2013. Unknown Publisher, 2014.
Find full textBook chapters on the topic "Magneto plasmonic"
de Julián Fernández, César, and Francesco Pineider. "Magneto-Plasmonic Nanoparticles." In New Trends in Nanoparticle Magnetism, 107–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60473-8_5.
Full textBelotelov, V. I., A. N. Kalish, and A. K. Zvezdin. "Magneto-Optics of Plasmonic Crystals." In Magnetophotonics, 51–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35509-7_4.
Full textManera, M. G., G. S. Masi, G. Montagna, F. Casino, R. Rella, A. Garcia-Martin, G. Armelles, et al. "Plasmonic and Magneto-Plasmonic Nanostructured Materials for Sensors and Biosensors Application." In Lecture Notes in Electrical Engineering, 203–8. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1324-6_31.
Full textTomita, Satoshi. "Spectroscopic Ellipsometry and Magneto-Optical Kerr Spectroscopy of Magnetic Garnet Thin Films Incorporating Plasmonic Nanoparticles." In Ellipsometry at the Nanoscale, 325–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33956-1_9.
Full textMartín Becerra, Diana. "Magnetic Modulation of SPP in Au/Co/Au Trilayers." In Active Plasmonic Devices, 43–58. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48411-2_4.
Full textKochergin, Vladimir, and Philip R. Swinehart. "Improved Magneto-Optical Imaging Films Employing Surface Plasmon Resonance." In Magneto-Optical Imaging, 337–44. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-1007-8_43.
Full textPappas, S. D., and E. Th Papaioannou. "Magneto-plasmonics in Purely Ferromagnetic Sub wavelength Arrays." In 21st Century Nanoscience – A Handbook, 17–1. Boca Raton, Florida : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429351617-17.
Full textDenkova, Denitza. "Magnetic Near-Field Imaging of Increasingly Complex Plasmonic Antennas." In Springer Theses, 63–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28793-5_4.
Full textAnghinolfi, Luca. "Composite Magnetic-Plasmonic Media Based on Au/LiF Arrays." In Self-Organized Arrays of Gold Nanoparticles, 113–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30496-5_7.
Full textDintinger, José, and Toralf Scharf. "Plasmonic Nanoparticle-Based Metamaterials: From Electric to Magnetic Response." In Amorphous Nanophotonics, 327–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32475-8_13.
Full textConference papers on the topic "Magneto plasmonic"
Nikolova, Dessislava, and Andrew J. Fisher. "Cavity-enhanced magneto-plasmonic effects." In SPIE NanoScience + Engineering, edited by Mark I. Stockman. SPIE, 2012. http://dx.doi.org/10.1117/12.981902.
Full textŠablinskas, Valdas, Agne Zdaniauskiene, Sonata Adomaviciutė-Grabusove, Evaldas Stankevičius, Vita Petrikaite, Tatjana Charkova, Lina Mikoliunaite, Romualdas Trusovas, Algirdas Selskis, and Gediminas Niaura. "Magneto-plasmonic nanoparticles for SERS." In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, edited by Yu-Jung Lu, Takuo Tanaka, and Din Ping Tsai. SPIE, 2021. http://dx.doi.org/10.1117/12.2597199.
Full textKolmychek, Irina A., Tatyana V. Murzina, and Oleg A. Aktsipetrov. "Nonlinear magneto-optical transversal Kerr effect in magneto-plasmonic nanosandwiches." In SPIE NanoScience + Engineering, edited by Mark I. Stockman. SPIE, 2009. http://dx.doi.org/10.1117/12.824102.
Full textBaryshev, Stepan, Sergey B. Odinokov, and Alexey S. Kuznetsov. "Plasmonic magneto-optical structure for visualization of magnetic information holders." In Optical Sensing and Detection, edited by Francis Berghmans and Anna G. Mignani. SPIE, 2018. http://dx.doi.org/10.1117/12.2306908.
Full textVavassori, Paolo. "Magneto-plasmonic nanostructures and crystals (Conference Presentation)." In Spintronics XII, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2019. http://dx.doi.org/10.1117/12.2528820.
Full textAbadian, Sevag, Giovanni Magno, Vy Yam, and Beatrice Dagens. "Magneto-Plasmonic Effects for Non-Reciprocal Waveguides." In 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8873144.
Full textKolmychek, I. A., T. V. Murzina, O. A. Aktsipetrov, A. Cebollada, and G. Armelles. "Nonlinear-Optical Studies of Magneto-Plasmonic Nanosandwiches." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.fthc3.
Full textKuz'michev, A. N., D. O. Ignatyeva, A. N. Kalish, and V. I. Belotelov. "Magneto-optical effects in plasmonic slot waveguides." In 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2015. http://dx.doi.org/10.1109/metamaterials.2015.7342558.
Full textOtipka, P., J. Vlček, M. Lesňák, and J. Sobota. "Magneto-plasmonic response as a perspective tool to magnetic field sensing." In SPIE Optics + Optoelectronics, edited by Francesco Baldini, Jiri Homola, and Robert A. Lieberman. SPIE, 2015. http://dx.doi.org/10.1117/12.2178458.
Full textRella, Roberto, Maria Grazia Manera, Adriano Colombelli, Giovanni Montagna, C. de Julian Fernandez, Franca Albertini, and A. Convertino. "Propagating and Localised Plasmonic and Magneto-Plasmonic Transductors for Gas and Biosensing Applications." In 2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM). IEEE, 2015. http://dx.doi.org/10.1109/nanofim.2015.8425347.
Full textReports on the topic "Magneto plasmonic"
Samtaney, R., N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley. Formation of Plasmoid Chains in Magnetic Reconnection. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965277.
Full textLoureiro, Nuno. Magnetic Reconnection in Strongly-Magnetized, Weakly-Collisional Plasmas: Onset, Turbulence, and Energy-Partition in 3D, Plasmoid-Dominated Regimes. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1842655.
Full text