Academic literature on the topic 'Magnetocaloric effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetocaloric effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetocaloric effect"
Zarkevich, Nikolai A., and Vladimir I. Zverev. "Viable Materials with a Giant Magnetocaloric Effect." Crystals 10, no. 9 (September 15, 2020): 815. http://dx.doi.org/10.3390/cryst10090815.
Full textGomes, M. B., N. A. de Oliveira, P. J. von Ranke, and A. Troper. "Magnetocaloric effect in." Journal of Magnetism and Magnetic Materials 321, no. 24 (December 2009): 4006–9. http://dx.doi.org/10.1016/j.jmmm.2009.07.071.
Full textReis, M. S. "Oscillating magnetocaloric effect." Applied Physics Letters 99, no. 5 (August 2011): 052511. http://dx.doi.org/10.1063/1.3615296.
Full textGomes, M. B., and N. A. de Oliveira. "Magnetocaloric effect in." Journal of Magnetism and Magnetic Materials 301, no. 2 (June 2006): 503–12. http://dx.doi.org/10.1016/j.jmmm.2005.07.028.
Full textde Oliveira, N. A. "Magnetocaloric effect in." Journal of Magnetism and Magnetic Materials 320, no. 14 (July 2008): e150-e152. http://dx.doi.org/10.1016/j.jmmm.2008.02.037.
Full textTaskaev, Sergey, Konstantin Skokov, Dmitriy Karpenkov, Vladimir V. Khovaylo, Vasiliy D. Buchelnikov, D. A. Zherebtsov, Maxim Ulyanov, Dmitriy Bataev, Anatoliy Pellenen, and Alfiya Fazlitdinova. "The Influence of Cold Rolling on Magnetocaloric Properties of Gd100-xYx (x = 0, 5, 10, 15) Alloys." Solid State Phenomena 233-234 (July 2015): 238–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.238.
Full textDvoreckaia E. V., Sidorov V. L., Koplak O. V., Korolev D. V., Piskorsky V. P., Valeev R. A., and Morgunov R. B. "Magnetocaloric effect in amorphous-crystalline microcircuits PrDyFeCoB." Physics of the Solid State 64, no. 8 (2022): 989. http://dx.doi.org/10.21883/pss.2022.08.54615.373.
Full textTaskaev, Sergey, Konstantin Skokov, Dmitriy Karpenkov, Vladimir V. Khovaylo, Vasiliy D. Buchelnikov, D. A. Zherebtsov, Maxim Ulyanov, Dmitry Bataev, Damir Galimov, and Anatoliy Pellenen. "Magnetocaloric Properties of Cold Rolled Gd100-xZrx (x = 0, 1, 2, 3) Intermetallic Alloys." Solid State Phenomena 233-234 (July 2015): 220–24. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.220.
Full textZvyagin, A. A., and G. A. Zvyagina. "Magnetocaloric effect in UTe2: Theory predictions." Low Temperature Physics 50, no. 7 (July 1, 2024): 549–57. http://dx.doi.org/10.1063/10.0026281.
Full textHamad, Mahmoud. "Magnetocaloric properties of La0.666Sr0.373Mn0.943Cu0.018O3." Processing and Application of Ceramics 11, no. 3 (2017): 225–28. http://dx.doi.org/10.2298/pac1703225h.
Full textDissertations / Theses on the topic "Magnetocaloric effect"
Sandberg, Anna. "Quantum statistics and the magnetocaloric effect." Thesis, Uppsala universitet, Materialteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-415830.
Full textKaloriska material har potential att i framtiden ersätta funktionen hos ångkomprimeringssystem i dagens kylapparater, vilket i sin tur kan leda till mer energieffektiv kylning samt eliminerar behovet av kylmedier som bidrar till klimatförändringen. I detta projekt ligger fokus på magnetokaloriska material, vilka erfar temperaturförändringar då de utsätts för magnetfält. Ett steg mot att hitta gångbara material är att utveckla realistiska simulationer. För detta ändamål undersöktes huruvida den beräknade magnetokaloriska effekten påverkas av valet av statistik. Tre system studerades, bcc Fe, FeRh samt Fe2P, med hjälp av Monte Carlo simulationer. Resultaten visade skillnader i den beräknade entropiförändringen beroende på valet av statistik. För kvantstatistiken var ∆S = 0 för temperaturer under fasövergångerna, vilket skiljde sig från de klassiska resultaten. Vid fasövergångarna gav kvantstatistiken liknande eller mindre värden för den beräknade entropiförändringen.
Rebar, Drew. "Magnetocaloric effect in nanoparticles and bulk clathrates." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001630.
Full textBauer, Christopher. "Magnetocaloric Effect in Thin Films and Heterostructures." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3003.
Full textBayer, Daniel Nicholas. "The Magnetocaloric Effect & Performance of Magnetocaloric Materials in a 1D Active Magnetic Regenerator Simulation." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1578587695272946.
Full textGhorbani-Zavareh, Mahdiyeh. "Direct Measurements of the Magnetocaloric Effect in Pulsed Magnetic Fields." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-207504.
Full textCasanova, i. Fernàndez Fèlix. "Magnetocaloric Effect In Gd5(SixGe1-x)4 Alloys." Doctoral thesis, Universitat de Barcelona, 2004. http://hdl.handle.net/10803/1789.
Full text- Bulk Gd5(SixGe1-x)4 samples with 0¡Âx ¡Â0.5 have been prepared by using our home-made arc-melting furnace. Characterisation techniques (SEM, microprobe, XRD, DSC, magnetisation, ac susceptibility) show that the 5:4 phase with the desired x is obtained. Some spread around the nominal value and secondary 5:3 and 1:1 phases are detected. Heat treatment favour the segregation of these secondary phases, but also reduce the spread in the x value. A treatment at 920 ¨¬C for 4 hours in a 10-5 mb vacuum furnace enables a trade-off between phase segregation and removal of x spread.
- A new differential scanning calorimeter (DSC), which operates under applied magnetic fields of up to 5 T and within the temperature range 10-300 K, has been developed. This calorimeter enables an accurate determination of the entropy change associated with a magnetostructural phase transition. The transition can be induced by sweeping either T or H.
- It has been shown that the Clausius-Clapeyron equation and DSC measurements yield the entropy change associated with the first-order magnetostructural transition, ∆S. If the Maxwell relation is evaluated only within the field range over which the transition takes place, the same value is obtained. When the Maxwell relation is evaluated over the whole field range, the T and H dependences of the magnetisation in each phase outside the transition region yield an additional entropy change to that associated with that of the actual first-order transition. The transition temperature Tt must significantly shift with the applied field, in order to achieve a large MCE taking advantage of ∆S.
- DSC under H has been used to measure ∆S for Gd5(SixGe1-x)4, x ¡Â0.5. ∆S scales with Tt, which is a direct consequence of the fact that Tt is tuned by x and H and it is thus expected to be universal for any material showing a field-induced transition. The specific shape of ∆S vs. Tt will depend on the details of the phase diagram, Tt(x). The scaling of ∆S shows the equivalence of magnetovolume and substitution-related effects in Gd5(SixGe1-x)4 alloys.
- The variation of the transition field with the transition temperature, dHt/dTt, has been studied in Gd5(SixGe1-x)4 for 0¡Âx ¡Â0.5. It is shown that dHt/dTt governs the scaling of ∆S with Tt. Two distinct behaviours for dHt/dTt have been found on the two compositional ranges where the magnetostructural transition occurs, showing the difference in the strength of the magnetoelastic coupling in this system.
- It has been shown that an unreported field-induced magnetic phase transition exists from the AFM phase to a phase which presents short-range correlations (SRAFM). The results suggest that the transition results from the breaking of the long-range AFM correlations when a magnetic field is applied, which leads to competing FM and AFM short-range correlations. FM correlations are also relevant in the whole long-range AFM phase. The expected transition from the SRAFM to the PM phase takes place at ~240 K at zero field, being widened and smoothed under applied field. This finding in the Ge-rich Gd5(SixGe1-x)4 alloys arises from the competition between the intraslab FM interactions and the interslab AFM interactions.
- The dynamics of the first-order transition in Gd5(SixGe1-x)4 alloys has been studied by cycling virgin samples. The field-induced entropy change increases during the first cycles, then reaching a stationary value. This behaviour is related to the avalanche distribution, which also evolves with cycling. The structure of avalanches becomes repetitive after a few cycles tending towards a power-law distribution, unveiling the athermal character of the transition.
Turcaud, Jeremy. "Magnetocaloric effect and thermal transport management in lanthanum manganites." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/40889.
Full textBratko, Milan. "The magnetocaloric effect at a first order phase transition." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23653.
Full textQuetz, Abdiel. "EXPLORATION OF NEW MAGNETOCALORIC AND MULTIFUNCTIONAL MAGNETIC MATERIALS." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/dissertations/1378.
Full textBarcza, Alexander. "The magnetocaloric effect and magnetoelastic interactions in CoMnSi-based alloys." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608462.
Full textBooks on the topic "Magnetocaloric effect"
I, Spichkin Y., ed. The magnetocaloric effect and its applications. Bristol: Institute of Physics Pub., 2003.
Find full textTishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2016.
Find full textGencer, H., V. S. Kolat, T. Izgi, N. Bayri, and S. Atalay. Magnetocaloric Effect in Perovskite Manganites. Materials Research Forum LLC, 2020.
Find full textTishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2003.
Find full textTishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2016.
Find full textNazmunnahar, Mst. Structural and Magnetic Characterization of Co50Mn30InxSn Samples for Magnetocaloric Effect. GRIN Verlag GmbH, 2013.
Find full textGaoFeng, Wang. Magnetic and Calorimetric Study of the Magnetocaloric Effect in Intermetallics Exhibiting First-order Magnetostructural Transitions. Prensas de la Universidad de Zaragoza, 2012.
Find full textBook chapters on the topic "Magnetocaloric effect"
Sun, J. R., B. G. Shen, and F. X. Hu. "Magnetocaloric Effect and Materials." In Nanoscale Magnetic Materials and Applications, 441–83. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85600-1_15.
Full textSharples, Joseph W., and David Collison. "Lanthanides and the Magnetocaloric Effect." In Lanthanides and Actinides in Molecular Magnetism, 293–314. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch9.
Full textZimm, C. B., P. M. Ratzmann, J. A. Barclay, G. F. Green, and J. N. Chafe. "The Magnetocaloric Effect in Neodymium." In Advances in Cryogenic Engineering Materials, 763–68. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9880-6_99.
Full textPecharsky, V. K., and K. A. Gschneidner. "Magnetocaloric Effect Associated with Magnetostructural Transitions." In Magnetism and Structure in Functional Materials, 199–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0_11.
Full textDan’kov, S. Yu, V. V. Ivtchenko, A. M. Tishin, K. A. Gschneidner, and V. K. Pecharsky. "Magnetocaloric Effect in GdAl2 and Nd2Fe17." In Advances in Cryogenic Engineering Materials, 397–404. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4293-3_51.
Full textHutchison, W. D., J. L. Wang, and S. J. Campbell. "Magnetism and the magnetocaloric effect in PrMn1.6Fe0.4Ge2." In HFI / NQI 2012, 129–37. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-6479-8_21.
Full textBessais, L., R. Guetari, R. Bez, K. Zehani, N. Mliki, and C. B. Cizmas. "Structure and magnetocaloric effect of Pr2Fe17-xAlx." In TMS 2014: 143rd Annual Meeting & Exhibition, 9–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48237-8_2.
Full textBessais, L., R. Guetari, R. Bez, K. Zehani, N. Mliki, and C. B. Cizmas. "Structure and Magnetocaloric Effect of Pr2Fe17-xAlx." In TMS 2014 Supplemental Proceedings, 9–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889879.ch2.
Full textOtowski, W., C. Glorieux, R. Hofman, and J. Thoen. "Acousto-Thermal Detection of the Magnetocaloric Effect." In Photoacoustic and Photothermal Phenomena III, 647–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47269-8_166.
Full textCasanova, F., X. Batlle, A. Labarta, J. Marcos, E. Vives, L. Mañosa, and A. Planes. "Entropy Change and Magnetocaloric Effect in Magnetostructural Transformations." In Magnetism and Structure in Functional Materials, 223–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0_12.
Full textConference papers on the topic "Magnetocaloric effect"
Priyanka and Rinku Sharma. "Impact of pressure on the magnetocaloric effect in InSb quantum wire: Rashba SOI and crossed electromagnetic field." In Frontiers in Optics, JW4A.13. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw4a.13.
Full textGoswami, Srikanta, P. D. Babu, and R. Rawat. "Magnetocaloric effect in Tb3Ni." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016679.
Full textShun, R. D. "Magnetocaloric Effect Of Ferromagnetic Particles." In 1993 Digests of International Magnetics Conference. IEEE, 1993. http://dx.doi.org/10.1109/intmag.1993.642177.
Full textMohapatra, Niharika, K. Mukherjee, K. K. Iyer, and E. V. Sampathkumaran. "Magnetoresistance and magnetocaloric effect in Er5Si3." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710423.
Full textKrishnamurthy, J., and A. Venimadhav. "Magnetocaloric effect in double pervoskite La2CoMnO6." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710458.
Full textKarmakar, S. K., and S. Majumdar. "Investigation of magnetocaloric effect in GdGa0.8Ge0.2." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4948127.
Full textYako, H., T. Shima, and M. Doi. "Magnetocaloric effect in Pd2−xNixMn1.47Sn0.53 Heusler alloy." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007733.
Full textGupta, Sachin B., and K. G. Suresh. "Study of magnetocaloric effect in GdRhIn compound." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791425.
Full textNan, W., K. Kim, S. Yu, T. You, and B. Kang. "Magnetic properties and magnetocaloric effect studies for La0.6Ce0.4Fe11.5Si1.5." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156757.
Full textBalfour, E. A., Y. Shang, Y. Cao, H. Fu, A. A. El-Gendy, and R. L. Hadimani. "Table-like Magnetocaloric Effect in Ho36Co48Al16 Multiphase Alloy." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508395.
Full textReports on the topic "Magnetocaloric effect"
Johra, Hicham. Performance overview of caloric heat pumps: magnetocaloric, elastocaloric, electrocaloric and barocaloric systems. Department of the Built Environment, Aalborg University, January 2022. http://dx.doi.org/10.54337/aau467469997.
Full textNiu, Xuejun. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/754836.
Full textMisra, Sumohan. Structural flexibility in magnetocaloric RE5T4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/964391.
Full textJohra, Hicham. Performance overview of caloric heat pumps: magnetocaloric, elastocaloric, electrocaloric and barocaloric systems: Update 2024. Department of the Built Environment, Aalborg University, 2024. http://dx.doi.org/10.54337/aau747557298.
Full text