Academic literature on the topic 'Magnetocaloric effects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetocaloric effects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetocaloric effects"

1

Habiba, Ummay, Sheikh Manjura Hoque, Samia Islam Liba, and Hasan Khaled Rouf. "Magnetocaloric Effects of Barium-Strontium Ferrites for Magnetic Refrigeration System." Advanced Materials & Technologies, no. 4 (2018): 025–30. http://dx.doi.org/10.17277/amt.2018.04.pp.025-030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Medeiros, L. G., N. A. de Oliveira, and A. Troper. "Magnetocaloric and barocaloric effects in." Journal of Magnetism and Magnetic Materials 322, no. 9-12 (May 2010): 1558–60. http://dx.doi.org/10.1016/j.jmmm.2009.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duc, N. H., and D. T. Kim Anh. "Magnetocaloric effects in RCo2 compounds." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 873–75. http://dx.doi.org/10.1016/s0304-8853(01)01328-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryu, Sung-Myung, and Chunghee Nam. "Magnetocaloric effects of DyVO4 nanoparticles." Journal of Magnetism and Magnetic Materials 537 (November 2021): 168161. http://dx.doi.org/10.1016/j.jmmm.2021.168161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elamalayil Soman, Deepak, Jelena Loncarski, Lisa Gerdin, Petter Eklund, Sandra Eriksson, and Mats Leijon. "Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials." Advances in Electrical Engineering 2015 (January 31, 2015): 1–7. http://dx.doi.org/10.1155/2015/670624.

Full text
Abstract:
Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Tegus, O., E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer. "Magnetic-phase transitions and magnetocaloric effects." Physica B: Condensed Matter 319, no. 1-4 (July 2002): 174–92. http://dx.doi.org/10.1016/s0921-4526(02)01119-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WU, Yongli, O. Tegus, Weiguang ZHANG, S. Yiriyoltu, B. Mend, and Songlin. "Magnetocaloric effects in Fe4MnSi3Bx interstitial compounds." Acta Metallurgica Sinica (English Letters) 22, no. 5 (October 2009): 397–400. http://dx.doi.org/10.1016/s1006-7191(08)60114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krishnamoorthi, C., S. K. Barik, Z. Siu, and R. Mahendiran. "Normal and inverse magnetocaloric effects in." Solid State Communications 150, no. 35-36 (September 2010): 1670–73. http://dx.doi.org/10.1016/j.ssc.2010.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marx, R., and B. Christoffer. "Magnetocaloric effects of 2D adsorbed O2." Journal of Physics C: Solid State Physics 18, no. 14 (May 20, 1985): 2849–58. http://dx.doi.org/10.1088/0022-3719/18/14/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sivachenko, A. P., V. I. Mityuk, V. I. Kamenev, A. V. Golovchan, V. I. Val’kov, and I. F. Gribanov. "Magnetostrictive and magnetocaloric effects in Mn0.89Cr0.11NiGe." Low Temperature Physics 39, no. 12 (December 2013): 1051–54. http://dx.doi.org/10.1063/1.4843196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetocaloric effects"

1

Duijn, Henricus Gerardus Maria. "Magnetotransport and magnetocaloric effects in intermetallic compounds." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2000. http://dare.uva.nl/document/83091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amaral, João Cunha de Sequeira. "Studies on magnetocaloric and magnetic coupling effects." Doctoral thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/2685.

Full text
Abstract:
Doutoramento em Física
O presente trabalho apresenta novas metodologias desenvolvidas para a análise das propriedades magnéticas e magnetocalóricas de materiais, sustentadas em considerações teóricas a partir de modelos, nomeadamente a teoria de transições de fase de Landau, o modelo de campo médio molecular e a teoria de fenómeno crítico. São propostos novos métodos de escala, permitindo a interpretação de dados de magnetização de materiais numa perspectiva de campo médio molecular ou teoria de fenómeno crítico. É apresentado um método de estimar a magnetização espontânea de um material ferromagnético a partir de relações entropia/magnetização estabelecidas pelo modelo de campo médio molecular. A termodinâmica das transições de fase magnéticas de primeira ordem é estudada usando a teoria de Landau e de campo médio molecular (modelo de Bean-Rodbell), avaliando os efeitos de fenómenos fora de equilíbrio e de condições de mistura de fase em estimativas do efeito magnetocalórico a partir de medidas magnéticas. Efeitos de desordem, interpretados como uma distribuição na interacção magnética entre iões, estabelecem os efeitos de distribuições químicas/estruturais nas propriedades magnéticas e magnetocalóricas de materiais com transições de fase de segunda e de primeira ordem. O uso das metodologias apresentadas na interpretação das propriedades magnéticas de variados materiais ferromagnéticos permitiu obter: 1) uma análise quantitativa da variação de spin por ião Gadolínio devido à transição estrutural do composto Gd5Si2Ge2, 2) a descrição da configuração de cluster magnético de iões Mn na fase ferromagnética em manganites da família La-Sr e La-Ca, 3) a determinação dos expoentes críticos β e δ do Níquel por métodos de escala, 4) a descrição do efeito da pressão nas propriedades magnéticas e magnetocalóricas do composto LaFe11.5Si1.5 através do modelo de Bean-Rodbell, 5) uma estimativa da desordem em manganites ferromagnéticas com transições de segunda e primeira ordem, 6) uma descrição de campo médio das propriedades magnéticas da liga Fe23Cu77, 7) o estudo de efeitos de separação de fase na família de compostos La0.70-xErxSr0.30MnO3 e 8) a determinação realista da variação de entropia magnética na família de compostos de efeito magnetocalórico colossal Mn1-x-yFexCryAs.
APA, Harvard, Vancouver, ISO, and other styles
3

Álvarez, Alonso Pablo. "Magnetocaloric and magnetovolume effects in Fe-based alloys." Doctoral thesis, Universidad de Oviedo, 2011. http://hdl.handle.net/10803/51881.

Full text
Abstract:
En esta memoria de Tesis Doctoral se presentan los resultados del estudio del efecto magnetocalórico y magnetovolúmico que se ha llevado a cabo en dos familias de compuestos ricos en Fe: aleaciones R2Fe17, sintetizadas en forma policristalina, y cintas amorfas de composición FeZrBCu. Estas aleaciones presentan transiciones magnéticas de segundo orden con temperaturas críticas en torno a temperatura ambiente. La serie de aleaciones R2Fe17 (con R = Y, Ce, Pr,…) ha sido sintetizada mediante la fusión de los diferentes elementos por horno de arco. Se ha determinado la estructura cristalina de estos compuestos mediante difracción de rayos x y de neutrones de alta resolución. Los compuestos de esta familia pueden cristalizar en dos tipos de estructuras cristalinas dependiendo de la tierra rara que se emplee: para las tierras raras ligeras (Ce, Pr, Nd, Sm, Gd, Tb y Dy) los compuestos que se han sintetizado son romboédricos tipo Th2Zn17, para las pesadas (Ho, Er, Tm y Lu) son hexagonales tipo Th2Ni17, mientras que el compuesto Y2Fe17 presenta ambas estructuras cristalinas. A partir de la termodifracción de neutrones se ha determinado la dependencia con la temperatura (T) tanto de los parámetros de malla como de los momentos magnéticos de cada sitio cristalogáficico. Existe una magnetostricción espontánea anisótropa, más pronunciada a lo largo del eje uniáxico, con independencia de la estructura cristalina que presente el compuesto. Más aún, se ha observado que la magnetostricción de volumen depende cuadráticamente con el momento total de la subred del Fe hasta temperaturas cercanas a la de Curie, TC. Experimentos de rayos x bajo alta presión han mostrado que existe una pequeña anisotropía en los compuestos romboédricos al comprimir la celda cristalográfica, puesto que es más fácil comprimirla en la dirección uniáxica. Ajustando la dependencia del volumen con la presión con una ecuación de estado de Birch-Murnaghan se han estimado los módulos de compresibilidad. También se ha estudiado el efecto magnetocalórico a partir de la dependencia de la imanación con el campo magnético a diferentes temperaturas, obteniéndose la variación de la entropía magnética (∆SM) con T y el campo magnético aplicado (H). En los compuestos ferrimagnéticos ∆SM (T,H) presenta un máximo a bajas temperaturas, asociado con un efecto magnetocalórico inverso, y un mínimo, asociado con un efecto directo, el cual ocurre a T ≈TC. En cambio, en los ferromagnéticos sólo existe el efecto directo. Para el caso especial del Ce2Fe17 aparecen dos mínimos, estando el de más alta temperatura asociado a la transición de segundo orden del estado ferromagnético al paramagnético, mientras que el de más baja temperatura es debido a una transición metamagnética. Se ha investigado la influencia que tiene la molienda mecánica en la microestructura de las aleaciones Pr2Fe17 y Nd2Fe17, así como los efectos de estas modificaciones en sus propiedades magnéticas. Mediante técnicas de difracción se ha determinado su estructura cristalina, la cual no se ve modificada tras el proceso de molienda. Sin embargo, sí se produce un cambio drástico en la microestructura debido a la rotura progresiva de granos cristalinos y la formación de partículas de tamaño nanoscópico, lo cual ha sido corroborado mediante la microscopía electrónica de barrido y de transmisión conjuntamente con la difracción. Conforme se incrementa el tiempo de molienda se produce una disminución del tamaño de partícula, y los granos presentan una dispersión de tamaños menor. Estas modificaciones en la microestructura tienen como resultado la aparición de una distribución de temperaturas de Curie, con el consiguiente ensanchamiento de la curva ∆SM(T), así como una disminución del valor máximo del cambio en la entropía magnética. Asimismo se han sintetizado diferentes compuestos pseudobinarios tipo AxB2-xFe17 (siendo A y B tierras raras y/o Itrio). En este caso, mezclando diversas tierras raras se puede controlar el valor de la temperatura de orden magnético alrededor de la temperatura ambiente. Dependiendo de las tierras raras empleadas, estos compuestos pueden presentar cualquiera de las dos estructuras cristalinas en las que cristaliza la familia R2Fe17. En los compuestos sintetizados la estructura cristalina es romboédrica (R3m), no habiéndose detectado la existencia de fase hexagonal mediante la difracción de neutrones ni de rayos x, dentro de los límites de detección. En el caso de las aleaciones amorfas tipo Nanoperm, FeZrBCu, las muestras se han obtenido en forma de cinta mediante la técnica de enfriamiento ultrarrápido. En estos compuestos, TC depende de la cantidad de Fe, por lo que se puede seleccionar la temperatura a la que se obtiene el máximo de l∆SM (T,H)l. Además, presentan una transición ferro-paramagnética que se extiende en un amplio rango de temperaturas, lo cual lleva asociado una curva l∆SM(T)l muy ancha. Definiendo la capacidad relativa de refrigeración de un material magnético como el producto de la anchura a mitad de altura de l∆SM (T,H)l por el valor máximo de l∆SM(T)l, se obtiene un valor alto, aún cuando el valor de │∆Speak M│es moderado, en comparación con los materiales que presentan una transición magnética de primer orden. Asimismo, se ha determinado ∆ SM en diferentes aleaciones de FeZrBCu para campos magnéticos entre 0 y 8 T, lo que permite discutir la existencia de un comportamiento común de la variación de la entropía magnética para los elementos esta familia. Por último, se han estudiado las propiedades magnetocalóricas resultantes de la combinación de dos cintas de distintas composiciones. El resultado más destacado es que se puede producir un incremento de la capacidad de refrigeración y, además, la aparición de un aplanamiento de la curva ∆SM(T) en un amplio rango de temperaturas.
APA, Harvard, Vancouver, ISO, and other styles
4

Belliveau, Hillary Faith. "Reduced Dimensionality Effects in Gd-based Magnetocaloric Materials." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6465.

Full text
Abstract:
Magnetic refrigeration based on the magnetocaloric effect (MCE) is a promising alternative to conventional gas compression based cooling techniques. Understanding impacts of reduced dimensionality on the magnetocaloric response of a material such as Gadolinium (Gd) or its alloys is essential in optimizing the performance of cooling devices, which is also the overall goal of this thesis. We have determined, in the first part of the thesis, that laminate structures of pure Gd produced by magnetron sputtering have several disadvantages. The target material (pure Gd), ultra-high vacuum components, and the electrical energy it takes to run the manufacturing process are all very costly. To produce quality films requires a time and energy consuming chamber preparation (gettering) to produce films with a relative cooling power (RCP) of an order of magnitude smaller (~70 J/kg) than can be obtained with Gd-alloy microwires (~800 J/kg). The increased surface area for an array of wires as compared to a laminate structure allows for more efficient heat transfer. For all of these reasons, we turned the focus onto Gd-alloy microwires. In the latter part of this thesis, we have discussed the Gd-alloy microwires as a function of magnetocaloric parameters of magnetic entropy change, adiabatic temperature change, and refrigerant capacity (RC). We have demonstrated two effective methods for improving the RC of the microwires through creating novel biphase nanocrystalline/amorphous structures via thermal annealing and directly from adjusted melt-extraction. Through studying the effects of chemical doping, as well as studying arrays of microwires with a range of Curie temperature (TC) values, we have designed a new magnetic bed structure that has potential applications as a cooling device for micro-electro-mechanical systems and energy-conversion devices.
APA, Harvard, Vancouver, ISO, and other styles
5

Duffield, Toby. "A study of magnetocaloric effects in two spin glass alloys." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aryal, Anil. "PHASE TRANSITIONS AND MAGNETOCALORIC EFFECTS IN Ni1−xCrxMnGe1.05 AND GdNi2Mnx." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1755.

Full text
Abstract:
The magnetocaloric and thermomagnetic properties of the Ni1-xCrxMnGe1.05 (for x = 0, 0.035, 0.070, 0.105, 0.110, 0.115, and 0.120) system have been studied by X-ray diffraction, differential scanning calorimetry (DSC), resistivity and magnetization measurements. A change in crystal structure from orthorhombic to hexagonal was observed in the XRD data with an increase in chromium concentrations. The values of the cell parameters and volume of the unit cell for hexagonal phase were determined. It was found that the partial substitution of Cr for Ni in Ni1-xCrxMnGe1.05 results in a first order magnetostructural transition from antiferromagnetic to ferromagnetic (FM) at TM of about132 K, 100 K, and 110 K for x= 0.105, 0.115, and 0.120, respectively. A FM to paramagnetic second order transition has been observed at TC around 200K. A magnetic entropy change of = 4.5 J/kg K, 5.6 J/Kg K, and 5.06 J/Kg K was observed in the vicinity of TC for x = 0.105, 0.115, and 0.120 respectively at ΔH = 5T. The values of the latent heat and corresponding total entropy changes have been determined from Differential Scanning Calorimetry (DSC) measurements. Magnetoresistance values of about -5% were measured near TC for x =0.105. The maximum value of refrigeration capacity (RC) and relative cooling power (RCP) was found to be 155 J/Kg and 175 J/Kg respectively for x = 0.120. A concentration-dependent (T-x) phase diagram of transition temperatures has been constructed using the magnetic and DSC data. The structural, magnetic and magnetocaloric properties of GdNi2Mnx system (for x = 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5) have been studied by x-ray diffraction and magnetization measurements. A mixture of the Laves phase C15 and a phase with rhombohedral structure PuNi3- type (space group R m) was observed in the XRD data. A second order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) was found, characterized by a long-range exchange interaction as predicted by mean field theory. The maximum value of magnetic entropy changes, -∆SM, near TC for ∆H = 5T, was found to be 3.1 J/KgK, 2.8 J/KgK, 2.9 J/KgK, and 2.5 J/Kg K for x = 0.8, 1.2, 1.4, and 1.5 respectively. In spite of the low values of ΔSM, the RC and RCP value was found to be 176 J/Kg and 220 J/Kg for the GdNi2Mn0.8 compound, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Lampen, Kelley Paula J. "Low Dimensionality Effects in Complex Magnetic Oxides." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5874.

Full text
Abstract:
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in γFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
APA, Harvard, Vancouver, ISO, and other styles
8

Brock, Jeffrey Adams. "AN EXPERIMENTAL STUDY OF MAGNETIC AND STRUCTURAL PHASE TRANSITIONS AND ASSOCIATED PHENOMENA IN SELECTED NI-MN-DERIVATIVE HEUSLER ALLOYS." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1500906786979139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gottschall, Tino [Verfasser], Oliver [Akademischer Betreuer] Gutfleisch, and Heiko [Akademischer Betreuer] Wende. "On the magnetocaloric properties of Heusler compounds: Reversible, time- and size-dependent effects of the martensitic phase transition / Tino Gottschall. Betreuer: Oliver Gutfleisch ; Heiko Wende." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2016. http://d-nb.info/1112333010/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guglielmo, Francesco. "Studio di un gruppo frigorifero basato sull'effetto magnetocalorico." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/12602/.

Full text
Abstract:
La tecnologia di refrigerazione magnetocalorica si propone come una valida alternativa ai sistemi di refrigerazione convenzionale. Le problematiche relative all'impatto ambientale dei fluidi refrigeranti unitamente alle basse efficienze delle macchine refrigeranti a compressione tradizionali, hanno spinto un numero cospicuo di ricercatori alla costruzione di nuove macchine con tecnologia innovativa. All'interno dell'elaborato si può trovare una breve descrizione dei cicli frigoriferi tradizionali (a compressione e ad assorbimento), inoltre è stata effettuata una ricerca bibliografica sullo stato dell'arte dei dispositivi che sfruttano la tecnologia magnetocalorica. Infine si è proceduto con lo studio di alcune soluzioni per la realizzazione dell'unità di scambio termico in Gadolinio. Durante lo studio, sono state sviluppate sei ipotesi realizzative che possono essere in futuro utilizzate in un prototipo di refrigeratore magnetico rotativo a magneti permanenti.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetocaloric effects"

1

I, Spichkin Y., ed. The magnetocaloric effect and its applications. Bristol: Institute of Physics Pub., 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tishin, A. M., and Y. I. Spichkin. Magnetocaloric Effect and Its Applications. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gencer, H., V. S. Kolat, T. Izgi, N. Bayri, and S. Atalay. Magnetocaloric Effect in Perovskite Manganites. Materials Research Forum LLC, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetocaloric effects"

1

du Trémolet de Lacheisserie, É., D. Gignoux, and M. Schlenker. "Magnetocaloric Coupling and Related Effects." In Magnetism, 339–50. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-0-387-23062-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fukamichi, Kazuaki, A. Fujita, and S. Fujieda. "Application of Large Magnetocaloric Effects in Itinerant-Electron Metamagnets to Cooling Systems." In Materials Science Forum, 137–44. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-996-2.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madiligama, Amila, P. Ari-Gur, V. Shavrov, V. Koledov, Y. Ren, S. Calder, and A. Kayani. "Effects of Cobalt on the Crystalline Structures of the Ni-Mn-In Giant Magnetocaloric Heusler Alloys." In 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), 507–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16901-9_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, J. R., B. G. Shen, and F. X. Hu. "Magnetocaloric Effect and Materials." In Nanoscale Magnetic Materials and Applications, 441–83. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85600-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharples, Joseph W., and David Collison. "Lanthanides and the Magnetocaloric Effect." In Lanthanides and Actinides in Molecular Magnetism, 293–314. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527673476.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zimm, C. B., P. M. Ratzmann, J. A. Barclay, G. F. Green, and J. N. Chafe. "The Magnetocaloric Effect in Neodymium." In Advances in Cryogenic Engineering Materials, 763–68. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9880-6_99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dan’kov, S. Yu, V. V. Ivtchenko, A. M. Tishin, K. A. Gschneidner, and V. K. Pecharsky. "Magnetocaloric Effect in GdAl2 and Nd2Fe17." In Advances in Cryogenic Engineering Materials, 397–404. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4293-3_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pecharsky, V. K., and K. A. Gschneidner. "Magnetocaloric Effect Associated with Magnetostructural Transitions." In Magnetism and Structure in Functional Materials, 199–222. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bessais, L., R. Guetari, R. Bez, K. Zehani, N. Mliki, and C. B. Cizmas. "Structure and Magnetocaloric Effect of Pr2Fe17-xAlx." In TMS 2014 Supplemental Proceedings, 9–14. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889879.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bessais, L., R. Guetari, R. Bez, K. Zehani, N. Mliki, and C. B. Cizmas. "Structure and magnetocaloric effect of Pr2Fe17-xAlx." In TMS 2014: 143rd Annual Meeting & Exhibition, 9–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48237-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetocaloric effects"

1

Z., Ou, Xia W., Song L., and Huang J. "MECHANIC PROPERTIES AND MAGNETOCALORIC EFFECTS OF BONDED La0.9Ce0.1Fe11.7-xMnxSi1.3H1.8." In НАНОМАТЕРИАЛЫ И ТЕХНОЛОГИИ. Buryat State University Publishing Department, 2016. http://dx.doi.org/10.18101/978-5-9793-0898-2-30-34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xia, W., L. Song, J. Huang, and Z. Ou. "Mechanic properties and magnetocaloric effects of bonded La0.9Ce0.1Fe11.7-xMnxSi1.3H1.8." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Romero-Torralva, C., C. Mayer, V. Franco, and A. Conde. "Dynamic effects in the characterization of the magnetocaloric effect of LaFeSi-type alloys." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

THUY, N. P., L. T. TAI, N. T. HIEN, N. V. NONG, T. Q. VINH, P. D. THANG, T. P. NGUYEN, and P. MOLINIÉ. "MAGNETIC PROPERTIES AND MAGNETOCALORIC EFFECTS IN SEVERAL R5(Si0.5Ge0.5)4 COMPOUNDS." In Proceedings of the 8th Asia-Pacific Physics Conference. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811523_0065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burzo, Emil, Madalin Bunoiu, and Iosif Malaescu. "Exchange Interactions and Magnetocaloric Effects in Rare-Earth-Transition Metal Compounds." In PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rahman, Muhammad M., and Luis Rosario. "Thermodynamic Analysis of Magnetic Refrigerators." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61369.

Full text
Abstract:
An analysis of a magnetic refrigeration cycle was carried out. The system consists of heat exchangers and beds of magnetic materials. The analysis considered that the system operates near room temperature in a magnetic field between 1 and 5 T and uses 3 kg of gadolinium (Gd) spheres packed in two magnetocaloric beds. The heat transfer fluid is water. The beds are periodically magnetized and demagnetized and the fluid flows are arranged to meet the cycle requirements. Sensitivity analysis has been performed. Cooling power, magnetic field, and temperature span trends are simulated. The cooling and heating effects were estimated based on the magnetocaloric effect of gadolinium. Findings indicate that the higher the magnetic field is the higher the cooling power with the same temperature span. It was also observed that the cooling power decreases with the increase in the temperature span for various magnetic fields. COP vs. temperature span was also considered. The trend indicates that COPactual/ COPCarnot decreases with an increase in the temperature span. These trends agreed with those shown by experimental data.
APA, Harvard, Vancouver, ISO, and other styles
7

Khiem, N. V., L. V. Bau, T. L. Phan, N. V. Dai, S. C. Yu, and N. X. Phuc. "Magnetoresistance and magnetocaloric effects in La/sub 0.7/Sr/sub 0.3/Mn/sub 0.8/Ti/sub 0.2/O/sub 3/." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujita, A., and K. Fukamichi. "Large magnetocaloric effects and Landau coefficients of itinerant electron metamagnetic La(Fe/sub x/Si/sub 1-x/)/sub 13/ compounds." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saito, A. T., H. Tsuji, and T. Kobayashi. "Magnetocaloric effects and magnetic properties in intermetallic compounds La(Fe/sub 1-x-y/Co/sub x/Si/sub y/)/sub 13/." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fujieda, S., A. Fujita, and K. Fukamichi. "Control of large magnetocaloric effects and hysteresis of La/sub 1-z/Ce/sub z/(Fe/sub 0.86/Si/sub 0.14/)/sub 13/ compounds." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464337.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetocaloric effects"

1

Niu, Xuejun. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/754836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Misra, Sumohan. Structural flexibility in magnetocaloric RE5T4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/964391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography