To see the other types of publications on this topic, follow the link: Magnetocaloric effects.

Journal articles on the topic 'Magnetocaloric effects'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetocaloric effects.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Habiba, Ummay, Sheikh Manjura Hoque, Samia Islam Liba, and Hasan Khaled Rouf. "Magnetocaloric Effects of Barium-Strontium Ferrites for Magnetic Refrigeration System." Advanced Materials & Technologies, no. 4 (2018): 025–30. http://dx.doi.org/10.17277/amt.2018.04.pp.025-030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Medeiros, L. G., N. A. de Oliveira, and A. Troper. "Magnetocaloric and barocaloric effects in." Journal of Magnetism and Magnetic Materials 322, no. 9-12 (May 2010): 1558–60. http://dx.doi.org/10.1016/j.jmmm.2009.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duc, N. H., and D. T. Kim Anh. "Magnetocaloric effects in RCo2 compounds." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 873–75. http://dx.doi.org/10.1016/s0304-8853(01)01328-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ryu, Sung-Myung, and Chunghee Nam. "Magnetocaloric effects of DyVO4 nanoparticles." Journal of Magnetism and Magnetic Materials 537 (November 2021): 168161. http://dx.doi.org/10.1016/j.jmmm.2021.168161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elamalayil Soman, Deepak, Jelena Loncarski, Lisa Gerdin, Petter Eklund, Sandra Eriksson, and Mats Leijon. "Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials." Advances in Electrical Engineering 2015 (January 31, 2015): 1–7. http://dx.doi.org/10.1155/2015/670624.

Full text
Abstract:
Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Tegus, O., E. Brück, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer. "Magnetic-phase transitions and magnetocaloric effects." Physica B: Condensed Matter 319, no. 1-4 (July 2002): 174–92. http://dx.doi.org/10.1016/s0921-4526(02)01119-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

WU, Yongli, O. Tegus, Weiguang ZHANG, S. Yiriyoltu, B. Mend, and Songlin. "Magnetocaloric effects in Fe4MnSi3Bx interstitial compounds." Acta Metallurgica Sinica (English Letters) 22, no. 5 (October 2009): 397–400. http://dx.doi.org/10.1016/s1006-7191(08)60114-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krishnamoorthi, C., S. K. Barik, Z. Siu, and R. Mahendiran. "Normal and inverse magnetocaloric effects in." Solid State Communications 150, no. 35-36 (September 2010): 1670–73. http://dx.doi.org/10.1016/j.ssc.2010.06.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marx, R., and B. Christoffer. "Magnetocaloric effects of 2D adsorbed O2." Journal of Physics C: Solid State Physics 18, no. 14 (May 20, 1985): 2849–58. http://dx.doi.org/10.1088/0022-3719/18/14/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sivachenko, A. P., V. I. Mityuk, V. I. Kamenev, A. V. Golovchan, V. I. Val’kov, and I. F. Gribanov. "Magnetostrictive and magnetocaloric effects in Mn0.89Cr0.11NiGe." Low Temperature Physics 39, no. 12 (December 2013): 1051–54. http://dx.doi.org/10.1063/1.4843196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Khan, Mahmud, K. A. Gschneidner, and V. K. Pecharsky. "Magnetocaloric effects in Er1−xTbxAl2 alloys." Journal of Applied Physics 107, no. 9 (May 2010): 09A904. http://dx.doi.org/10.1063/1.3335590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, K. W., Y. H. Zhuang, J. Q. Li, J. Q. Deng, and Q. M. Zhu. "Magnetocaloric effects in (Gd1−xTbx)Co2." Solid State Communications 137, no. 5 (February 2006): 275–77. http://dx.doi.org/10.1016/j.ssc.2005.11.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Grinfeld, Michael, and Pavel Grinfeld. "Thermodynamically Consistent Analysis of Magnetocaloric Effects." Applied Mathematics and Physics 8, no. 1 (September 29, 2020): 14–19. http://dx.doi.org/10.12691/amp-8-1-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Amaral, J. S., and V. S. Amaral. "Disorder effects in giant magnetocaloric materials." physica status solidi (a) 211, no. 5 (February 5, 2014): 971–74. http://dx.doi.org/10.1002/pssa.201300749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nakagawa, Takashi, Takayuki Arakawa, Kengo Sako, Naoto Tomioka, Takao A. Yamamoto, Takafumi Kusunose, Koichi Niihara, Koji Kamiya, and Takenori Numazawa. "Magnetocaloric effects of ferromagnetic erbium mononitride." Journal of Alloys and Compounds 408-412 (February 2006): 191–95. http://dx.doi.org/10.1016/j.jallcom.2005.04.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Andreenko, A. S., Konstantin P. Belov, S. A. Nikitin, and A. M. Tishin. "Magnetocaloric effects in rare-earth magnetic materials." Uspekhi Fizicheskih Nauk 158, no. 8 (1989): 553. http://dx.doi.org/10.3367/ufnr.0158.198908a.0553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kassan-Ogly, Felix A., Elena E. Kokorina, and M. V. Medvedev. "Peculiarities of the Magnetocaloric Effect in an Isotropic Antiferromagnet." Solid State Phenomena 215 (April 2014): 66–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.66.

Full text
Abstract:
It is shown that the magnetocaloric effects are absent in the spin-flop phase of an isotropic antiferromagnet at the T<TN (TN the Neel temperature) and appear only when an applied magnetic field exceeds the critical field of the spin-flip transition. It is displayed as well that the direct magnetocaloric effects in an antiferromagnet above TN are much less that the analogous effects in a ferromagnet above the Curie point TC.
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Sui-Jun, Chen Cao, Chen-Chao Xie, Teng-Fei Zheng, Xiao-Lan Tong, Jin-Sheng Liao, Jing-Lin Chen, He-Rui Wen, Ze Chang, and Xian-He Bu. "Tricarboxylate-based GdIII coordination polymers exhibiting large magnetocaloric effects." Dalton Transactions 45, no. 22 (2016): 9209–15. http://dx.doi.org/10.1039/c6dt01349j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Canaj, Angelos B., Dimitris A. Kalofolias, Milosz Siczek, Tadeusz Lis, Robbie McNab, Giulia Lorusso, Ross Inglis, Marco Evangelisti, and Constantinos J. Milios. "Tetradecanuclearity in 3d–4f chemistry: relaxation and magnetocaloric effects in [NiII6LnIII8] species." Dalton Transactions 46, no. 11 (2017): 3449–52. http://dx.doi.org/10.1039/c7dt00102a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Yu-Xia, Qiutong Xu, Peng Ren, Wei Shi, and Peng Cheng. "Solvent-induced formation of two gadolinium clusters demonstrating strong magnetocaloric effects and ferroelectric properties." Dalton Transactions 48, no. 6 (2019): 2228–33. http://dx.doi.org/10.1039/c8dt04267e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Brück, E., M. Ilyn, A. M. Tishin, and O. Tegus. "Magnetocaloric effects in MnFeP1−xAsx-based compounds." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 8–13. http://dx.doi.org/10.1016/j.jmmm.2004.11.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Li-Chen, and Bao-Gen Shen. "Magnetic properties and magnetocaloric effects of PrSi." Rare Metals 33, no. 3 (June 2014): 239–43. http://dx.doi.org/10.1007/s12598-014-0310-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Andreenko, A. S., Konstantin P. Belov, S. A. Nikitin, and Aleksandr M. Tishin. "Magnetocaloric effects in rare-earth magnetic materials." Soviet Physics Uspekhi 32, no. 8 (August 31, 1989): 649–64. http://dx.doi.org/10.1070/pu1989v032n08abeh002745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sun, N. K., S. Ma, Q. Zhang, J. Du, and Z. D. Zhang. "Large room-temperature magnetocaloric effects in Fe0.8Mn1.5As." Applied Physics Letters 91, no. 11 (September 10, 2007): 112503. http://dx.doi.org/10.1063/1.2784170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Diop, L. V. B., and O. Isnard. "Inverse and normal magnetocaloric effects in LaFe12B6." Journal of Applied Physics 119, no. 21 (June 7, 2016): 213904. http://dx.doi.org/10.1063/1.4953235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Snyman, J. L., E. Carleschi, B. P. Doyle, and A. M. Strydom. "Positive and negative magnetocaloric effects in CeSi." Journal of Applied Physics 113, no. 17 (May 7, 2013): 17A903. http://dx.doi.org/10.1063/1.4793779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sun, N. K., D. Li, and Z. D. Zhang. "Magnetic transitions and magnetocaloric effects in Fe0.75Mn1.35As." Journal of Materials Science 44, no. 13 (July 2009): 3472–75. http://dx.doi.org/10.1007/s10853-009-3463-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Leyarovski, E., L. Leyarovska, N. Leyarovska, Chr Popov, and M. Kirov. "Low-field magnetocaloric effects in YBaCuO superconductors." Physica C: Superconductivity 153-155 (June 1988): 1527–28. http://dx.doi.org/10.1016/0921-4534(88)90404-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brück, Ekkes, Hargen Yibole, and Lian Zhang. "A universal metric for ferroic energy materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2074 (August 13, 2016): 20150303. http://dx.doi.org/10.1098/rsta.2015.0303.

Full text
Abstract:
After almost 20 years of intensive research on magnetocaloric effects near room temperature, magnetic refrigeration with first-order magnetocaloric materials has come close to real-life applications. Many materials have been discussed as potential candidates to be used in multicaloric devices. However, phase transitions in ferroic materials are often hysteretic and a metric is needed to estimate the detrimental effects of this hysteresis. We propose the coefficient of refrigerant performance, which compares the net work in a reversible cycle with the positive work on the refrigerant, as a universal metric for ferroic materials. Here, we concentrate on examples from magnetocaloric materials and only consider one barocaloric experiment. This is mainly due to lack of data on electrocaloric materials. It appears that adjusting the field-induced transitions and the hysteresis effects can minimize the losses in first-order materials. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.
APA, Harvard, Vancouver, ISO, and other styles
30

Prah, Uroš, Magdalena Wencka, Tadej Rojac, Andreja Benčan, and Hana Uršič. "Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies." Journal of Materials Chemistry C 8, no. 32 (2020): 11282–91. http://dx.doi.org/10.1039/d0tc02329a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Brechtl, Jamieson, Michael R. Koehler, Michael S. Kesler, Hunter B. Henderson, Alexander A. Baker, Kai Li, James Kiggans, Kashif Nawaz, Orlando Rios, and Ayyoub M. Momen. "Effect of Composition on the Phase Structure and Magnetic Properties of Ball-Milled LaFe11.71-xMnxSi1.29H1.6 Magnetocaloric Powders." Magnetochemistry 7, no. 9 (September 21, 2021): 132. http://dx.doi.org/10.3390/magnetochemistry7090132.

Full text
Abstract:
Magnetocaloric alloys are an important class of materials that enable non-vapor compression cycles. One promising candidate for magnetocaloric systems is LaFeMnSi, thanks to a combination of factors including low-cost constituents and a useful curie temperature, although control of the constituents’ phase distribution can be challenging. In this paper, the effects of composition and high energy ball milling on the particle morphology and phase stability of LaFe11.71-xMnxSi1.29H1.6 magnetocaloric powders were investigated. The powders were characterized with optical microscopy, dynamic light scattering, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). It was found that the powders retained most of their original magnetocaloric phase during milling, although milling reduced the degree of crystallinity in the powder. Furthermore, some oxide phases (<1 weight percent) were present in the as-received and milled powders, which indicates that no significant contamination of the powders occurred during milling. Finally, the results indicated that the Curie temperature drops as Fe content decreases (Mn content increases). In all of the powders, milling led to an increase in the Curie temperature of ~3–6 °C.
APA, Harvard, Vancouver, ISO, and other styles
32

de Oliveira, N. A., P. J. von Ranke, and A. Troper. "Magnetocaloric and barocaloric effects: Theoretical description and trends." International Journal of Refrigeration 37 (January 2014): 237–48. http://dx.doi.org/10.1016/j.ijrefrig.2013.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Burzo, Emil, Istvan Balasz, Iosif Deac, and Romulus Tetean. "Magnetic properties and magnetocaloric effects in ferrimagnetic compounds." Journal of Magnetism and Magnetic Materials 322, no. 9-12 (May 2010): 1109–12. http://dx.doi.org/10.1016/j.jmmm.2009.09.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mo, Zhao-Jun, Jun Shen, Xin-Qiang Gao, Yao Liu, Jian-Feng Wu, Bao-Gen Shen, and Ji-Rong Sun. "Magnetic properties and magnetocaloric effects in HoPd intermetallic." Chinese Physics B 24, no. 3 (February 26, 2015): 037503. http://dx.doi.org/10.1088/1674-1056/24/3/037503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shen, Jun, Jin-Liang Zhao, Feng-Xia Hu, Jian-Feng Wu, Mao-Qiong Gong, Yang-Xian Li, Ji-Rong Sun, and Bao-Gen Shen. "Magnetic properties and magnetocaloric effects in antiferromagnetic ErTiSi." Journal of Applied Physics 107, no. 9 (May 2010): 09A931. http://dx.doi.org/10.1063/1.3365531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rostamnejadi, A., M. Venkatesan, J. Alaria, M. Boese, P. Kameli, H. Salamati, and J. M. D. Coey. "Conventional and inverse magnetocaloric effects in La0.45Sr0.55MnO3 nanoparticles." Journal of Applied Physics 110, no. 4 (August 15, 2011): 043905. http://dx.doi.org/10.1063/1.3614586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Aryal, Anil, Abdiel Quetz, Sudip Pandey, Michael Eubank, Tapas Samanta, Igor Dubenko, Shane Stadler, and Naushad Ali. "Phase diagram and magnetocaloric effects in Ni1-xCrxMnGe1.05." Journal of Applied Physics 117, no. 17 (May 7, 2015): 17A711. http://dx.doi.org/10.1063/1.4907765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Andrade, Vivian M., João H. Belo, Mario S. Reis, Rui M. Costa, André M. Pereira, and João P. Araújo. "Lanthanum Dilution Effects on the Giant Magnetocaloric Gd5Si1.8Ge2.2Compound." physica status solidi (b) 255, no. 10 (September 6, 2018): 1800101. http://dx.doi.org/10.1002/pssb.201800101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pandey, Sudip, Abdiel Quetz, P. J. Ibarra-Gaytan, C. F. Sánchez-Valdés, Anil Aryal, Igor Dubenko, Jose Luis Sanchez Llamazares, Shane Stadler, and Naushad Ali. "Magnetostructural transitions and magnetocaloric effects in Ni50Mn35In14.25B0.75 ribbons." AIP Advances 8, no. 5 (May 2018): 056434. http://dx.doi.org/10.1063/1.5006467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Trung, N. T., L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück. "Giant magnetocaloric effects by tailoring the phase transitions." Applied Physics Letters 96, no. 17 (April 26, 2010): 172504. http://dx.doi.org/10.1063/1.3399773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Maheswar Repaka, D. V., M. Aparnadevi, Pawan Kumar, T. S. Tripathi, and R. Mahendiran. "Normal and inverse magnetocaloric effects in ferromagnetic Pr0.58Sr0.42MnO3." Journal of Applied Physics 113, no. 17 (May 7, 2013): 17A906. http://dx.doi.org/10.1063/1.4793599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

de Medeiros, L. G., N. A. de Oliveira, and A. Troper. "Barocaloric and magnetocaloric effects in La(Fe0.89Si0.11)13." Journal of Applied Physics 103, no. 11 (June 2008): 113909. http://dx.doi.org/10.1063/1.2938841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kassan-Ogly, F. A., E. E. Kokorina, and M. V. Medvedev. "Anisotropy of magnetocaloric effects in easy-axis antiferromagnets." Physics of Metals and Metallography 117, no. 5 (May 2016): 435–50. http://dx.doi.org/10.1134/s0031918x16050070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Provenzano, V., A. J. Shapiro, R. D. Shull, T. King, E. Canavan, P. Shirron, and M. DiPirro. "Peak magnetocaloric effects in Al-Gd-Fe alloys." Journal of Applied Physics 95, no. 11 (June 2004): 6909–11. http://dx.doi.org/10.1063/1.1667832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Терешина, И. С., Г. А. Политова, В. А. Четырбоцкий, Е. А. Терешина-Хитрова, М. А. Пауков, and А. В. Андреев. "Влияние гидрирования на магнитострикцию и магнитокалорический эффект в монокристалле гадолиния." Физика твердого тела 61, no. 2 (2019): 230. http://dx.doi.org/10.21883/ftt.2019.02.47118.253.

Full text
Abstract:
AbstractThe gadolinium single crystal obtained by the Czochralski method was hydrogenated to the composition GdH_0.15, which corresponds to a metal–hydrogen solid solution (α phase). The magnetostriction and magnetocaloric effect were measured for both the initial and hydrogenated samples. It is found that the hydrogen atoms in the hexagonal lattice of gadolinium can affect the magnitude and sign of the magnetostriction constants and cause the anisotropy of the magnetocaloric effect. The main mechanisms responsible for the observed effects are discussed.
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Yanyan, Lei Qin, Guo-Jun Zhou, Xinxin Ye, Jiaqing He, and Yan-Zhen Zheng. "High-performance low-temperature magnetic refrigerants made of gadolinium-hydroxy-chloride." Journal of Materials Chemistry C 4, no. 27 (2016): 6473–77. http://dx.doi.org/10.1039/c6tc01291d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yin, L. H., J. Yang, P. Tong, X. Luo, C. B. Park, K. W. Shin, W. H. Song, et al. "Role of rare earth ions in the magnetic, magnetocaloric and magnetoelectric properties of RCrO3 (R = Dy, Nd, Tb, Er) crystals." Journal of Materials Chemistry C 4, no. 47 (2016): 11198–204. http://dx.doi.org/10.1039/c6tc03989h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Старков, А. С., О. В. Пахомов, В. В. Родионов, А. А. Амиров, and И. А. Старков. "Оценка термодинамической эффективности работы твердотельных охладителей и генераторов на мультикалорическом эффекте." Журнал технической физики 89, no. 4 (2019): 590. http://dx.doi.org/10.21883/jtf.2019.04.47318.34-18.

Full text
Abstract:
AbstractThe efficiency of using the multicaloric effect (μCE) in solid-state cooling systems is investigated and compared with single caloric effects. The proposed approach is illustrated by the example of the Brighton cycle for μCE and the magnetocaloric effect. Based on the conducted experiments for the two-layer composite Fe_48Rh_52–PbZr_0.53Ti_0.47O_3, the dependence of relative efficiency on temperature is constructed and the temperature range is estimated, where μCE has an advantage over the magnetocaloric effect. The comparison of the developed theory of the μCE with the obtained experimental data is performed.
APA, Harvard, Vancouver, ISO, and other styles
49

Entel, Peter, Anjana Talapatra, Raymundo Arroyave, Navdeep Singh, Markus Gruner, Richard Dronskowski, Dimitri Bogdanovski, and Alfred Hucht. "First-Principles and Monte Carlo Studies of Magnetocaloric Effects." Advances in Science and Technology 97 (October 2016): 124–33. http://dx.doi.org/10.4028/www.scientific.net/ast.97.124.

Full text
Abstract:
We have performed \textit{ab initio} electronic structure calculations and Monte Carlo simulations of magnetically frustrated intermetallic materials where complex magnetic configurations and chemical disorder lead to rich phase diagrams. With lowering of temperature, we find for magnetic Heusler alloys a ferromagnetic phase which transforms to an antiferromagnetic phase at the magnetostructural phase transition and to a cluster spin glass at still lower temperatures. We discuss chemical bonding features of Ni$_2$MnGa and the giant magnetocaloric effec of Ni-Mn-In with Co and Cr substitution as well as the origin of the magnetostructural transition.The numerical simulations allow a complete characterization of the magnetically frustrated materials.
APA, Harvard, Vancouver, ISO, and other styles
50

Pecharsky, Vitalij K., Jun Cui, and Duane D. Johnson. "(Magneto)caloric refrigeration: is there light at the end of the tunnel?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2074 (August 13, 2016): 20150305. http://dx.doi.org/10.1098/rsta.2015.0305.

Full text
Abstract:
Caloric cooling and heat pumping rely on reversible thermal effects triggered in solids by magnetic, electric or stress fields. In the recent past, there have been several successful demonstrations of using first-order phase transition materials in laboratory cooling devices based on both the giant magnetocaloric and elastocaloric effects. All such materials exhibit non-equilibrium behaviours when driven through phase transformations by corresponding fields. Common wisdom is that non-equilibrium states should be avoided; yet, as we show using a model material exhibiting a giant magnetocaloric effect, non-equilibrium phase-separated states offer a unique opportunity to achieve uncommonly large caloric effects by very small perturbations of the driving field(s). This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography