Academic literature on the topic 'Magnetocrystalline'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetocrystalline.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetocrystalline"
Kim, D. H., T. K. Kim, W. S. Park, and Y. B. Kim. "Magnetocrystalline anisotropy of Sm2Fe17N2.8." Journal of Magnetism and Magnetic Materials 163, no. 3 (November 1996): 373–77. http://dx.doi.org/10.1016/s0304-8853(96)00270-3.
Full textTéllez-Blanco, J. C., X. C. Kou, and R. Groössinger. "Magnetocrystalline anistropy of Y3Fe27.4Ti1.6." Journal of Magnetism and Magnetic Materials 164, no. 1-2 (November 1996): L1—L6. http://dx.doi.org/10.1016/s0304-8853(96)00645-2.
Full textYang, Ying‐chang, Xiao‐dong Zhang, Lin‐shu Kong, Qi Pan, and Sen‐lin Ge. "Magnetocrystalline anisotropies of RTiFe11Nxcompounds." Applied Physics Letters 58, no. 18 (May 6, 1991): 2042–44. http://dx.doi.org/10.1063/1.105007.
Full textKim, M. J., Y. B. Kim, C. S. Kim, and T. K. Kim. "Magnetocrystalline anisotropy of Pr2Fel4B." Journal of Magnetism and Magnetic Materials 222, no. 1-2 (December 2000): 86–88. http://dx.doi.org/10.1016/s0304-8853(00)00553-9.
Full textŘezníček, R., V. Chlan, H. Štěpánková, P. Novák, and M. Maryško. "Magnetocrystalline anisotropy of magnetite." Journal of Physics: Condensed Matter 24, no. 5 (January 6, 2012): 055501. http://dx.doi.org/10.1088/0953-8984/24/5/055501.
Full textde Biasi, Ronaldo Sergio, and Daniele Gomes Carvalho. "Magnetocrystalline anisotropy of NiZnFe2O4." Ceramics International 40, no. 7 (August 2014): 10099–102. http://dx.doi.org/10.1016/j.ceramint.2014.03.183.
Full textAndreev, A. V., M. I. Bartashevich, and V. A. Vasilkovsky. "Magnetocrystalline anisotropy in Y6Fe23." Journal of the Less Common Metals 167, no. 1 (December 1990): 101–6. http://dx.doi.org/10.1016/0022-5088(90)90293-s.
Full textKou, X. C., E. H. C. P. Sinnecker, and R. Grössinger. "Magnetocrystalline anisotropy of Er2Fe14B." Journal of Magnetism and Magnetic Materials 147, no. 3 (June 1995): L231—L234. http://dx.doi.org/10.1016/0304-8853(95)00116-6.
Full textKatter, M., J. Wecker, L. Schultz, and R. Grössinger. "Magnetocrystalline anisotropy of Sm2Fe17N2." Journal of Magnetism and Magnetic Materials 92, no. 1 (November 1990): L14—L18. http://dx.doi.org/10.1016/0304-8853(90)90670-l.
Full textFelix, R. A. C., Luiz Brandão, M. A. da Cunha, C. H. P. Paiva, J. R. L. Amaro, Lucas S. Teles, Ricardo Luiz O. da Rosa, R. P. G. Júnior, Thiago A. Saldanha, and Victor Hugo G. Bezerra. "Evaluation of the Relationship between Crystallographic Texture and Magnetic Properties through the Magnetocrystalline Anisotropy Coefficient." Materials Science Forum 775-776 (January 2014): 427–30. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.427.
Full textDissertations / Theses on the topic "Magnetocrystalline"
Stangel, Anders. "Magnetocrystalline Anisotropy in(FexNi1-x)2B Materials." Thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301992.
Full textKing, Christopher Stuart. "Magnetotransport and magnetocrystalline anisotropy studies of gallium manganese arsenide thin films." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10646/.
Full textGölden, Dominik [Verfasser], Lambert [Akademischer Betreuer] Alff, Oliver [Akademischer Betreuer] Gutfleisch, Hongbin [Akademischer Betreuer] Zhang, and Barbara [Akademischer Betreuer] Albert. "Magnetocrystalline anisotropy of iron thin films with interstitial nitrogen and boron / Dominik Gölden ; Lambert Alff, Oliver Gutfleisch, Hongbin Zhang, Barbara Albert." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/1153123525/34.
Full textD'Souza, Noel. "APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGIC." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3539.
Full textSinko, Michael R. "Strain Induced Double Magnetic Resonance in Thin Film Ni on MgO." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1408030230.
Full textEdström, Alexander. "Theoretical and Computational Studies on the Physics of Applied Magnetism : Magnetocrystalline Anisotropy of Transition Metal Magnets and Magnetic Effects in Elastic Electron Scattering." Doctoral thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-304666.
Full textFelaktigt ISBN i den tryckta versionen: 9789155497149
Karaca, Haluk Ersin. "Magnetic field-induced phase transformation and variant reorientation in Ni2MnGa and NiMnCoIn magnetic shape memory alloys." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1562.
Full textBroddefalk, Arvid. "Magnetic properties of transition metal compounds and superlattices." Doctoral thesis, Uppsala University, Department of Materials Science, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-535.
Full textMagnetic properties of selected compounds and superlattices have been experimentally studied using SQUID (superconducting quantum interference device) and VSM (vibrating sample magnetometer) magnetometry, neutron diffraction and Mössbauer spectroscopy measurements combined with theoretical ab initio calculations.
The magnetic compounds (Fe1-xMx)3P, M=Co or Mn have been studied extensively. It was found that Co can substitute Fe up to x=0.37. Increasing the Co content leads to a reduction of the Curie temperature and the magnetic moment per metal atom. Mn can substitute Fe up to x=0.25 while Fe can be substituted into Mn3P to 1-x=0.33. On the iron rich side, the drop in Curie temperature and magnetic moment when increasing the Mn content is more rapid than for Co substitution. On the manganese rich side an antiferromagnetic arrangement with small magnetic moments was found.
The interlayer exchange coupling and the magnetocrystalline anisotropy energy of Fe/V superlattices were studied. The coupling strength was found to vary with the thickness of the iron layers. To describe the in-plane four-fold anisotropy, the inclusion of surface terms proved necessary.
The in-plane four fold anisotropy was also studied in a series of Fe/Co superlattices, where the thickness of the Co layers was kept thin so that the bcc structure could be stabilized. Only for samples with a large amount of iron, the easy axis was found to be [100]. The easy axis of bulk bcc Co was therefor suggested to be [111].
Laslo, Ancuta-Ioana. "Propriétés structurales et magnétiques de composés intermétalliques à base de terres rares, cobalt et métalloïdes." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY069/document.
Full textIn this work we have evaluated the effect of the partial substitution of cobalt with non-magnetic p-type elements (M) on the structural and magnetic properties of RCo5 compounds. The samples were prepared by alloying in an induction furnace and were characterized using various experimental techniques: X-ray and neutron diffraction, scanning electron microscopy, magnetometry, AC susceptometry and X-ray photoelectron spectroscopy.All of the studied RCo5-xMx compounds (R=Pr, Sm, Tb, Er and Tm; M=Si, Ge, Al and Ga; x=0.5 and x=1) maintain the CaCu5 crystal structure of the RCo5 compounds, however the lattice parameters are modified due to the presence of M elements. The thermal stability range of the RCo5-xMx phases is modified significantly due to the Co site substitutions. The thermal stability increases for Al and Ga substitutions and decreases when M is Si or Ge. The M atoms were found to preferentially occupy the Co 3g site. The solubility of Ge and Si in the RCo5 structure is inferior to that of metalloid elements with one less electron, such as Al and Ga. The M/Co substitution has an important influence on the magnetic properties of RCo5 compounds. The ordering temperature and the spontaneous magnetization are significantly reduced after the partial substitution of cobalt by the metalloid elements. These changes are induced in particular by the evolutions of the Co-Co exchange interactions and also by the reduction of the Co magnetization due to the sensitivity of Co to the local atomic and magnetic vicinity. The easy magnetization direction at room temperature is preserved along the c-axis for all of the studied samples. In several RCo5-xMx (R = Sm, Er and Tm) compounds the substitution of Co with M atoms changes the coercivity mechanism compared to RCo5. A higher coercivity was found at low temperatures, especially for SmCo4Al and SmCo4Ga compounds, which also show huge values of the anisotropy field, well above the ones found in SmCo5.The XPS measurements on RCo5-xMx compounds show a reduction of the density of states at the Fermi level compared to the RCo5 compounds. There is a filling of the Co 3d band following the M/Co substitution, leading to a lower Co moment
Neise, Carsten. "Magnetic Properties Studied by Density Functional Calculations Including Orbital Polarisation Corrections." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70081.
Full textBooks on the topic "Magnetocrystalline"
Wang, Haiyan. Relation between bandstructure and magnetocrystalline anisotropy: Iron and nickel. 2000.
Find full textBook chapters on the topic "Magnetocrystalline"
Staunton, J., P. Strange, B. L. Gyorffy, M. Matsumoto, J. Poulter, H. Ebert, and N. P. Archibald. "Theory of Magnetocrystalline Anisotropy." In The Effects of Relativity in Atoms, Molecules, and the Solid State, 295–317. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3702-1_20.
Full textvan der Laan, Gerrit. "Relation Between X-ray Magnetic Linear Dichroism and Magnetocrystalline Anisotropy." In Magnetism and Synchrotron Radiation, 339–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44954-x_15.
Full textDaalderop, G. H. O., P. J. Kelly, and M. F. H. Schuurmans. "First-Principles Calculation of the Magnetocrystalline Anisotropy Energy of ConPdm Multilayers." In NATO ASI Series, 185–90. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2590-9_23.
Full textGrange, Wilfried, Jean Paul Kappler, and Mireille Maret. "Magnetocrystalline Anisotropy of Transition Metals: Recent Achievements in X-ray Absorption Spectroscopy." In Magnetism: Molecules to Materials, 211–34. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. http://dx.doi.org/10.1002/9783527620548.ch6.
Full textde Campos, Marcos Flávio. "Determination of the Constants of Magnetocrystalline Anisotropy in Sintered Magnets with Uniaxial Texture." In Advanced Powder Technology IV, 134–40. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.134.
Full textOkamoto, Nariaki, Takashi Fukuda, Tomoyuki Kakeshita, and Tetsuya Takeuchi. "Magnetocrystalline Anisotropy and Twinning Stress of 10M and 2M Martensites in Ni-Mn-Ga System." In Materials Science Forum, 195–200. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-996-2.195.
Full textNikitin, S. A., I. S. Tereshina, E. A. Ovtchenkov, V. N. Verbetsky, and A. A. Salamova. "Effect Of Interstitial Hydrogen and Nitrogen on the Magnetocrystalline Anisotropy and Magnetostriction of Rare — Earth — Transition — Metal Intermetallics." In Hydrogen Materials Science and Chemistry of Metal Hydrides, 23–33. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0558-6_3.
Full textCorner, W. D., and M. J. Hawton. "Magnetization, Magnetocrystalline Anisotropy, Domain Wall Energies and Thicknesses in R2Fe14B Materials With R = Nd,Gd,Dy and Ho." In Concerted European Action on Magnets (CEAM), 424–35. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1135-2_37.
Full text"magnetocrystalline." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 832. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_130192.
Full textYingchang, Yang, Chen Haiying, Lin Chin, Xing Feng, Liu Zunxiao, and Ho Wenwang. "MAGNETOCRYSTALLINE ANISOTROPY OF R15B7Fe78." In New Frontiers in Rare Earth Science and Applications, 941–46. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-12-767662-3.50050-4.
Full textConference papers on the topic "Magnetocrystalline"
Liu, E., Z. Huang, J. Yue, L. Chen, Y. Sui, Y. Zhai, S. Tang, J. Du, and H. Zhai. "Magnetocrystalline anisotropy in textured Fe3O4 film." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157636.
Full textSeleznyova, Kira, Mark Strugatsky, Janis Kliava, and Jacques Curely. "Understanding the magnetocrystalline anisotropy of iron borate." In 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP). IEEE, 2017. http://dx.doi.org/10.1109/optim.2017.7974977.
Full textPrakash, P. V., Madduri, S. Srinath, and S. N. Kaul. "Magnetic irreversibility and magnetocrystalline anisotropy in nanocrystalline nickel." In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918197.
Full textYang, H., and M. Chshiev. "Co-Graphene heterostructures with giant perpendicular magnetocrystalline anisotropy." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157629.
Full textSheloudko, N., O. Kalogirou, C. Safaridis, M. Gjoka, and M. Mikhov. "Magnetocrystalline Anisotropy of Nd3(Fe1−xCox)27,7Ti1,3Ny Compounds." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733391.
Full textKliava, J., M. Strugatsky, and K. Seleznyova. "New insight in the magnetocrystalline anisotropy of iron borate." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007766.
Full textRani, Priti, Ankur Taya, and Manish K. Kashyap. "Enhancement of magnetocrystalline anisotropy of MnBi with Co interstitial impurities." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029103.
Full textThakur, Jyoti, Priti Rani, Monika Tomar, Vinay Gupta, Hardev S. Saini, and Manish K. Kashyap. "Tailoring in-plane magnetocrystalline anisotropy of Fe5SiB2 with Cr-substitution." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113345.
Full textHasegawa, D., S. Nakasaka, T. Ogawa, and M. Takahashi. "Magnetization Process of h.c.p.-CoIr Nanoparticles with Negative Uniaxial Magnetocrystalline Anisotropy." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.374879.
Full textAntonio, S. Quondam, and M. Pompei. "Modeling of the magnetocrystalline cubic anisotropy in Fe-Si electrical steels." In 2015 AEIT International Annual Conference (AEIT). IEEE, 2015. http://dx.doi.org/10.1109/aeit.2015.7415282.
Full textReports on the topic "Magnetocrystalline"
Aberg, Daniel, Babak Sadigh, and Lorin X. Benedict. On the Site-Decomposition of Magnetocrystalline Anisotropy Energy Using Ome-Electron Eigenstates. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1239183.
Full textBarmak, K. On the Relationship of Magnetocrystalline Anisotropy and Stoichiometry in Epitaxial L1{sub 0} CoPt(001) and FePt(001) Thin Films. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/829753.
Full text