To see the other types of publications on this topic, follow the link: Magnetocrystalline.

Journal articles on the topic 'Magnetocrystalline'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetocrystalline.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, D. H., T. K. Kim, W. S. Park, and Y. B. Kim. "Magnetocrystalline anisotropy of Sm2Fe17N2.8." Journal of Magnetism and Magnetic Materials 163, no. 3 (November 1996): 373–77. http://dx.doi.org/10.1016/s0304-8853(96)00270-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Téllez-Blanco, J. C., X. C. Kou, and R. Groössinger. "Magnetocrystalline anistropy of Y3Fe27.4Ti1.6." Journal of Magnetism and Magnetic Materials 164, no. 1-2 (November 1996): L1—L6. http://dx.doi.org/10.1016/s0304-8853(96)00645-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Ying‐chang, Xiao‐dong Zhang, Lin‐shu Kong, Qi Pan, and Sen‐lin Ge. "Magnetocrystalline anisotropies of RTiFe11Nxcompounds." Applied Physics Letters 58, no. 18 (May 6, 1991): 2042–44. http://dx.doi.org/10.1063/1.105007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, M. J., Y. B. Kim, C. S. Kim, and T. K. Kim. "Magnetocrystalline anisotropy of Pr2Fel4B." Journal of Magnetism and Magnetic Materials 222, no. 1-2 (December 2000): 86–88. http://dx.doi.org/10.1016/s0304-8853(00)00553-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Řezníček, R., V. Chlan, H. Štěpánková, P. Novák, and M. Maryško. "Magnetocrystalline anisotropy of magnetite." Journal of Physics: Condensed Matter 24, no. 5 (January 6, 2012): 055501. http://dx.doi.org/10.1088/0953-8984/24/5/055501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

de Biasi, Ronaldo Sergio, and Daniele Gomes Carvalho. "Magnetocrystalline anisotropy of NiZnFe2O4." Ceramics International 40, no. 7 (August 2014): 10099–102. http://dx.doi.org/10.1016/j.ceramint.2014.03.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andreev, A. V., M. I. Bartashevich, and V. A. Vasilkovsky. "Magnetocrystalline anisotropy in Y6Fe23." Journal of the Less Common Metals 167, no. 1 (December 1990): 101–6. http://dx.doi.org/10.1016/0022-5088(90)90293-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kou, X. C., E. H. C. P. Sinnecker, and R. Grössinger. "Magnetocrystalline anisotropy of Er2Fe14B." Journal of Magnetism and Magnetic Materials 147, no. 3 (June 1995): L231—L234. http://dx.doi.org/10.1016/0304-8853(95)00116-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katter, M., J. Wecker, L. Schultz, and R. Grössinger. "Magnetocrystalline anisotropy of Sm2Fe17N2." Journal of Magnetism and Magnetic Materials 92, no. 1 (November 1990): L14—L18. http://dx.doi.org/10.1016/0304-8853(90)90670-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Felix, R. A. C., Luiz Brandão, M. A. da Cunha, C. H. P. Paiva, J. R. L. Amaro, Lucas S. Teles, Ricardo Luiz O. da Rosa, R. P. G. Júnior, Thiago A. Saldanha, and Victor Hugo G. Bezerra. "Evaluation of the Relationship between Crystallographic Texture and Magnetic Properties through the Magnetocrystalline Anisotropy Coefficient." Materials Science Forum 775-776 (January 2014): 427–30. http://dx.doi.org/10.4028/www.scientific.net/msf.775-776.427.

Full text
Abstract:
It is well known that iron has a magnetocrystalline anisotropy and, therefore, the crystallographic texture has great influence on its magnetic properties. In most applications of non-oriented grain electrical steels, it is desirable that the magnetic properties are isotropic. In this work, modern quantitative texture analysis methods are used to characterize the crystallographic textures of many types of non-oriented grain electrical steels and their relation with the magnetic properties. The magnetocrystalline anisotropy coefficient is the parameter of texture analysis that is directly related to the magnetic properties. This paper analyzes the correlation between the magnetic properties of electrical steels with 3 wt.% to 5 wt.% silicon and their magnetocrystalline anisotropy coefficients.
APA, Harvard, Vancouver, ISO, and other styles
11

Jekal, Soyoung. "Dependence of Atomic Thickness on Interfacial Conditions and Magnetocrystalline Anisotropy in SmCo5/Sm2Co17 Multilayer." Materials 12, no. 1 (December 24, 2018): 56. http://dx.doi.org/10.3390/ma12010056.

Full text
Abstract:
We have performed first-principles calculations to study the interfacial exchange coupling and magnetocrystalline anisotropy energy in a SmCo 5 /Sm 2 Co 17 multilayer model system. The phase of SmCo 5 and Sm 2 Co 17 stacking along (0001) direction are structurally well matched. The atomic structure, including the alignment and the separation between layers, were firstly optimized. Then the non-collinear magnetic structures were calculated to explore the exchange coupling across the interface and the variation of magnetocrystalline anisotropy energy. We found that the inter-phase exchange coupling strength, rotating behavior and magnetocrystalline anisotropy strongly depend on the atomic thickness of the SmCo 5 and Sm 2 Co 17 phase.
APA, Harvard, Vancouver, ISO, and other styles
12

Ukai, T., S. Uchida, K. Kouno, and K. Sekiya. "Magnetocrystalline Anisotropy Energy of Fe16N2." Journal of the Magnetics Society of Japan 29, no. 3 (2005): 256–60. http://dx.doi.org/10.3379/jmsjmag.29.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Hong-Shuo, R. C. Mohanty, A. Raman, C. G. Grenier, and R. E. Ferrell. "Magnetocrystalline anisotropy of Y2Fe17-xGax." Journal of Magnetism and Magnetic Materials 166, no. 3 (February 1997): 365–73. http://dx.doi.org/10.1016/s0304-8853(96)00541-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Majetich, S. A., J. H. Scott, E. M. Kirkpatrick, K. Chowdary, K. Gallagher, and M. E. McHenry. "Magnetic nanoparticles and magnetocrystalline anisotropy." Nanostructured Materials 9, no. 1-8 (January 1997): 291–300. http://dx.doi.org/10.1016/s0965-9773(97)90069-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Khan, Imran, Jicheol Son, and Jisang Hong. "Magnetocrystalline Anisotropy of α''-Fe16N2." Journal of the Korean Magnetics Society 26, no. 4 (August 31, 2016): 115–18. http://dx.doi.org/10.4283/jkms.2016.26.4.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Algarabel, P. A., L. Morellón, M. R. Ibarra, D. Schmitt, D. Gignoux, and A. Tari. "Magnetocrystalline anisotropy in some RENi5intermetallics." Journal of Applied Physics 73, no. 10 (May 15, 1993): 6054–56. http://dx.doi.org/10.1063/1.353467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cinal, M., D. M. Edwards, and J. Mathon. "Magnetocrystalline anisotropy in ferromagnetic films." Physical Review B 50, no. 6 (August 1, 1994): 3754–60. http://dx.doi.org/10.1103/physrevb.50.3754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cizmas, C. B., L. Bessais, C. Djega-Mariadassou, C. Meyer, and J. Voiron. "Magnetocrystalline anisotropy of YFe11−xCoxTiC." Journal of Magnetism and Magnetic Materials 316, no. 2 (September 2007): e116-e119. http://dx.doi.org/10.1016/j.jmmm.2007.02.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ahamed, Imran, Rohit Pathak, Ralph Skomski, and Arti Kashyap. "Magnetocrystalline anisotropy of ε-Fe2O3." AIP Advances 8, no. 5 (May 2018): 055815. http://dx.doi.org/10.1063/1.5007659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pareti, L., O. Moze, M. Solzi, and F. Bolzoni. "Magnetocrystalline anisotropy in Y1−xPrxCo5." Journal of Applied Physics 63, no. 1 (January 1988): 172–75. http://dx.doi.org/10.1063/1.340485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

de Biasi, Ronaldo Sergio, and Rayanne Dezio de Souza Lopes. "Magnetocrystalline anisotropy of NiCoFe2O4 nanoparticles." Ceramics International 42, no. 7 (May 2016): 9315–18. http://dx.doi.org/10.1016/j.ceramint.2016.02.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pareti, L., F. Bolzoni, M. Solzi, and K. H. J. Buschow. "Magnetocrystalline anisotropy in Nd2−xTbxFe14B." Journal of the Less Common Metals 132, no. 1 (April 1987): L5—L8. http://dx.doi.org/10.1016/0022-5088(87)90186-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Daalderop, G. H. O., P. J. Kelly, and M. F. H. Schuurmans. "Magnetocrystalline anisotropy of RECo5 compounds." Journal of Magnetism and Magnetic Materials 104-107 (February 1992): 737–38. http://dx.doi.org/10.1016/0304-8853(92)91009-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chatterjee, Banhi, and Jindřich Kolorenč. "Magnetism and magnetic anisotropy in UGa2." MRS Advances 5, no. 51 (2020): 2639–45. http://dx.doi.org/10.1557/adv.2020.314.

Full text
Abstract:
AbstractWe investigate whether first-principles calculations with an improved description of electronic correlations can explain the large magnetic moments and the strong magnetocrystalline anisotropy in the ferromagnetic compound UGa2. The correlations are treated within a static mean-field approximation DFT+U combining the density functional theory (DFT) with an onsite Hubbard interaction U. We find that DFT+U improves the agreement of the magnetic moments with the experiment compared to DFT but worsens the theoretical description of the magnetocrystalline anisotropy.
APA, Harvard, Vancouver, ISO, and other styles
25

TRYGG, JOAKIM, LARS NORDSTRÖM, and BÖRJE JOHANSSON. "FIRST-PRINCIPLES CALCULATION OF THE MAGNETOCRYSTALLINE ANISOTROPY ENERGY FOR THE PSEUDOBINARY COMPOUND Y(Co1−xFex)5." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 745–48. http://dx.doi.org/10.1142/s0217979293001578.

Full text
Abstract:
From the experimental behavior of the magnetocrystalline anisotropy energies of the pseudobinary compounds Y(Co1−xFex)5, it has been argued that the magnetocrystalline anisotropy energies for YCo5 and the hypothetical compound YFe5 will have different signs. This anomalous behavior is attributed to the change of the number of 3d electrons and their orbital moments when proceeding from YFe5 to YCo5. The magnetocrystalline anisotropy energies are calculated using the linear muffin-tin orbital (LMTO) method in the atomic sphere approximation (ASA) including spin-orbit interaction and orbital polarization. The force-theorem is used to express the total energy difference (between the two directions of magnetization) as a difference in the sum of the single particle eigenvalues. We find that it is possible to predict the correct easy-axis for YCo5 and YFe5. Secondly it is found that the inclusion of orbital polarization is essential for the cobalt compound but less important for the iron compound. The different contributions from the two inequivalent transition metal sites to the anisotropy energy and orbital magnetization are discussed.
APA, Harvard, Vancouver, ISO, and other styles
26

Cizmas, C. B., S. Sab, L. Bessais, and C. Djega-Mariadassou. "Magnetocrystalline anisotropy in PrFe11−Co TiC." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E395—E397. http://dx.doi.org/10.1016/j.jmmm.2004.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ivanova, T. I., N. Yu Pankratov, Yu G. Pastushenkov, and K. P. Skokov. "Magnetocrystalline Anisotropy of Tb1.1(FeCo)11Ti." Acta Physica Polonica A 97, no. 5 (May 2000): 847–50. http://dx.doi.org/10.12693/aphyspola.97.847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Daalderop, G. H. O., P. J. Kelly, and M. F. H. Schuurmans. "Magnetocrystalline anisotropy of YCo5and related RECo5compounds." Physical Review B 53, no. 21 (June 1, 1996): 14415–33. http://dx.doi.org/10.1103/physrevb.53.14415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ziese, Michael. "Magnetocrystalline anisotropy transition in La0.7Sr0.3MnO3 films." physica status solidi (b) 242, no. 13 (November 2005): R116—R117. http://dx.doi.org/10.1002/pssb.200541266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Ding-sheng, Ruqian Wu, and A. J. Freeman. "Magnetocrystalline anisotropy of Co-Pd interfaces." Physical Review B 48, no. 21 (December 1, 1993): 15886–92. http://dx.doi.org/10.1103/physrevb.48.15886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cinal, M., and D. M. Edwards. "Magnetocrystalline anisotropy in Co/Pd structures." Physical Review B 55, no. 6 (February 1, 1997): 3636–48. http://dx.doi.org/10.1103/physrevb.55.3636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Broddefalk, A., P. Granberg, P. Nordblad, Hui-ping Liu, and Y. Andersson. "Magnetocrystalline anisotropy of (Fe1−xCox)3P." Journal of Applied Physics 83, no. 11 (June 1998): 6980–82. http://dx.doi.org/10.1063/1.367851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kou, X. C., T. S. Zhao, R. Grössinger, H. R. Kirchmayr, X. Li, and F. R. de Boer. "Magnetocrystalline anisotropy ofR2Fe14BNx(R=Pr,Nd)." Physical Review B 46, no. 17 (November 1, 1992): 11204–7. http://dx.doi.org/10.1103/physrevb.46.11204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yamada, O., Y. Ohtsu, F. Ono, M. Sagawa, and S. Hirosawa. "Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound." Journal of Magnetism and Magnetic Materials 70, no. 1-3 (December 1987): 322–24. http://dx.doi.org/10.1016/0304-8853(87)90456-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lin, Chin, and Zun-Xiao Liu. "Magnetocrystalline anisotropy of (Pr1-xSmx)2Fe14B." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 887–88. http://dx.doi.org/10.1016/0304-8853(86)90299-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yamada, O., H. Tokuhara, F. Ono, M. Sagawa, and Y. Matsuura. "Magnetocrystalline anisotropy in Nd2Fe14B intermetallic compound." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 585–86. http://dx.doi.org/10.1016/0304-8853(86)90718-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Corner, W. D., D. M. Paige, R. D. Hawkins, D. Fort, and D. W. Jones. "Magnetocrystalline anisotropy of Gd/Tb alloys." Journal of Magnetism and Magnetic Materials 51, no. 1-3 (August 1985): 89–97. http://dx.doi.org/10.1016/0304-8853(85)90005-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Strange, P., J. B. Staunton, B. L. Györffy, and H. Ebert. "First principles theory of magnetocrystalline anisotropy." Physica B: Condensed Matter 172, no. 1-2 (June 1991): 51–59. http://dx.doi.org/10.1016/0921-4526(91)90416-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Radwański, R. J., R. Verhoef, and J. J. M. Franse. "Magnetocrystalline anisotropy of the Pr2Fe14B compound." Journal of Magnetism and Magnetic Materials 83, no. 1-3 (January 1990): 141–42. http://dx.doi.org/10.1016/0304-8853(90)90461-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Coehoorn, R., and G. H. O. Daalderop. "Magnetocrystalline anisotropy in new magnetic materials." Journal of Magnetism and Magnetic Materials 104-107 (February 1992): 1081–85. http://dx.doi.org/10.1016/0304-8853(92)90499-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Swekis, Peter, Anastasios Markou, Jörg Sichelschmidt, Claudia Felser, and Sebastian T. B. Goennenwein. "Magnetocrystalline anisotropies in MnxPtSn thin films." APL Materials 9, no. 5 (May 1, 2021): 051104. http://dx.doi.org/10.1063/5.0049891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhou, Jian, Qian Wang, Qiang Sun, Yoshiyuki Kawazoe, and Puru Jena. "Giant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet." Physical Chemistry Chemical Physics 17, no. 26 (2015): 17182–89. http://dx.doi.org/10.1039/c5cp01525a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Landa, Alexander, Per Söderlind, Emily E. Moore, and Aurelien Perron. "Thermodynamics and Magnetism of YCo5 Compound Doped with Fe and Ni: An Ab Initio Study." Applied Sciences 10, no. 17 (August 31, 2020): 6037. http://dx.doi.org/10.3390/app10176037.

Full text
Abstract:
YCo5 permanent magnet exhibits high uniaxial magnetocrystalline anisotropy energy and has a high Curie temperature. These are good properties for a permanent magnet, but YCo5 has a low energy product, which is notably insufficient for a permanent magnet. In order to improve the energy product in YCo5, we suggest replacing cobalt with iron, which has a much bigger magnetic moment. With a combination of density-functional-theory calculations and thermodynamic CALculation of PHAse Diagrams (CALPHAD) modeling, we show that a new magnet, YFe3(Ni1-xCox)2, is thermodynamically stable and exhibits an improved energy product without significant detrimental effects on the magnetocrystalline anisotropy energy or the Curie temperature.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhou, Shanhu, and Jun Hu. "Enhancing perpendicular magnetocrystalline anisotropy in Fe ultrathin films by non-noble transition-metal substrate." International Journal of Modern Physics C 31, no. 09 (August 27, 2020): 2050134. http://dx.doi.org/10.1142/s012918312050134x.

Full text
Abstract:
Based on first-principles calculations, we studied the magnetic properties of ultrathin Fe film on a nonmagnetic substrate Ta(001). We found that the perpendicular magnetocrystalline anisotropy (PMA) of Fe/Ta(001) system with only one or two Fe atomic layer(s) can be enhanced significantly, and the corresponding magnetocrystalline anisotropy energy is enlarged tos about 3 times of that in pure ultrathin Fe film. Analysis of electronic properties demonstrates that the magnetic proximity effect at the Fe/Ta interface plays an important role in the enhancement of the PMA. Alternative arrangement of Ta and Fe layers with more Fe/Ta interfaces may further strengthen the PMA.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhao, Xin, Liqin Ke, Cai-Zhuang Wang, and Kai-Ming Ho. "Metastable cobalt nitride structures with high magnetic anisotropy for rare-earth free magnets." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31680–90. http://dx.doi.org/10.1039/c6cp06024b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ma, An-Ning, Pei-Ji Wang, and Chang-Wen Zhang. "Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer." Nanoscale 12, no. 9 (2020): 5464–70. http://dx.doi.org/10.1039/c9nr10322h.

Full text
Abstract:
2D ferromagnetic (FM) materials with high temperature, large magnetocrystalline anisotropic energy (MAE), and controllable magnetization are highly desirable for novel nanoscale spintronic applications.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Hong Bo, Fu Gang Shen, and Tao Yang. "Magnetostriction and Hysteresis of Tbdyhofe1.95 Alloys." Advanced Materials Research 529 (June 2012): 590–93. http://dx.doi.org/10.4028/www.scientific.net/amr.529.590.

Full text
Abstract:
The crystal structure, Curie temperatures, spin reorientation temperature, magnetocrystalline anisotropy constant and magnetostriction of TbDyHoFe1.95 alloys with composition formulation (1-y)Tb0.36Dy0.64Fe1.95+yTb0.20Dy0.22Ho0.58Fe1.95 (0≤y≤1) were investigated. X-ray diffraction patterns demonstrate the TbDyHoFe1.95 alloys possess MgCu2-type cubic Laves structure. The Curie temperature Tc decreases slightly from 381 °C for Tb0.36Dy0.64Fe2 to 379 °C for y=0.3, 375°C for y=0.4 and 373°C for y=0.5. The spin reorientation temperature Tr increases from -94 oC for Tb0.36Dy0.64Fe2 to -70°C for y=0.3 and -51oC for y=0.5. The magnetocrystalline anisotropy constant K1 decreases with increasing y value. The magnetostriction was examined under applied magnetic field H (0
APA, Harvard, Vancouver, ISO, and other styles
48

Morais, P. C., L. B. Silveira, A. C. Oliveira, B. M. Lacava, A. C. Tedesco, and J. G. Santos. "Dynamic Susceptibility Investigation of Maghemite Nanoparticles Incorporated in Bovine Serum Albumin Template." Journal of Nanoscience and Nanotechnology 8, no. 5 (May 1, 2008): 2684–87. http://dx.doi.org/10.1166/jnn.2008.550.

Full text
Abstract:
Room-temperature measurements of the magnetic susceptibility of Bovine Serum Albumin-based nanocapsules (50 to 300 nm in size) loaded with different amounts of maghemite nanoparticles (7.6 nm average diameter) have been carried out in this study. The field (H) dependence of the imaginary peak susceptibility (fP) of the nanocomposite samples was investigated in the range of 0 to 4 kOe. From the analysis of the fP × H curves the concentration (N) dependence of the effective maghemite magnetocrystalline energy barrier (E) was obtained. Analysis of the E × N data was performed using a modified Mørup-Tronc [Phys. Rev. Lett. 72, 3278 (1994)] model, from which a huge contribution from the magnetocrystalline surface anisotropy was observed.
APA, Harvard, Vancouver, ISO, and other styles
49

L'vov, Victor A., and Volodymyr A. Chernenko. "Magnetic Anisotropy of Ferromagnetic Martensites." Materials Science Forum 684 (May 2011): 31–47. http://dx.doi.org/10.4028/www.scientific.net/msf.684.31.

Full text
Abstract:
The analytic survey of experimental and theoretical studies of the magnetic anisotropy of ferromagnetic shape memory alloys (FSMAs) is presented. The interdependence between the magnetic anisotropy of FSMAs, their lattice parameters, microstructure, and magnetostrain properties is considered. The temperature dependencies of the magnetocrystalline anisotropy energy density (MAED) and magnetically induced mechanical stress are described in the framework of magnetoelastic model based on Landau theory of phase transitions. The magnetic anisotropy of thin martensitic platelets/films and wires is considered. The effect of compensation of magnetocrystalline anisotropy by the magnetostatic one is studied. The reduction of MAED as a result of internal twinning of single crystal is discussed. The possibility of observation of reversible magnetic-fieldinduced strain in the twinned FSMAs with reduced MAED is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
50

Stavrou, Vasileios D., Drosos Kourounis, Konstantinos Dimakopoulos, Ioannis Panagiotopoulos, and Leonidas N. Gergidis. "Magnetic skyrmions in FePt nanoparticles having Reuleaux 3D geometry: a micromagnetic simulation study." Nanoscale 11, no. 42 (2019): 20102–14. http://dx.doi.org/10.1039/c9nr04829d.

Full text
Abstract:
The magnetization reversal in magnetic FePt nanoelements having Reuleaux 3D geometry is studied using Finite Element micromagnetic simulations. Multiple skyrmions are formed for a range of external fields and magnetocrystalline anisotropy values.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography