Academic literature on the topic 'Magnetoplasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetoplasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetoplasma"

1

SHUKLA, P. K. "Excitation of electrostatic ion-cyclotron-like modes by the electron density ripple in dusty magnetoplasmas." Journal of Plasma Physics 75, no. 4 (August 2009): 433–36. http://dx.doi.org/10.1017/s0022377809008071.

Full text
Abstract:
AbstractIt is shown that electrostatic ion-cyclotron (EIC)-like modes can be excited by the pre-existing electron density ripple across the external magnetic field in a dusty magnetoplasma. For this purpose, we use the ion continuity and momentum equations, together with the Boltzmann-distributed electrons, and derive the standard Mathieu equation. The latter admits unstable solutions, demonstrating that the EIC-like modes in dusty magnetoplasmas can be driven due to the free energy in the electron density ripple.
APA, Harvard, Vancouver, ISO, and other styles
2

MARKLUND, M., L. STENFLO, and P. K. SHUKLA. "Magnetosonic solitons in a dusty plasma slab." Journal of Plasma Physics 74, no. 5 (October 2008): 601–5. http://dx.doi.org/10.1017/s0022377807006964.

Full text
Abstract:
AbstractThe existence of magnetosonic solitons in dusty plasmas is investigated. The nonlinear magnetohydrodynamic equations for a warm dusty magnetoplasma are thus derived. A solution of the nonlinear equations is presented. It is shown that, owing to the presence of dust, static structures are allowed. This is in sharp contrast to the formation of the so-called shocklets in usual magnetoplasmas. A comparatively small number of dust particles can thus drastically alter the behavior of the nonlinear structures in magnetized plasmas.
APA, Harvard, Vancouver, ISO, and other styles
3

Rahman, Ata-ur, A. Qamar, S. Naseer, and S. N. Naeem. "Oblique ion acoustic excitations in an ultra-relativistic degenerate dense magnetoplasma." Canadian Journal of Physics 95, no. 7 (July 2017): 655–61. http://dx.doi.org/10.1139/cjp-2016-0592.

Full text
Abstract:
The linear and nonlinear propagation of ion acoustic waves is considered in a degenerate magnetoplasma, composed of relativistic degenerate electrons and an inertial ion fluid. A linear dispersion relation is derived in the linear approximation. The Sagdeev pseudopotential approach is used to investigate the properties of arbitrary amplitude, obliquely propagating ion acoustic solitary waves. The expression for the lower and upper Mach numbers for the existence of magnetized ion acoustic solitons has also been derived. The significant influence on the properties of soliton structures of relevant physical parameters, such as the plasma number density, the obliqueness (the angle between soliton propagation direction and magnetic field), and the soliton speed is also investigated. At the end, analytical results are supplemented through numerical analysis by using typical representative parameters consistent with degenerate and ultra-relativistic magnetoplasmas of astrophysical regimes.
APA, Harvard, Vancouver, ISO, and other styles
4

Rasheed, A., M. Jamil, Young-Dae Jung, A. Sahar, and M. Asif. "The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas." Zeitschrift für Naturforschung A 72, no. 10 (September 26, 2017): 915–21. http://dx.doi.org/10.1515/zna-2017-0164.

Full text
Abstract:
AbstractJeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.
APA, Harvard, Vancouver, ISO, and other styles
5

SHUKLA, P. K., and L. STENFLO. "Quantum Hall-MHD equations for a non-uniform dense magnetoplasma with electron temperature anisotropy." Journal of Plasma Physics 74, no. 5 (October 2008): 575–79. http://dx.doi.org/10.1017/s0022377808007290.

Full text
Abstract:
AbstractNonlinear quantum Hall-MHD equations for a warm dense magnetoplasma with an anisotropic electron pressure are derived. The nonlinear equations include the quantum force associated with electron tunneling effects. The newly found equations can be used to investigate the dense plasma stability, as well as different types of waves, instabilities, and nonlinear structures in a warm dense magnetoplasma.
APA, Harvard, Vancouver, ISO, and other styles
6

Lüttgen, Andrea A. E., and Keith G. Balmain. "Nonreciprocal magnetoplasma sheath waves." Radio Science 31, no. 6 (November 1996): 1599–613. http://dx.doi.org/10.1029/96rs02193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuzenov, Victor V., Sergei V. Ryzhkov, and Aleksey Yu Varaksin. "Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-Speed Gas and Plasma Flows (A Review)." Aerospace 10, no. 8 (July 25, 2023): 662. http://dx.doi.org/10.3390/aerospace10080662.

Full text
Abstract:
This paper provides an overview of modern research on magnetoplasma methods of influencing gas-dynamic and plasma flows. The main physical mechanisms that control the interaction of plasma discharges with gaseous moving media are indicated. The ways of organizing pulsed energy input, characteristic of plasma aerodynamics, are briefly described: linearly stabilized discharge, magnetoplasma compressor, capillary discharge, laser-microwave action, electron beam action, nanosecond surface barrier discharges, pulsed spark discharges, and nanosecond optical discharges. A description of the physical mechanism of heating the gas-plasma flow at high values of electric fields, which are realized in high-current and nanosecond (ultrafast heating) electric discharges, is performed. Methods for magnetoplasma control of the configuration and gas-dynamic characteristics of shock waves arising in front of promising and advanced aircraft (AA) are described. Approaches to the control of quasi-stationary separated flows, laminar–turbulent transitions, and static and dynamic separation of the boundary layer (for large PA angles of attack) are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

SUCHY, K., and C. ALTMAN. "Eigenmode scattering theorems for electromagnetic–acoustic fields in compressible magnetoplasmas with anisotropic pressure." Journal of Plasma Physics 58, no. 2 (August 1997): 247–57. http://dx.doi.org/10.1017/s0022377897005679.

Full text
Abstract:
The electromagnetic–acoustic field in a waveguide filled with a magnetoplasma (or in a stratified magnetoplasma), as well as the corresponding formally adjoint field, are decomposed into eigenmodes. The amplitudes of incoming and outgoing modes for both fields are related by scattering matrices. It is shown that the transposed scattering matrix of one field is the inverse scattering matrix of the other. The fictitious formally adjoint field is temporally mapped into a physical Lorentz-adjoint field, whose scattering matrix is shown to be the transpose of the scattering matrix of the original field.
APA, Harvard, Vancouver, ISO, and other styles
9

KHANH, NGUYEN QUOC. "MAGNETOPLASMA OSCILLATIONS OF A TWO-DIMENSIONAL, TWO-COMPONENT PLASMA." Modern Physics Letters B 10, no. 16 (July 10, 1996): 737–44. http://dx.doi.org/10.1142/s0217984996000821.

Full text
Abstract:
We investigate the magnetoplasma excitations in a system comprised of two parallel two-dimensional conducting layers separated by a distance 2d>0. The individual layers are assumed to have, in general, different effective masses, particle densities and charges. The dispersion equations are derived quantum mechanically within the random phase approximation and the spectrum of the long wavelength collective modes is calculated. We also investigate the mutual phase of two-dimensional magnetoplasma oscillations and show that this mutual phase is similar to that in the three-dimensional case and does not depend on the interlayer distance.
APA, Harvard, Vancouver, ISO, and other styles
10

ANDREEV, AL A., YA M. BLANTER, and YU E. LOZOVIK. "EXCITATION SPECTRUM OF QUANTUM DOT IN STRONG MAGNETIC FIELD." International Journal of Modern Physics B 09, no. 15 (July 10, 1995): 1843–67. http://dx.doi.org/10.1142/s0217979295000756.

Full text
Abstract:
Microscopic theory of collective excitations of a quantum dot in a strong magnetic field is proposed. A complete analysis of diagrams in the perturbation theory over the Coulomb interaction is performed. The spectrum of low-lying excitations is calculated for the case of a parabolic quantum dot. It is shown to consist of three terms: single-particle drift, magnetoplasma and exciton ones, with the exciton term dominating the magnetoplasma one. In the framework of the semi-classical approach, the case of a non-parabolic quantum dot is also discussed. The experimental manifestations of the effects under investigation are discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetoplasma"

1

Kilfoyle, Daniel B. (Daniel Brian). "Spectroscopic analysis of a magnetoplasma dynamic arcjet." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/34032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elmzughi, Farag Gema. "Theory of polaritons in semiconductor and magnetic materials." Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alshannaq, Shadi Sami. "Nonreciprocal Millimeter and Sub-Millimeter Wave Devices Based on Semiconductor Magnetoplasma." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313134612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PAUNA, OLIVIER. "Etude la physico-chimie d'un magnetoplasma de chlore pour la gravure sous-micrometrique." Toulouse 3, 2000. http://www.theses.fr/2000TOU30042.

Full text
Abstract:
L'objectif de cette these est de mieux comprendre les phenomenes physiques et chimiques se produisant dans un plasma de haute densite concu pour la gravure sous-micrometrique de couches minces. Le plasma est produit dans le chlore par une onde electromagnetique de surface et peut etre confine par un champ magnetique statique uniforme. La flexibilite du reacteur en termes de conditions operatoires rend possible une etude parametrique de l'influence du confinement magnetique sur les caracteristiques du plasma. Pour cela, nous avons examine les proprietes du plasma au moyen de plusieurs methodes de diagnostics comme les sondes electrostatiques, le photodetachement des ions negatifs par laser, la propagation d'ondes acoustiques ioniques et la spectroscopie d'emission optique. Dans un premier temps, nous nous sommes interesses a l'influence des conditions operatoires sur les proprietes spatiales du plasma, en ce qui a trait aux caracteristiques electriques (electrons, ions positifs et negatifs) et chimiques (neutres reactifs). Dans un deuxieme temps, nous avons examine l'impact du rapport d'aspect du reacteur (i. E. Rapport de la longueur du reacteur sur son rayon) tant sur les caracteristiques electriques que chimiques du plasma. Parallelement a ces etudes experimentales, nous avons developpe un modele fluide bidimensionnel, resolvant de maniere auto coherente les deux premiers moments de l'equation de boltzmann et l'equation de poisson. En utilisant une approche semi-implicite, nous avons pu conserver un temps de calcul assez faible et ainsi utiliser ce modele pour l'etude d'un plasma de diffusion dans un gaz electropositif. Nous avons ainsi pu estimer la valeur du coefficient de diffusion perpendiculaire dans le cas d'un gaz electropositif soumis a un champ magnetique axial uniforme. Les resultats obtenus sont qualitativement en bon accord avec le coefficient de diffusion propose par liebermann et lichtenberg.
APA, Harvard, Vancouver, ISO, and other styles
5

Heiermann, Jörg. "Ein Finite-Volumen-Verfahren zur Lösung magnetoplasmadynamischer Erhaltungsgleichungen." [S.l. : s.n.], 2002. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10361093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jolly, Mohanjit Singh. "A voltage drop study in a megawatt level quasi-steady magnetoplasma dynamic thruster via probe diagnostics." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/46420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Horner, Brigitte. "Anode fall as relevant to plasma thrusters." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA333439.

Full text
Abstract:
Thesis (Degree of Aeronautical & Astronautical Engineer and M.S. in Astronautical Engineering) Naval Postgraduate School, June 1997.
Thesis advisors, Oscar Biblarz, Christopher L. Frenzen. Includes bibliographical references (p. 103-107). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
8

MAROUAN, YOUSSEF. "Etat de polarisation et caracteristiques de propagation moyennes d'emissions em naturelles dans un magnetoplasma froid : application aux donnees ebf du satellite aureol-3." Orléans, 1988. http://www.theses.fr/1988ORLE2040.

Full text
Abstract:
Observation supposee effectuee en un point fixe de l'espace. Cette observation consiste en la mesure simultanee d'au moins trois composantes du champ electromagnetique. Discussion des estimateurs du degre de polarisation proposes par samson. Simulation numerique. Identification experimentale des modes d'une onde multiple en propagation dans ce magnetoplasma (ou deux modes peuvent coexister), obtenue a partir des caracteristiques de polarisation des ondes. Application aux emissions tres basse frequence observees par satellite aureol-3
APA, Harvard, Vancouver, ISO, and other styles
9

Rizzato, Felipe Barbedo. "Equação quase-linear para oscilações em magnetoplasmas na aproximação fracamente relativística." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1985. http://hdl.handle.net/10183/149844.

Full text
Abstract:
O presente trabalho encontra-se dividido nas seguintes etapas: primeiramente são expostas algumas limitações presentes nas equações dinâmicas dos plasmas não-colisionais. A seguir obtem-se, de maneira heurística, algumas correções elementares às teorias lineares, correções estas que conduzem diretamente as assim chamadas quase-lienares em suas formas não relavística e relavística. Examina-se então o efeito da variação relativística da girofrequência sobre o coeficiente de difusão, numa aproximação tipicamente perturbativa.
The present work is divided in the following parts: firstly some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Then we obtain, in a heuristic form, some elementary corrections to the linear theories, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation.
APA, Harvard, Vancouver, ISO, and other styles
10

FARIAS, Rubem Gonçalves. "Método das Diferenças Finitas no Domínio do Tempo (FDTD) aplicado a guias dielétricos controlados por plasma." Universidade Estadual de Campinas, 1996. http://repositorio.unicamp.br/handle/REPOSIP/260375.

Full text
Abstract:
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2018-03-21T17:23:02Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MetodoDiferencasFinitas.pdf: 3779369 bytes, checksum: 428516d3d9e3d5e445fa15ec4b27cb81 (MD5)
Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2018-03-22T18:23:25Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MetodoDiferencasFinitas.pdf: 3779369 bytes, checksum: 428516d3d9e3d5e445fa15ec4b27cb81 (MD5)
Made available in DSpace on 2018-03-22T18:23:25Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_MetodoDiferencasFinitas.pdf: 3779369 bytes, checksum: 428516d3d9e3d5e445fa15ec4b27cb81 (MD5) Previous issue date: 1996-02-09
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A formulação para diferenças finitas no domínio do tempo (FDTD), aplicada a plasma magnetizado segundo direção arbitrária, é desenvolvida para aplicação em dispositivos dielétricos em duas (2D-FDTD) e três dimensões (3D-FDTD). A ênfase é dada no processo de cálculo iterativo da convolução entre o campo elétrico e o tensor susceptibilidade elétrica do plasma magnetizado. Também, são propostos diversos tipos de dispositivos para propagação de sinais na banda milimétrica. O método é aplicado a estruturas controladas por plasma. Este plasma pode ser induzido por um feixe áptico sobre uma película semicondutora, depositada sobre o guia. Neste caso, as características de propagação do guia são controladas por um feixe áptico com energia apropriada. Esse plasma também pode ser estabelecido em semicondutor por dopagem. Neste tipo de dispositivo, o núcleo do guia é totalmente preenchido com plasma. Nesta opção, a propagação dos campos de RF é controlada por um campo magnetostático. Alguns dispositivos com guias singelos e acoplados são analisados. Observa-se então a possibilidade de controle efetivo de fase e acoplamento, assim como o controle na faixa de operação de modo único, notadamente nos guias opticamente controlados. Devido à carência de dados na literatura especializada, são estabelecidos critérios para discretização graduada e rigorismo nos testes de convergências propostos. Diversos tipos de dados são utilizados para essa finalidade. Obtém-se, então, uma espécie de perfil de discretização, o qual é aplicado aos demais dispositivos.
A finite-difference in the time domain (FDTD) formulation is developed for plasmas magnetized along an arbitrary direction and applicable to two dimensions (2D-FDTD) and to three dimensions (3D-FDTD) dielectric devices. Emphasis is given to the iterative calculation of the convolution between the electric field vector and the electric susceptibility tensor of the magnetized plasma. Various types of devices are also proposed for the propagation of signals in the millimeter-wave band. The method is applied to structures controlled by plasma. This plasma may be induced by an optical beam applied to a semiconductor layer deposited on the waveguide. In this case, the propagation characteristic of the waveguide is controlled by an optical beam with appropiate energy. This plasma may also also be introduced in the semiconductor by means of doping. For these devices the waveguide core is completely filled with plasma. With this option the propagation of the RF fields is controlled by a static magnetic field. Some devices with single and coupled waveguides are analyzed. The possibility of an effective control of phase and coupling, as well as the operating bandwidth with a single mode was examined, particularly with optically controlled waveguides. Due to the lack of data in the specialized literature, gradual discretization criteria and rigorous tests of convergence are proposed. Various types of data are used to accomplish this objective. As a result, a kind of discretization profile is obtained and is applied to the remaining devices.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Magnetoplasma"

1

Woods, L. C. Principles of Magnetoplasma dynamics. Oxford [England]: Clarendon Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Principles of magnetoplasma dynamics. Oxford: Clarendon, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baker, Darren Arnold. Transverse sheath wave propagation in a magnetoplasma. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Electromagnetics of complex media: Frequency shifting by a transient magnetoplasma medium. Boca Raton: CRC Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dubs, Charles W. An analytic theory for trajectories and current to a cylinder in a flowing magnetoplasma. Hanscom AFB, MA: Space Physics Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Woods, L. C. Thermodynamic inequalities in gases and magnetoplasmas. Chichester: J. Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Woods, L. C. An introduction to the kinetic theory of gases and magnetoplasmas. Oxford, England: Oxford University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laurin, Jean-Jacques. Study of sheath wave propogation in a magnetoplasma. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kalluri, Dikshitulu K. Electromagnetics of Complex Media Frequency Shifting by a Transient Magnetoplasma Medium. CRC, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Zhequn. The impedance of a parallel-plate RF probe in a warm, sheathed magnetoplasma. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetoplasma"

1

Altman, C., and K. Suchy. "Wave propagation in a cold magnetoplasma." In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 1–45. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1530-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Walker, A. D. M. "Waves in a Uniform Warm Magnetoplasma." In Plasma Waves in the Magnetosphere, 83–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77867-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Altman, C., and K. Suchy. "Wave propagation in a cold magnetoplasma." In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 6–52. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7915-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alsmeier, J. "Magnetoplasma Effects in Tunable Mesoscopic Systems on Si." In Springer Series in Solid-State Sciences, 614–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rawer, Karl. "Propagation of radio waves in a cold magnetoplasma." In Wave Propagation in the Ionosphere, 53–66. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-3665-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kukushkin, Alexander. "Fluctuations of Polarized Radiation in a Random Magnetoplasma." In Very High Angular Resolution Imaging, 361–63. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0880-5_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaur, Rajneet, Geetika Slathia, Kuldeep Singh, and Nareshpal Singh Saini. "Electron-Acoustic Solitons in a Multicomponent Superthermal Magnetoplasma." In Nonlinear Dynamics and Applications, 215–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99792-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kallin, C. "Magnetoplasma Modes of the Two Dimensional Electron Gas." In Interfaces, Quantum Wells, and Superlattices, 163–73. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1045-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ishikawa, K., K. Hattori, and M. Hayakawa. "Ray Focussing of Whistler-Mode Waves in a Magnetoplasma." In Environmental and Space Electromagnetics, 222–26. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Katayama, S. "Nonlocal Coupling of Magnetoplasma Modes in Lateral Quantum-Wire Superlattices." In Springer Series in Solid-State Sciences, 175–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84818-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetoplasma"

1

Hickernell, R. K., and Dror Sarid. "Surface magnetoplasmon polaritons in transversely magnetized metal films." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mgg4.

Full text
Abstract:
Surface magnetoplasmon polaritons at the interface between a dielectric and a semiinfinite magnetic metal demonstrate a splitting of the dispersion curve dependent on the propagation direction.1 A thin nonmagnetic metal film bounded symmetrically by a semiconductor supports symmetric and antisymmetric surface magnetoplasmon modes which show a decrease in propagation distance with the application of a transverse magnetic field.2 We consider a thin magnetic metal film bounded symmetrically or near-symmetrically by dielectric media. Dispersion relations for the freely propagating symmetric and antisymmetric modes have been derived for a transverse applied magnetic field. The shift of each mode’s propagation constant due to the applied field depends on the thickness of the metal film. A zero shift is calculated for a certain film thickness, as determined by the metal properties. We also analyze theoretically the excitation of these coupled-surface magnetoplasma waves in an attenuated total reflection (ATR) geometry and compare the results to the Otto and Kretschmann ATR geometries for exciting single-surface magnetoplasma waves.
APA, Harvard, Vancouver, ISO, and other styles
2

Ueno, Kazuma, Ikkoh Funaki, Toshiyuki Kimura, Tomohiro Ayabe, Hiroshi Yamakawa, and Hideyuki Horisawa. "Laboratory Simulation of Magnetoplasma Sail." In 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-4820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Funaki, Ikkoh, Yoshihiro Kajimura, Yasumasa Ashida, Hiroshi Yamakawa, Hiroyuki Nishida, Yuya Oshio, Kazuma Ueno, Iku Shinohara, Haruhito Yamamura, and Yoshiki Yamagiwa. "Magnetoplasma Sail with Equatorial Ring-current." In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Funaki, Ikkoh, Kazuma Ueno, Yuya Oshio, Tomohiro Ayabe, Hideyuki Horisawa, and Hiroshi Yamakawa. "Laboratory Facility for Simulating Magnetoplasma Sail." In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Batrak, N. V., and N. G. Kopaleishvili. "Modeling of plasma dynamics parameters of magnetoplasma compressor." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s6-o-005202.

Full text
Abstract:
The prospect of magnetoplasma compressor (MPC) due to their technical and geometrical characteristics are discussed, the formulation of ways to improve their parameters is obtained. Thermal modeling of radiation-magneto plasma dynamic processes of powerful electric discharge sources is presented. The developed mathematical model is based on a nonstationary axisymmetric two dimensional system of equations for viscous one-temperature radiation plasma dynamics. This paper presents results of the numerical calculation.
APA, Harvard, Vancouver, ISO, and other styles
6

Kalluri, D. K., and S. R. V. Madala. "Wiggler fields in a switched magnetoplasma medium." In IEEE Conference Record - Abstracts. 1991 IEEE International Conference on Plasma Science. IEEE, 1991. http://dx.doi.org/10.1109/plasma.1991.695474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heyman, James N., H. Wrage, C. Lind, D. Hebert, P. Neocleous, P. A. Crowell, T. Mueller, and Karl Unterrainer. "Terahertz emission from magnetoplasma oscillations in semiconductors." In Symposium on Integrated Optoelectronic Devices, edited by Kong-Thon F. Tsen, Jin-Joo Song, and Hongxing Jiang. SPIE, 2002. http://dx.doi.org/10.1117/12.470418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Funaki, Ikkoh, Ryusuke Asahi, Kazuhisa Fujita, Hiroshi Yamakawa, Hiroyuki Ogawa, Hirotaka Otsu, Satoshi Nonaka, Shujiro Sawai, and Hitoshi Kuninaka. "Thrust Production Mechanism of a Magnetoplasma Sail." In 34th AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ashkinadze, B. A., Elisha Cohen, and Arza Ron. "Dimensional magnetoplasma resonance in GaAs/AlGaAs heterostructures." In SPIE Proceedings, edited by Zhores I. Alferov and Leo Esaki. SPIE, 2002. http://dx.doi.org/10.1117/12.514497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Xueqin, and Bodo W. Reinisch. "Refractive index of spherical waves in magnetoplasma." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051109.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetoplasma"

1

Mandell, M. J., M. Rotenberg, and Ira Katz. Current Collection by a High-Voltage Sphere from a Cold Magnetoplasma. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada237672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nishikawa, K. I., G. Ganguli, Y. C. Lee, and P. J. Palmadesso. Simulation of Electrostatic Modes in a Magnetoplasma with Transverse Inhomogeneous Electric Field. Fort Belvoir, VA: Defense Technical Information Center, May 1988. http://dx.doi.org/10.21236/ada198823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cox, Jr, and Larry T. Synchrotron Radiation Considerations in the Dense Plasma Focus (DPF) magnetoplasma-Dynamic (MPD) Thruster. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada254188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, Francis S. Dielectric Properties of Magnetoplasmas. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada293571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Min Chang. Microwave Propagation and Attenuation in Magnetoplasmas. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada250197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Min-Chang. Electromagnetic Wave Propagation and Attenuation in Magnetoplasmas. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada305488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography