Journal articles on the topic 'Magnetorheological effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Magnetorheological effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lokander, M., and B. Stenberg. "Improving the magnetorheological effect in isotropic magnetorheological rubber materials." Polymer Testing 22, no. 6 (2003): 677–80. http://dx.doi.org/10.1016/s0142-9418(02)00175-7.
Full textDong, X., N. Ma, J. Ou, and M. Qi. "Predicating magnetorheological effect of magnetorheological elastomers under normal pressure." Journal of Physics: Conference Series 412 (February 15, 2013): 012035. http://dx.doi.org/10.1088/1742-6596/412/1/012035.
Full textMcKee, Michael, Faramarz Gordaninejad, and Xiaojie Wang. "Effects of temperature on performance of compressible magnetorheological fluid suspension systems." Journal of Intelligent Material Systems and Structures 29, no. 1 (2017): 41–51. http://dx.doi.org/10.1177/1045389x17705203.
Full textYarra, Siddaiah, Faramarz Gordaninejad, Majid Behrooz, and Gokhan Pekcan. "Performance of natural rubber and silicone-based magnetorheological elastomers under large-strain combined axial and shear loading." Journal of Intelligent Material Systems and Structures 30, no. 2 (2018): 228–42. http://dx.doi.org/10.1177/1045389x18808393.
Full textSong, Xincheng, Wenju Wang, Fufeng Yang, Guoping Wang, and Xiaoting Rui. "The study of enhancement of magnetorheological effect based on natural rubber/thermoplastic elastomer SEBS hybrid matrix." Journal of Intelligent Material Systems and Structures 31, no. 3 (2019): 339–48. http://dx.doi.org/10.1177/1045389x19888790.
Full textYarra, Siddaiah, Faramarz Gordaninejad, Majid Behrooz, Gokhan Pekcan, Ahmad M. Itani, and Nelson Publicover. "Performance of a large-scale magnetorheological elastomer–based vibration isolator for highway bridges." Journal of Intelligent Material Systems and Structures 29, no. 20 (2018): 3890–901. http://dx.doi.org/10.1177/1045389x18799493.
Full textPeng, Yongbo, Jinggui Yang, and Jie Li. "Parameter identification of modified Bouc–Wen model and analysis of size effect of magnetorheological dampers." Journal of Intelligent Material Systems and Structures 29, no. 7 (2017): 1464–80. http://dx.doi.org/10.1177/1045389x17740963.
Full textBastola, AK, M. Paudel, and L. Li. "Line-patterned hybrid magnetorheological elastomer developed by 3D printing." Journal of Intelligent Material Systems and Structures 31, no. 3 (2019): 377–88. http://dx.doi.org/10.1177/1045389x19891557.
Full textPAN, Jisheng. "Cluster Magnetorheological Effect Plane PolishingTechnology." Journal of Mechanical Engineering 50, no. 1 (2014): 205. http://dx.doi.org/10.3901/jme.2014.01.205.
Full textGuan, Xinchun, Xufeng Dong, and Jinping Ou. "Magnetostrictive effect of magnetorheological elastomer." Journal of Magnetism and Magnetic Materials 320, no. 3-4 (2008): 158–63. http://dx.doi.org/10.1016/j.jmmm.2007.05.043.
Full textKolekar, Shreedhar, R. V. Kurahatti, Vikram G. Kamble, Amol B. Kharage, and Seung-Bok Choi. "Frictional Effect on Magnetorheological Fluid." Advanced Science, Engineering and Medicine 11, no. 5 (2019): 367–74. http://dx.doi.org/10.1166/asem.2019.2361.
Full textFereidooni, Amin, Afonso Martins, Viresh Wickramasinghe, and Afzal Suleman. "Fabrication and characterization of highly controllable magnetorheological material in compression mode." Journal of Intelligent Material Systems and Structures 31, no. 14 (2020): 1641–61. http://dx.doi.org/10.1177/1045389x20930081.
Full textLucking Bigué, Jean-Philippe, François Charron, and Jean-Sébastien Plante. "Squeeze-strengthening of magnetorheological fluids (part 1): Effect of geometry and fluid composition." Journal of Intelligent Material Systems and Structures 29, no. 1 (2017): 62–71. http://dx.doi.org/10.1177/1045389x17705214.
Full textDamiani, Robbie, and LZ Sun. "Microstructural characterization and effective viscoelastic behavior of magnetorheological elastomers with varying acetone contents." International Journal of Damage Mechanics 26, no. 1 (2016): 104–18. http://dx.doi.org/10.1177/1056789516657676.
Full textWinger, J., M. Schümann, A. Kupka, and S. Odenbach. "Influence of the particle size on the magnetorheological effect of magnetorheological elastomers." Journal of Magnetism and Magnetic Materials 481 (July 2019): 176–82. http://dx.doi.org/10.1016/j.jmmm.2019.03.027.
Full textLi, W. H., and X. Z. Zhang. "A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers." Smart Materials and Structures 19, no. 3 (2010): 035002. http://dx.doi.org/10.1088/0964-1726/19/3/035002.
Full textCao, Yongan, Huanglei Lu, Wenju Wang, et al. "The dynamic mechanical properties of magnetorheological elastomer: Catalytic effect of carbonyl iron powder." Journal of Intelligent Material Systems and Structures 31, no. 13 (2020): 1567–77. http://dx.doi.org/10.1177/1045389x20930090.
Full textSun, Shu Lei, Xiong Qi Peng, and Zao Yang Guo. "Nonlinear Magnetostrictive Effect of Magnetorheological Elastomers." Advanced Materials Research 833 (November 2013): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amr.833.291.
Full textNAGASHIMA, Kazushi, and Tetsu MITSUMATA. "Magnetorheological Effect for Bimodal Magnetic Elastomers." NIPPON GOMU KYOKAISHI 90, no. 1 (2017): 3–8. http://dx.doi.org/10.2324/gomu.90.3.
Full textShan, Lei, Kaikai Chen, Ming Zhou, Xiangjun Zhang, Yonggang Meng, and Yu Tian. "Shear history effect of magnetorheological fluids." Smart Materials and Structures 24, no. 10 (2015): 105030. http://dx.doi.org/10.1088/0964-1726/24/10/105030.
Full textNagashima, K., and T. Mitsumata. "Magnetorheological Effect for Bimodal Magnetic Elastomers." International Polymer Science and Technology 44, no. 6 (2017): 45–50. http://dx.doi.org/10.1177/0307174x1704400607.
Full textLevin, M. L., D. É. Polesskii, and I. V. Prokhorov. "Some features of the magnetorheological effect." Journal of Engineering Physics and Thermophysics 70, no. 5 (1997): 769–72. http://dx.doi.org/10.1007/bf02657636.
Full textAshtiani, Mahshid, and Seyed Hassan Hashemabadi. "The effect of nano-silica and nano-magnetite on the magnetorheological fluid stabilization and magnetorheological effect." Journal of Intelligent Material Systems and Structures 26, no. 14 (2015): 1887–92. http://dx.doi.org/10.1177/1045389x15580659.
Full textIsaev, Danil, Anna Semisalova, Yulia Alekhina, Liudmila Makarova, and Nikolai Perov. "Simulation of Magnetodielectric Effect in Magnetorheological Elastomers." International Journal of Molecular Sciences 20, no. 6 (2019): 1457. http://dx.doi.org/10.3390/ijms20061457.
Full textVemuluri, Ramesh Babu, Vasudevan Rajamohan, and Ananda Babu Arumugam. "Dynamic characterization of tapered laminated composite sandwich plates partially treated with magnetorheological elastomer." Journal of Sandwich Structures & Materials 20, no. 3 (2016): 308–50. http://dx.doi.org/10.1177/1099636216652573.
Full textJiang, Wan-quan, Jing-jing Yao, Xing-long Gong, and Lin Chen. "Enhancement in Magnetorheological Effect of Magnetorheological Elastomers by Surface Modification of Iron Particles." Chinese Journal of Chemical Physics 21, no. 1 (2008): 87–92. http://dx.doi.org/10.1088/1674-0068/21/01/87-92.
Full textKORDONSKI, W. I., and S. D. JACOBS. "MAGNETORHEOLOGICAL FINISHING." International Journal of Modern Physics B 10, no. 23n24 (1996): 2837–48. http://dx.doi.org/10.1142/s0217979296001288.
Full textZolfagharian, Mohammad Mehdi, Mohammad Hassan Kayhani, Mahmood Norouzi, and Amir Jalali. "Parametric investigation of twin tube magnetorheological dampers using a new unsteady theoretical analysis." Journal of Intelligent Material Systems and Structures 30, no. 6 (2019): 878–95. http://dx.doi.org/10.1177/1045389x19828494.
Full textAggumus, Huseyin, and Saban Cetin. "Experimental investigation of semiactive robust control for structures with magnetorheological dampers." Journal of Low Frequency Noise, Vibration and Active Control 37, no. 2 (2018): 216–34. http://dx.doi.org/10.1177/0263092317711985.
Full textYang, Xue, Chang Geng Shuai, and Shen Lin Yang. "Magnetorheological Effect of NDI Polyurethane-Based MR Elastomers." Advanced Materials Research 750-752 (August 2013): 832–35. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.832.
Full textWang, Jun, Liang Ma, Junhong Zhang, Xin Lu, and YangYang Yu. "Mitigation of nonlinear rub-impact of a rotor system with magnetorheological damper." Journal of Intelligent Material Systems and Structures 31, no. 3 (2019): 321–38. http://dx.doi.org/10.1177/1045389x19888729.
Full textZhu, Zhi Wei, Guang Xue Chen, Qi Feng Chen, and Bao Lin Tang. "Application of Water-Based Magnetorheological Fluid in the Production of Stereoscopic Printing Grating." Applied Mechanics and Materials 262 (December 2012): 435–39. http://dx.doi.org/10.4028/www.scientific.net/amm.262.435.
Full textAhmad Khairi, Muntaz Hana, Saiful Amri Mazlan, Ubaidillah, et al. "The field-dependent complex modulus of magnetorheological elastomers consisting of sucrose acetate isobutyrate ester." Journal of Intelligent Material Systems and Structures 28, no. 14 (2017): 1993–2004. http://dx.doi.org/10.1177/1045389x16682844.
Full textLópez-López, Modesto T., Pavel Kuzhir, Georges Bossis, and Pavel Mingalyov. "Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties." Rheologica Acta 47, no. 7 (2008): 787–96. http://dx.doi.org/10.1007/s00397-008-0271-6.
Full textZhu, Shi Sha, Li Juan Qu, and You Hang Zhou. "Experimental Study of Magnetorheological Elastomer Vibration Isolator." Advanced Materials Research 335-336 (September 2011): 1334–39. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.1334.
Full textZhang, Wei, Xing-long Gong, Tao-lin Sun, Yan-ceng Fan, and Wan-quan Jiang. "Effect of Cyclic Deformation on Magnetorheological Elastomers." Chinese Journal of Chemical Physics 23, no. 2 (2010): 226–30. http://dx.doi.org/10.1088/1674-0068/23/02/226-230.
Full textKordonsky, William. "Elements and Devices Based on Magnetorheological Effect*." Journal of Intelligent Material Systems and Structures 4, no. 1 (1993): 65–69. http://dx.doi.org/10.1177/1045389x9300400108.
Full textFonseca, H. A., E. Gonzalez, J. Restrepo, C. A. Parra, and C. Ortiz. "Magnetic effect in viscosity of magnetorheological fluids." Journal of Physics: Conference Series 687 (February 2016): 012102. http://dx.doi.org/10.1088/1742-6596/687/1/012102.
Full textWei, J. H., C. J. Leng, X. Z. Zhang, W. H. Li, Z. Y. Liu, and J. Shi. "Synthesis and magnetorheological effect of Fe3O4-TiO2nanocomposite." Journal of Physics: Conference Series 149 (February 1, 2009): 012083. http://dx.doi.org/10.1088/1742-6596/149/1/012083.
Full textMitsumata, Tetsu, Takafumi Yamamoto, Emiko Suzuki, and Jun-ichi Takimoto. "Giant Magnetorheological Effect of Agar Magnetic Gels." Transactions of the Materials Research Society of Japan 32, no. 3 (2007): 811–14. http://dx.doi.org/10.14723/tmrsj.32.811.
Full textOuchi, Shunsuke, and Tetsu Mitsumata. "Magnetorheological Effect of Magnetic Gels Containing Fe2O3." Transactions of the Materials Research Society of Japan 34, no. 3 (2009): 459–60. http://dx.doi.org/10.14723/tmrsj.34.459.
Full textSoria-Hernández, Cintya, Luis Palacios-Pineda, Alex Elías-Zúñiga, Imperio Perales-Martínez, and Oscar Martínez-Romero. "Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of Isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model." Polymers 11, no. 10 (2019): 1705. http://dx.doi.org/10.3390/polym11101705.
Full textWu, Jingzhe, and Brian M. Phillips. "Mitigation of liquefaction-induced deformation with magnetorheological mechanism of micron-sized magnetite particles for saturated sand." Journal of Intelligent Material Systems and Structures 30, no. 7 (2019): 1115–30. http://dx.doi.org/10.1177/1045389x19829831.
Full textZschunke, F., R. Rivas, and P. O. Brunn. "Temperature Behavior of Magnetorheological Fluids." Applied Rheology 15, no. 2 (2005): 116–21. http://dx.doi.org/10.1515/arh-2005-0007.
Full textFu, Benyuan, Changrong Liao, Zhuqiang Li, Lei Xie, Xiaochun Jian, and Chunzhi Liu. "Effective design strategy for a high-viscosity magnetorheological fluid–based energy absorber with multi-stage radial flow mode." Journal of Intelligent Material Systems and Structures 30, no. 1 (2018): 127–39. http://dx.doi.org/10.1177/1045389x18803460.
Full textSong, Wan-Li, Dong-Heng Li, Yan Tao, Na Wang, and Shi-Chao Xiu. "Simulation and experimentation of a magnetorheological brake with adjustable gap." Journal of Intelligent Material Systems and Structures 28, no. 12 (2016): 1614–26. http://dx.doi.org/10.1177/1045389x16679022.
Full textMeng, Fanxu, Jin Zhou, Chaowu Jin, and Wentao Ji. "Modeling and experimental verification of a squeeze mode magnetorheological damper using a novel hysteresis model." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 15 (2019): 5253–63. http://dx.doi.org/10.1177/0954406219842906.
Full textBRAMANTYA, Muhammad Agung, Hiroki TAKUMA, and Tatsuo SAWADA. "S0502-1-3 Study on the Effect of the Volume Fraction in Magnetorheological Fluid." Proceedings of the JSME annual meeting 2009.2 (2009): 103–4. http://dx.doi.org/10.1299/jsmemecjo.2009.2.0_103.
Full textXu, Zhao-Dong, Si Suo, Jun-Tao Zhu, and Ying-Qing Guo. "Performance tests and modeling on high damping magnetorheological elastomers based on bromobutyl rubber." Journal of Intelligent Material Systems and Structures 29, no. 6 (2017): 1025–37. http://dx.doi.org/10.1177/1045389x17730909.
Full textYang, Yang, Zhao-Dong Xu, Ying-Qing Guo, Yan-Wei Xu, and Jie Zhang. "Internal magnetic field tests and magnetic field coupling model of a three-coil magnetorheological damper." Journal of Intelligent Material Systems and Structures 31, no. 19 (2020): 2179–95. http://dx.doi.org/10.1177/1045389x20943948.
Full text