Academic literature on the topic 'Magnetorheological finishing process'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetorheological finishing process.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetorheological finishing process"

1

KORDONSKI, W. I., and S. D. JACOBS. "MAGNETORHEOLOGICAL FINISHING." International Journal of Modern Physics B 10, no. 23n24 (1996): 2837–48. http://dx.doi.org/10.1142/s0217979296001288.

Full text
Abstract:
The technology of finishing for optics, ceramics, and semiconductors is one of the most promising uses of the magnetorheological effect. It perfectly coupled with computer control, allowing in quantity production the unique accuracy and quality of a polished surface to be achieved. The polishing process may appear as follows. A part rotating on the spindle is brought into contact with an magnetorheological polishing (MRP) fluid which is set in motion by the moving wall. In the region where the part and the MRP fluid are brought into contact, the applied magnetic field creates the conditions ne
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Anant Kumar, Sunil Jha, and Pulak M. Pandey. "Magnetorheological Ball End Finishing Process." Materials and Manufacturing Processes 27, no. 4 (2012): 389–94. http://dx.doi.org/10.1080/10426914.2011.551911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grover, Vishwas, and Anant Kumar Singh. "Modeling of surface roughness in the magnetorheological cylindrical finishing process." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233, no. 1 (2017): 104–17. http://dx.doi.org/10.1177/0954408917746354.

Full text
Abstract:
The magnetorheological cylindrical finishing process is developed for fine finishing of the internal surface of cylindrical objects. The process uses smart fluid known as magnetorheological polishing fluid. This fluid consists of carbonyl iron (CI) and silicon carbide (SiC) abrasive particles mixed in the base fluid. The magnetorheological cylindrical finishing process consists of an internal finishing tool, which induces magnetic field over its outer surface due to which CI particles experience magnetic force and form chains between the magnetized tool outer surface and inner surface of the c
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, Gui Wen, and Fei Hu Zhang. "Optics Manufacturing Using Magnetorheological Finishing." Key Engineering Materials 375-376 (March 2008): 274–77. http://dx.doi.org/10.4028/www.scientific.net/kem.375-376.274.

Full text
Abstract:
Magnetorheological finishing (MRF) is a novel precision optical machining technology. Owing to its flexible finishing process, MRF can eliminate subsurface damage, smooth rms micro roughness and correct surface figure errors. The finishing process can be easily controlled by a computer. Through proper designing of numerical control, sphere and asphere optics can be machined by magnetorheological finishing with high quality. Optical sphere is machined using dwell time algorithm and surface shape 2 pt. PV has been improved from 0.17um to 0.07um.
APA, Harvard, Vancouver, ISO, and other styles
5

Mangal, S., and M. Kataria. "Characterization of Magnetorheological Finishing Fluid for Continuous Flow Finishing Process." Journal of Applied Fluid Mechanics 11, no. 6 (2018): 1751–63. http://dx.doi.org/10.29252/jafm.11.06.28928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iqbal, Faiz, Zafar Alam, Dilshad Ahmad Khan, and Sunil Jha. "Automated insular surface finishing by ball end magnetorheological finishing process." Materials and Manufacturing Processes 37, no. 4 (2021): 437–47. http://dx.doi.org/10.1080/10426914.2021.2001502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Anand, and M. S. Niranjan. "Magnetorheological Fluid Finishing of Soft Materials: A Critical Review." INTERNATIONAL JOURNAL OF ADVANCED PRODUCTION AND INDUSTRIAL ENGINEERING 4, no. 1 (2019): 48–55. http://dx.doi.org/10.35121/ijapie201901138.

Full text
Abstract:
Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF proc
APA, Harvard, Vancouver, ISO, and other styles
8

Hashmi, Abdul Wahab, Harlal Singh Mali, Anoj Meena, Irshad Ahamad Khilji, Chaitanya Reddy Chilakamarry, and Siti Nadiah binti Mohd Saffe. "Experimental investigation on magnetorheological finishing process parameters." Materials Today: Proceedings 48 (2022): 1892–98. http://dx.doi.org/10.1016/j.matpr.2021.09.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hashmi, Abdul Wahab, Harlal Singh Mali, Anoj Meena, Irshad Ahamad Khilji, Chaitanya Reddy Chilakamarry, and Siti Nadiah binti Mohd Saffe. "Experimental investigation on magnetorheological finishing process parameters." Materials Today: Proceedings 48 (2022): 1892–98. http://dx.doi.org/10.1016/j.matpr.2021.09.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khatri, Neha, Suman Tewary, Xavier J. Manoj, Harry Garg, and Vinod Karar. "Magnetorheological finishing of silicon for nanometric surface generation: An experimental and simulation study." Journal of Intelligent Material Systems and Structures 29, no. 11 (2018): 2456–64. http://dx.doi.org/10.1177/1045389x18770869.

Full text
Abstract:
Silicon mirrors are essential for guiding the X-ray beam and focusing it to a specific location. These mirrors using total internal reflection require super smooth surface finish due to small wavelength of X-ray. Magnetorheological finishing is a computer-controlled technique used in the production of high-quality optical lenses. This process utilizes polishing slurries based on magnetorheological fluids, whose viscosity changes with the change in magnetic field. In this work, polishing potential of silicon mirrors by magnetorheological finishing process is examined to achieve nanometric surfa
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!