Academic literature on the topic 'Magnetorheological Homogenization wave acoustic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetorheological Homogenization wave acoustic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetorheological Homogenization wave acoustic"

1

Shen, Min, and Qi Bai Huang. "Acoustic Properties of Magnetorheological Fluids under Magnetic Fields." Applied Mechanics and Materials 721 (December 2014): 818–23. http://dx.doi.org/10.4028/www.scientific.net/amm.721.818.

Full text
Abstract:
Magneto-Rheological fluid (MRF) is a class of smart material who’s mechanical and rheological properties can be varied rapidly and reversibly by the applied magnetic field. MRF also exhibit fast, strong and reversible changes in the acoustic properties. The goal of this paper is to study the acoustic attenuation and velocity variation of the MRF composite under magnetic field. The model of acoustic wave propagation in MRF was established by Biot-Stoll theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of an MRF. The calculated results show that the attenuation coefficient of acoustic wave is improved obviously under the application of magnetic field in wide range frequency.
APA, Harvard, Vancouver, ISO, and other styles
2

Willey, Carson, Vincent W. Chen, Ken Scalzi, Philip Buskohl, and Abigail T. Juhl. "Magnetorheological elastomer panels with reconfigurable magnetic mass for acoustic wave absorption." Journal of the Acoustical Society of America 145, no. 3 (March 2019): 1686. http://dx.doi.org/10.1121/1.5101182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shaogang Liu, Yuechao Zhao, Dan Zhao, Junchao Wu, and Chunxiao Gao. "Tunable Elastic wave Bandgaps and Waveguides by Acoustic Metamaterials with Magnetorheological Elastomer." Acoustical Physics 66, no. 2 (March 2020): 123–31. http://dx.doi.org/10.1134/s1063771020020086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Meirmanov, Anvarbek. "A Description of Seismic Acoustic Wave Propagation in Porous Media via Homogenization." SIAM Journal on Mathematical Analysis 40, no. 3 (January 2008): 1272–89. http://dx.doi.org/10.1137/070697483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rohan, Eduard, and Vladimír Lukeš. "Homogenization approach for optimal design of perforated layer in acoustic wave propagation." PAMM 11, no. 1 (December 2011): 801–2. http://dx.doi.org/10.1002/pamm.201110389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Owhadi, Houman, and Lei Zhang. "Numerical homogenization of the acoustic wave equations with a continuum of scales." Computer Methods in Applied Mechanics and Engineering 198, no. 3-4 (December 2008): 397–406. http://dx.doi.org/10.1016/j.cma.2008.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MEIRMANOV, A. "Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media." European Journal of Applied Mathematics 19, no. 3 (June 2008): 259–84. http://dx.doi.org/10.1017/s0956792508007523.

Full text
Abstract:
A system of differential equations describing the joint motion of thermo-elastic porous body and slightly compressible viscous thermofluid occupying pore space is considered. Although the problem is correct in an appropriate functional space, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation operators. The rigorous justification under various conditions imposed on physical parameters is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic. As a result, we derive Biot's system of equations of thermo-poroelasticity, a similar system, consisting of anisotropic Lamé equations for a thermoelastic solid coupled with acoustic equations for a thermofluid, Darcy's system of filtration, or acoustic equations for a thermofluid, according to ratios between physical parameters. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Craster, R. V., J. Kaplunov, and A. V. Pichugin. "High-frequency homogenization for periodic media." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2120 (March 10, 2010): 2341–62. http://dx.doi.org/10.1098/rspa.2009.0612.

Full text
Abstract:
An asymptotic procedure based upon a two-scale approach is developed for wave propagation in a doubly periodic inhomogeneous medium with a characteristic length scale of microstructure far less than that of the macrostructure. In periodic media, there are frequencies for which standing waves, periodic with the period or double period of the cell, on the microscale emerge. These frequencies do not belong to the low-frequency range of validity covered by the classical homogenization theory, which motivates our use of the term ‘high-frequency homogenization’ when perturbing about these standing waves. The resulting long-wave equations are deduced only explicitly dependent upon the macroscale, with the microscale represented by integral quantities. These equations accurately reproduce the behaviour of the Bloch mode spectrum near the edges of the Brillouin zone, hence yielding an explicit way for homogenizing periodic media in the vicinity of ‘cell resonances’. The similarity of such model equations to high-frequency long wavelength asymptotics, for homogeneous acoustic and elastic waveguides, valid in the vicinities of thickness resonances is emphasized. Several illustrative examples are considered and show the efficacy of the developed techniques.
APA, Harvard, Vancouver, ISO, and other styles
9

SHELUKHIN, V. V., and A. E. ISAKOV. "Elastic waves in layered media: Two-scale homogenization approach." European Journal of Applied Mathematics 23, no. 6 (August 1, 2012): 691–707. http://dx.doi.org/10.1017/s0956792512000204.

Full text
Abstract:
Using the two-scale convergence approach, we derive equations which govern transversal time-harmonic waves through a layered medium taking the form of a poroelastic composite saturated with a viscous fluid. To improve convergence, we construct a corrector. We study how wave speed and attenuation time depend on porosity and frequency. We prove that the Darcy permeability and the acoustic permeability in the Biot equations do not coincide.
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, John D. "Application of the method of asymptotic homogenization to an acoustic metafluid." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467, no. 2135 (July 13, 2011): 3318–31. http://dx.doi.org/10.1098/rspa.2011.0231.

Full text
Abstract:
The method of asymptotic homogenization is used to find the dynamic effective properties of a metamaterial consisting of two alternating layers of fluid, repeating periodically. As well as the effective wave equation, the method gives the effective equation of motion and constitutive relation in a natural way. When the material properties are such that resonant effects can be present in one of the layers, it is found that the metamaterial changes dynamically from a metafluid with anisotropic density and isotropic stiffness at low frequency to one with anisotropic stiffness when the frequency is near to one of the local resonances. In this region of frequency, the resulting metamaterial is not a pentamode material and thus does not belong to the class of metafluids that can be transformed to an isotropic fluid by a coordinate transformation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Magnetorheological Homogenization wave acoustic"

1

Reese, Owein. "Homogenization of acoustic wave propagation in a magnetorheological fluid." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-101629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ayad, Mohammad. "Homogenization-based, higher-gradient dynamical response of micro-structured media." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0062.

Full text
Abstract:
Une approche dynamique discrète (DDM) est proposée dans le contexte de la mécanique des poutres pour calculer les caractéristiques de dispersion des structures périodiques. Cette démarche permet de calculer les caractéristiques de dispersion de milieux périodiques unidimensionnels et bidimensionnels. Il est montré qu’un développement d'ordre supérieur suffisamment élevé des forces et des moments d’éléments structuraux est nécessaire pour décrire avec précision les modes de propagation d’ordre supérieur. Ces résultats montrent dans l’ensemble que les calculs des caractéristiques de dispersion de systèmes structurels périodiques peuvent être abordés avec une bonne précision par la dynamique des éléments discrets. Les comportements non classiques peuvent être capturés non seulement par une expansion d'ordre supérieur mais aussi par des formulations à gradient supérieur. Nous calculons ainsi les paramètres constitutifs macroscopiques jusqu'au deuxième gradient du déplacement en utilisant deux formulations différentes, soit selon une méthode d'homogénéisation dynamique à gradient supérieur (DHGE) prenant en compte les effets de micro-inertie, ou alternativement selon le principe de Hamilton. Nous analysons ensuite la sensibilité des termes constitutifs du second gradient aux paramètres microstructuraux pour des matériaux composites à microstructure périodique de type laminés. En plus, on montre que les modèles du deuxième gradient formulés à partir de l'énergie interne totale en tenant compte des termes de gradient d'ordre supérieur donnent la meilleure description du propagation d’onde à travers ces milieux. On analyse les contributions d'ordre supérieur et de micro-inertie sur le comportement mécanique de structures composites en utilisant une méthode d'homogénéisation dynamique d'ordre supérieur qui intègre les effets de micro-inertie. Nous calculons la réponse effective statique longitudinale à gradient d’ordre supérieur, en quantifiant la différence relative par rapport à la formulation classique de type Cauchy qui repose sur le premier gradient du déplacement. Nous analysons ensuite les propriétés de propagation d’ondes longitudinales en termes de fréquence propre de composites, en tenant compte de la contribution de la micro-inertie. La longueur interne joue un rôle crucial dans les contributions de micro-inertie avec un effet substantiel pour les faibles valeurs de longueur interne, et qui correspond à une large gamme de matériaux utilisés en ingénierie des structures. La méthode d’homogénéisation développée montre un effet de taille important pour les modules élastiques homogénéisés d’ordre supérieur. Par conséquent, nous développons une formulation indépendante de la taille qui est basée sur des termes de correction liée aux moment quadratique. Dans ce contexte, on analyse l’influence des termes de correction sur le comportement statique et dynamique de composites à inclusion
A discrete dynamic approach (DDM) is developed in the context of beam mechanics to calculate the dispersion characteristics of periodic structures. Subsequently, based on this dynamical beam formulation, we calculate the dispersion characteristics of one-dimensional and two-dimensional periodic media. A sufficiently high order development of the forces and moments of the structural elements is necessary to accurately describe the propagation modes of higher order. These results show that the calculations of the dispersion characteristics of structural systems can be approached with good accuracy by the dynamics of the discrete elements. Besides, non-classical behaviors can be captured not only by higher order expansion but also by higher gradient formulations. To that scope, we develop a higher gradient dynamic homogenization method with micro-inertia effects. Using this formulation, we compute the macroscopic constitutive parameters up to the second gradient, using two distinct approaches, namely Hamilton’s principle and a total internal energy formulation. We analyze the sensitivity of the second gradient constitutive terms on the inner material and geometric parameters for the case of composite materials made of a periodic, layered microstructure. Moreover, we show that the formulations based on the total internal energy taking into account higher order gradient terms give the best description of wave propagation through the composite. We analyze the higher order and micro-inertia contributions on the mechanical behavior of composite structures by calculating the effective static and dynamic properties of composite beams using a higher order dynamic homogenization method. We compute the effective longitudinal static response with higher order gradient, by quantifying the relative difference compared to the classical formulation of Cauchy type, which is based on the first gradient of displacement. We then analyze the propagation properties of longitudinal waves in terms of the natural frequency of composite structural elements, taking into account the contribution of micro-inertia. The internal length plays a crucial role in the contributions of micro-inertia, which is particularly significant for low internal length values, therefore for a wide range of materials used in structural engineering. The developed method shows an important size effect for the higher gradients, and to remove these effects correction terms have been incorporated which are related to the quadratic moment of inertia. We analyze in this context the influence of the correction terms on the static and dynamic behavior of composites with a central inclusion
APA, Harvard, Vancouver, ISO, and other styles
3

Cebrecos, Ruiz Alejandro. "Transmission, reflection and absorption in Sonic and Phononic Crystals." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/56463.

Full text
Abstract:
[EN] Phononic crystals are artificial materials formed by a periodic arrangement of inclusions embedded into a host medium, where each of them can be solid or fluid. By controlling the geometry and the impedance contrast of its constituent materials, one can control the dispersive properties of waves, giving rise to a huge variety of interesting and fundamental phenomena in the context of wave propagation. When a propagating wave encounters a medium with different physical properties it can be transmitted and reflected in lossless media, but also absorbed if dissipation is taken into account. These fundamental phenomena have been classically explained in the context of homogeneous media, but it has been a subject of increasing interest in the context of periodic structures in recent years as well. This thesis is devoted to the study of different effects found in sonic and phononic crystals associated with transmission, reflection and absorption of waves, as well as the development of a technique for the characterization of its dispersive properties, described by the band structure. We start discussing the control of wave propagation in transmission in conservative systems. Specifically, our interest is to show how sonic crystals can modify the spatial dispersion of propagating waves leading to control the diffractive broadening of sound beams. Making use of the spatial dispersion curves extracted from the analysis of the band structure, we first predict zero and negative diffraction of waves at frequencies close to the band-edge, resulting in collimation and focusing of sound beams in and behind a 3D sonic crystal, and later demonstrate it through experimental measurements. The focusing efficiency of a 3D sonic crystal is limited due to the strong scattering inside the crystal, characteristic of the diffraction regime. To overcome this limitation we consider axisymmetric structures working in the long wavelength regime, as a gradient index lens. In this regime, the scattering is strongly reduced and, in an axisymmetric configuration, the symmetry matching with acoustic sources radiating sound beams increase its efficiency dramatically. Moreover, the homogenization theory can be used to model the structure as an effective medium with effective physical properties, allowing the study of the wave front profile in terms of refraction. We will show the model, design and characterization of an efficient focusing device based on these concepts. Consider now a periodic structure in which one of the parameters of the lattice, such as the lattice constant or the filling fraction, gradually changes along the propagation direction. Chirped crystals represent this concept and are used here to demonstrate a novel mechanism of sound wave enhancement based on a phenomenon known as "soft" reflection. The enhancement is related to a progressive slowing down of the wave as it propagates along the material, which is associated with the group velocity of the local dispersion relation at the planes of the crystal. A model based on the coupled mode theory is proposed to predict and interpret this effect. Two different phenomena are observed here when dealing with dissipation in periodic structures. On one hand, when considering the propagation of in-plane sound waves in a periodic array of absorbing layers, an anomalous decrease in the absorption, combined with a simultaneous increase of reflection and transmission at Bragg frequencies is observed, in contrast to the usual decrease of transmission, characteristic in conservative periodic systems at these frequencies. For a similar layered media, backed now by a rigid reflector, out-of-plane waves impinging the structure from a homogeneous medium will increase dramatically the interaction strength. In other words, the time delay of sound waves inside the periodic system will be considerably increased resulting in an enhanced absorption, for a broadband spectral range.
[ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de
[CAT] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen
Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetorheological Homogenization wave acoustic"

1

Srivastava, Ankit, and Sia Nemat-Nasser. "Applicability of Dynamic Homogenization for Acoustic Metamaterials." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36601.

Full text
Abstract:
Dynamic homogenization seeks to define frequency dependent effective properties for heterogeneous composites for the purpose of studying wave propagation in them. These properties can be used to predict and design for metamaterial behavior. However, there is an approximation involved in replacing a heterogeneous composite with its homogenized equivalent. In this paper we propose a quantification to this approximation. By way of explicit examples we show that a comprehensive homogenization scheme proposed in earlier papers is applicable in a finite composite setting and in the low frequency regime. We also show that there exist good arguments for considering the second branch of a locally resonant composite a true negative branch. Furthermore, we note that infinite-domain homogenization is more applicable to finite cases of locally resonant metamaterial composites than it is to 2-phase composites. We also study the effect of the interface location on the applicability of homogenization. The results open intriguing questions regarding the effects of replacing a semi-infinite periodic composite with its Bloch-wave (infinite domain) dynamic properties on such phenomenon as negative refraction.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Xiao-lei, Jian-ke Du, and Ji Wang. "Propagation of acoustic wave in one-dimensional phononic crystals with magnetorheological fluids." In 2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2016. http://dx.doi.org/10.1109/spawda.2016.7829995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GILBERT, ROBERT, and MIAO-JUNG OU. "ACOUSTIC WAVE PROPAGATION IN A COMPOSITE OF TWO DIFFERENT POROELASTIC MATERIALS WITH A VERY ROUGH PERIODIC INTERFACE: A HOMOGENIZATION APPROACH." In Proceedings of the International Conference to Celebrate Robert P Gilbert's 70th Birthday. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704405_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sadeghi, Hossein, Ankit Srivastava, and Sia Nemat-Nasser. "Non-Reflective and Highly Dissipative Acoustic Metamaterials." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62513.

Full text
Abstract:
In this paper, we consider a composite embedded in a homogenous medium and present a method to design the composite’s microstructure so that when it is subjected to an incident acoustic wave, it does not reflect the incoming wave and also dissipates most of it. High dissipation is achieved through a metamaterial design which is naturally characterized by internal resonance. The effective impedance of the metamaterial is evaluated through dynamic homogenization technique and it is used to design a quarter wave transformer to enforce zero reflection at the interface between the metamaterial composite and its surrounding medium. Transfer matrix method is used to calculate the reflection/transmission spectra at the above mentioned interface. Results show that the reflection at the interface is close to zero at the designed frequency and a large fraction of the wave energy which is transmitted across the interface is attenuated.
APA, Harvard, Vancouver, ISO, and other styles
5

Solovchuk, Maxim A., Tony W. H. Sheu, and Marc Thiriet. "Investigation Into the Acoustic Streaming and Convective Cooling Phenomena During a High-Intensity Focused Ultrasound Thermal Ablation." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-19004.

Full text
Abstract:
The present study is aimed at predicting liver tumor temperature increase during a high-intensity focused ultrasound (HIFU) thermal ablation using the proposed acoustics-heat-fluid coupling model. The linear Westervelt equation is adopted for modeling the incident finite-amplitude wave propagation. The nonlinear hemodynamic equations are also taken into account in the simulation domain that contains a hepatic tissue domain, where homogenization dominates perfusion, and a vascular domain, where blood convective cooling may be essential in determining the success of HIFU. We also consider the energy equation for the modeling thermal conduction heat transfer. Two heat sinks are dealt with to account for tissue perfusion and forced convection-induced cooling. The effect of acoustic streaming is also included in the current HIFU simulation study. Convective cooling in large blood vessel and acoustic streaming were shown to change the temperature near blood vessel. It was shown that the acoustic streaming effect can change the blood flow distribution in hepatic arterial branches and leads to mass flux redistribution. The effect of acoustic streaming can be used to control blood drug delivery. In the current work the realistic geometry for the blood vessel and liver was reconstructed using the MRI images. The presented results may be further used to construct a surgical planning platform for the non-invasive HIFU (High-Intensity Focal Ultrasound) tumor ablating (or cauterizing) therapy in real liver geometry on the basis of the MRI image.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography