Academic literature on the topic 'Magnetorquer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetorquer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetorquer"
Bai, Bo, Jun Zhou, and Shengyun Wang. "Design of High-Performance Magnetorquer with Air Core for CubeSat." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, no. 1 (February 2018): 1–6. http://dx.doi.org/10.1051/jnwpu/20183610001.
Full textSi, Juntian, Yang Gao, and Abadi Chanik. "Slew Control of Prolate Spinners Using Single Magnetorquer." Journal of Guidance, Control, and Dynamics 39, no. 3 (March 2016): 719–27. http://dx.doi.org/10.2514/1.g001035.
Full textMIYATA, Kikuko, Tomohiro NARUMI, and Jozef C. van der HA. "Comparison of Different Magnetorquer Control Laws for QSAT." TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 7, ists26 (2009): Pd_43—Pd_48. http://dx.doi.org/10.2322/tstj.7.pd_43.
Full textKuiper, Hans, and Dennis Dolkens. "A cutting edge 6U CubeSat ADCS design for Earth observation with sub-meter spatial resolution at 230–380 km altitude." CEAS Space Journal 12, no. 4 (June 18, 2020): 613–21. http://dx.doi.org/10.1007/s12567-020-00323-7.
Full textHou, Xu Guang, Jian Yan, Jin Jin, and Shun Liang Mei. "Magnetorquer Based Vertical Damping Method for Microsatellite Attitude Control." Applied Mechanics and Materials 263-266 (December 2012): 584–87. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.584.
Full textAli, Anwar, Shoaib Ahmed Khan, M. Usman Khan, Haider Ali, M. Rizwan Mughal, and Jaan Praks. "Design of Modular Power Management and Attitude Control Subsystems for a Microsatellite." International Journal of Aerospace Engineering 2018 (December 17, 2018): 1–13. http://dx.doi.org/10.1155/2018/2515036.
Full textUtama, S., P. R. Hakim, and M. Mukhayadi. "Quarter orbit maneuver using magnetorquer to maintain spacecraft angular momentum." IOP Conference Series: Earth and Environmental Science 284 (May 31, 2019): 012046. http://dx.doi.org/10.1088/1755-1315/284/1/012046.
Full textKondo, Kota, Ilya Kolmanovsky, Yasuhiro Yoshimura, Mai Bando, Shuji Nagasaki, and Toshiya Hanada. "Nonlinear Model Predictive Detumbling of Small Satellites with a Single-Axis Magnetorquer." Journal of Guidance, Control, and Dynamics 44, no. 6 (June 2021): 1211–18. http://dx.doi.org/10.2514/1.g005877.
Full textAli, Anwar, M. Rizwan Mughal, Haider Ali, Leonardo M. Reyneri, and M. Naveed Aman. "Design, implementation, and thermal modeling of embedded reconfigurable magnetorquer system for nanosatellites." IEEE Transactions on Aerospace and Electronic Systems 51, no. 4 (October 2015): 2669–79. http://dx.doi.org/10.1109/taes.2015.130621.
Full textAsadabadi, Amirhossein, and Amir M. Anvar. "Small Satellite Modelling and Three-Axis Magnetorquer-Based Stabilisation Using Fuzzy Logic Control." Applied Mechanics and Materials 152-154 (January 2012): 1639–44. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.1639.
Full textDissertations / Theses on the topic "Magnetorquer"
Elmas, Tuba Cigdem. "Development Of Control Allocation Methods For Satellite Attitude Control." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611649/index.pdf.
Full texts are obtained in a pyramid type mounting arrangement. The envelopes when gimbal travel is limited to plus-minus 90 degree are also obtained. The steering simulations using Moore Penrose (MP) pseudo inverse as well as blended inverse are presented and success of the pre planned blended inverse steering in avoiding gimbal angle limits is demonstrated through satellite slew maneuver simulations, showing the completion of the maneuver without violating gimbal angle travel restrictions. Dissimilar actuators, CMG and magnetic torquers are used as an approach of overactuated system. Steering simulations are carried out using different steering laws for constant torque and desired satellite slew maneuver scenarios. Success of the blended inverse steering algorithm over MP pseudo inverse is also demonstrated
Bellini, Niccolo'. "Magnetic actuators for nanosatellite attitude control." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7506/.
Full textLehner, Maximilian Jacob. "Study and design of magnetic attitude control systems for nanosatellites." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textCuratolo, Andrea. "Development and experimental testing of nanosatellites attitude control using mixed magnetic/mechanical actuation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24337/.
Full textTrégouët, Jean-François. "Synthèse de correcteurs robustes périodiques à mémoire et application au contrôle d'attitude de satellites par roues à réaction et magnéto-coupleurs." Thesis, Toulouse, ISAE, 2012. http://www.theses.fr/2012ESAE0033/document.
Full textThis manuscript reviews contributions to the development of systematic methods for analysis and control of periodic uncertain systems. An important part of this thesis is also dedicated to the design of attitude control systems for satellites whose dynamics is naturally represented as a periodic model subject to uncertainties. The first part is devoted to the developpement of a unifying presentation of the analysis and synthesis results of periodic, uncertain and discrete-time models via methods relying on linear matrix inequalities (LMI) and based on Lyapunov theory. Subsequently, the focus is on a new class of periodic control laws with memory for which the control input is constructed using history of the states of the system kept in memory. Numerical experiments show that these new degrees of freedom can outperformed the existing results. The second part deals with periodic and robustness aspects of attitude control of a satellite using magnetorquers. These actuators use the geomagnetic field that varies periodically along the orbital trajectory. Different control strategies are implemented and compared with one another with the constant concern of taking the main limitations of the actuators into account. This approach leads to a new control law regulating the momentum of the reaction wheels without disturbing attitude control for which the control effort is shared by all actuators
Greene, Michael R. "The Attitude Determination and Control System of the Generic Nanosatellite Bus." Thesis, 2009. http://hdl.handle.net/1807/18942.
Full textGondar, Rui Manuel Gomes. "Decentralized Control of Electromagnetic ChipSat Swarm Formations." Master's thesis, 2021. http://hdl.handle.net/10400.6/11700.
Full textFormações de pequenos satélites oferecem novas opções para exploração espacial e experiências científicas. Grupos de satélites, operando a curtas distâncias relativas, possibilitam importantes aplicações tais como instrumentação espacialmente distribuída para amostragem atmosférica ou sistemas de sensoriamento remoto. A capacidade de controlar de forma independente o movimento de cada satélite é crucial para establecer uma formação em enxame, utilizando um grande número de satélites movendo-se ao longo de trajetórias relativas limitadas. Este tipo de missão impõe várias restrições ao nível do consumo de energia, da massa e do tamanho dos satélites, consequentemente, é necessária uma abordagem autónoma e auto-sustentável para assegurar o controlo das trajetórias relativas. Um novo conceito de satélite miniatura, denominado ChipSat, consiste de uma única placa de circuito impresso que pode ser equipada com diferentes conjuntos de componentes microelectrónicos. Este estudo considera um enxame de ChipSats equipados com magnetorquers, operando a distâncias relativas extremamente reduzidas, e usando a força de interação eletromagnética para controlo do movimento relativo e orientação dos satélites, assumindo que a posição absoluta e relativa de cada unidade é conhecida. Apesar das limitações impostas por usar os magnetorquers como únicos atuadores a bordo, a interação magnética dipolar pode ser usada para limitar trajetórias relativas e establecer um enxame compacto. Seguindo uma abordagem descentralizada, os ChipSats são periodicamente ligados em pares intermutáveis de modo a aplicar o algoritmo de control baseado no teorema de Lyapunov, impedindo o aumento da distância relativa entre todos os satélites no enxame. O momento magnético dipolar é usado para amortecimento da velocidade angular quando o control orbital não é necessário, e uma força eletromagnética repulsiva é usada para controlo de colisão quando dois ChipSats estão perigosamente próximos. A análise de performance é feita através de simulações Monte Carlo no MATLAB, estudando os parâmetros operacionais e o efeito das condições iniciais após o lançamento.
Book chapters on the topic "Magnetorquer"
Eun, Youngho, Zihao Wang, and Xiaofeng Wu. "Parametric Study on the Magnetic Properties of the Electropermanent Magnetorquer." In Lecture Notes in Electrical Engineering, 283–97. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2635-8_21.
Full textXiao, Wen, Xin Li, Ningning Zhang, Pengyu Zhang, Yinghui Gong, and Rongyan Ma. "A Distributive Control Method for Microsatellite Using the Biased Momentum Wheel and Magnetorquers." In Lecture Notes in Electrical Engineering, 2323–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_195.
Full textBruni, Renato, and Fabio Celani. "Parameter Optimization for Spacecraft Attitude Stabilization Using Magnetorquers." In Advances in Spacecraft Attitude Control. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89197.
Full textConference papers on the topic "Magnetorquer"
Carabellese, Davide, Joshua S. Umansky-Castro, and Mason A. Peck. "Magnetorquer-only Nonlinear Attitude Control for CubeSats." In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-1099.
Full textMeili, Zhou, and Qi Hongyu. "Design of Three Axis Magnetorquer for Microsatellites." In 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC). IEEE, 2013. http://dx.doi.org/10.1109/imccc.2013.130.
Full textEun, Youngho, Zihao Wang, and Xiaofeng Wu. "Performance Measure of the Novel Electropermanent Magnetorquer." In AIAA SCITECH 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-0936.
Full textTorczynski, Daniel, Rouzbeh Amini, and Paolo Massioni. "Magnetorquer Based Attitude Control for a Nanosatellite Testplatform." In AIAA Infotech@Aerospace 2010. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-3511.
Full textAli, Anwar, Leonardo Reyneri, Juan Carlos de los Rios, Haider Ali, and M. Rizwan Mughal. "Reconfigurable magnetorquer for the CubePMT module of CubeSat satellites." In 2012 15th International Multitopic Conference (INMIC). IEEE, 2012. http://dx.doi.org/10.1109/inmic.2012.6511478.
Full text"Small-satellite magnetorquer attitude control system modelling and simulation." In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.c10.yi.
Full textSokal, Ewelina, Roman Wawrzaszek, Grzegorz Juchnikowski, Jakub Adamiec, and Tomasz Zawistowski. "Design and test of magnetorquer in PCB technology for nanosatellites." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, edited by Ryszard S. Romaniuk and Maciej Linczuk. SPIE, 2019. http://dx.doi.org/10.1117/12.2537411.
Full textEun, Youngho, Zhicheng Xie, Zihao Wang, and Xiaofeng Wu. "Operational Capabilities on the Nanosatellite Attitude Control Actuated by Electropermanent Magnetorquer." In 2022 22nd International Conference on Control, Automation and Systems (ICCAS). IEEE, 2022. http://dx.doi.org/10.23919/iccas55662.2022.10003682.
Full textHaryadi, Defrandi Renanda, Heroe Wijanto, Budi Syihabuddin, and Agus D. Prasetyo. "Design of attitude determination and control system using microstrip magnetorquer for nanosatellite." In 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC). IEEE, 2016. http://dx.doi.org/10.1109/iccerec.2016.7814974.
Full textSugimura, Nobuo, Toshinori Kuwahara, and Kazuya Yoshida. "Attitude determination and control system for nadir pointing using magnetorquer and magnetometer." In 2016 IEEE Aerospace Conference. IEEE, 2016. http://dx.doi.org/10.1109/aero.2016.7500665.
Full text