Academic literature on the topic 'Magnus effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnus effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnus effect"
Hillion, Pierre. "Electromagnetic Magnus effect." International Journal of Engineering Science 38, no. 13 (September 2000): 1473–85. http://dx.doi.org/10.1016/s0020-7225(99)00076-2.
Full textDooghin, A. V., N. D. Kundikova, V. S. Liberman, and B. Ya Zel’dovich. "Optical Magnus effect." Physical Review A 45, no. 11 (June 1, 1992): 8204–8. http://dx.doi.org/10.1103/physreva.45.8204.
Full textKenyon, Kern E. "On the Magnus Effect." Natural Science 08, no. 02 (2016): 49–52. http://dx.doi.org/10.4236/ns.2016.82006.
Full textLukin, Aleksandr, Galina Demidova, and Anton Rassõlkin. "Achieving of Magnus Effect with Agros Suite." Periodica Polytechnica Electrical Engineering and Computer Science 65, no. 2 (April 15, 2021): 131–37. http://dx.doi.org/10.3311/ppee.17743.
Full textPechier, Marc, Philippe Guillen, and Roxan Cayzac. "Magnus Effect over Finned Projectiles." Journal of Spacecraft and Rockets 38, no. 4 (July 2001): 542–49. http://dx.doi.org/10.2514/2.3714.
Full textGreenslade, Thomas B. "A Forgotten Magnus-Effect Demonstration." Physics Teacher 44, no. 8 (November 2006): 552. http://dx.doi.org/10.1119/1.2362955.
Full textCarré, M. J., S. R. Goodwill, and S. J. Haake. "Understanding the Effect of Seams on the Aerodynamics of an Association Football." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219, no. 7 (July 1, 2005): 657–66. http://dx.doi.org/10.1243/095440605x31463.
Full textMORISSEAU, KENNETH C. "MARINE APPLICATION OF MAGNUS EFFECT DEVICES." Naval Engineers Journal 97, no. 1 (January 1985): 51–57. http://dx.doi.org/10.1111/j.1559-3584.1985.tb02052.x.
Full textMORISSEAU, KENNETH C. "MARINE APPLICATION OF MAGNUS EFFECT DEVICES." Naval Engineers Journal 98, no. 5 (September 1986): 83–84. http://dx.doi.org/10.1111/j.1559-3584.1986.tb01741.x.
Full textZel'dovich, Boris Ya, I. V. Kataevskaya, and N. D. Kundikova. "Inhomogeneity of the optical Magnus effect." Quantum Electronics 26, no. 1 (January 31, 1996): 87–88. http://dx.doi.org/10.1070/qe1996v026n01abeh000595.
Full textDissertations / Theses on the topic "Magnus effect"
CORREA, CARLOS JOSE. "EXPERIMENTAL STUDY OF THE MAGNUS EFFECT." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1985. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33498@1.
Full textThe Magnus effect is experimentally studied in a wind tunnel for Reynolds number range from 1,3 x 10 (to) 4 to 4,3 x 10 (to) 4. The results are analysed and compared for both dimensionless and dimensionalized parameters. The uncertainties are estimated and the results compared to those of other investigators. The possibilities of utilization of Magnus effect in wind power generation are analyzed together with its influence in trajectories of spin-stabilized projectiles.
Jinbo, Maro. "Contribuições ao projeto de sistemas eólicos de efeito magnus com rastreamento da máxima potência." Universidade Federal de Santa Maria, 2016. http://repositorio.ufsm.br/handle/1/12032.
Full textO presente trabalho trata de um sistema eólico não convencional, cuja turbina eólica possui cilindros girantes no lugar das pás tradicionais. Estes cilindros podem ser acionados por um motor brushless CC (sem escovas). O princípio físico de funcionamento desta turbina baseia-se no que se denomina de “Efeito Magnus”. Apresenta-se a modelagem matemática da turbina Magnus e com base nesta modelagem realizam-se simulações no software PSIM®. Programa-se e testa-se algoritmos de rastreamento da máxima potência líquida MPPT (Maximum Power Point Tracking), do tipo HCC (Hill Climbing Control) no controle do motor brushless CC de acionamento dos cilindros e, consequentemente, da potência gerada pela turbina Magnus. Protótipos de sistema eólico de efeito Magnus (turbina, gerador PMSG, conversores CA/CC, CC/CC) foram construídos para realizar experimentos em túnel de vento, possibilitando comparações dos resultados experimentais com os resultados simulados. Busca-se otimizar a extração da energia dos ventos, através de concepções e soluções inovadoras na construção da turbina, servo acionamento CC brushless para os cilindros girantes, implementação de algoritmos MPPT no controle da rotação dos cilindros e do conversor estático. Três concepções da turbina Magnus são apresentadas e três protótipos construídos. Ensaios de cilindros girantes avulsos com variações nos diâmetros e nas espirais sobrepostas são realizados em túnel de vento com colméias e medem-se as forças de sustentação e de arrasto. O “Protótipo 3” de 3 m de diâmetro com dois cilindros lisos de 150 mm de diâmetro apresentou os melhores resultados experimentais, mas ainda a potência mecânica gerada não proporcionou uma potência líquida efetiva.
Silva, Ricardo Galdino da. "Estudo numérico de movimentação de partículas em escoamentos." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3132/tde-08032007-181139/.
Full textIn the developed work was studied the forces which act on a particle when these is a moving inside of a flow, in order to find out a methodology which is able to represent the particle dynamics on a flow. The equation of particle motion was integrated with a numerical approach taking in account the apparent mass, static drag, dynamic drag (history term; Boussinesq/Basset force) and lift force; Magnus effect and Saffman effect. The finite volume method was used to simulate the flow. In the force analyses we used experimental and numerical simulation (FLUENT) to evaluate and extend the models shown on the review. FLUENT was validated to determine the static drag coefficient and lift coefficient due to Magnus effect.
Neumüller, Georg. "On Control and stabilisation of floating wind platforms with the help of CFD analysis and the Magnus effect." Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213973.
Full textMed hänsyn till de nya teknologier och möjligheter som uppstår både inom området förnybar energi samt strömningsmekaniska beräkningar, beskriver denna avhandling simuleringen av vortexinducerade vibrationer (VIV) för flytande vindturbinplattformar. Syftet är att kontrollera och stabilisera flytande vindturbinplattformar med hjälp av både numerisk strömningssimulering och Magnuseffekten. Magnuseffekten ska användas för att minska virvelströmningar bakom cylindern och därigenom inte bara flytta cylindern, utan också minska vibrationer. Denna avhandling består av tre kategorier av experiment. Den första kategorin simulerar vortexinducerade vibrationer i strömningar med lågt Reynoldstal och jämför resultaten med befintliga forskningsresultat. Den andra kategorin experiment undersöker VIV för strömningar med högt eller superkritiskt Reynoldstal och den sista lägger till rotation till plattformen, dvs den studerar effekterna som Magnuseffekten har på stabilisering och positionskontroll. Simuleringarna utförs på en helt nedsänkt cylinder som flyter i en virtuell testbassäng, förankrat med ett tvådimensionellt fjäderdämpningssystem. Den numeriska metoden som används för att lösa de inkompressibla Navier-Stokesekvationerna är Eulersk cG(1)cG(1), en finit elementmetod (FEM) baserat på den svaga formuleringen av ekvationerna. Fjäderdämparens ekvationer löses med hjälp av trapetsregeln och kodningen är baserad på ramverket Unicorn i FEniCS. Beräkningarna gjordes på ett Cray XC40-system vid KTH Stockholm. Resultaten visade att ovanstående metod i många fall gav resultat närmare de fysiska resultaten än tidigare numerisk forskning. De visade också att Magnuseffekten kan användas för att stabilisera plattformarna genom att minska virvelströmningar bakom dem, detta inkluderar också strömningar med superkritiskt Reynoldstal. Dessutom visar resultaten att den här effekten har en stark koppling till plattformens förskjutning och mestadels beror på den naturliga frekvensen, inflödeshastigheten och rotationshastigheten.
Ribas, Glauco Salomão Ferreira. "Uma proposta para motivar o aluno a aprender mecância no ensino médio : abordagem com tecnologias de informação e comunicação." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/173055.
Full textNot because there are no good students, but for the fact that learning Physics is important, because it is a necessary culture for any citizen of a society and not only for the most educated, I bring a suggestion so that the predisposition to learn Physics of the high school students improve. Thus, this work is focused on presenting resources and activities that seek to bring the contemporary student's life closer to the teaching of Physics, through an approach with information and communication technologies (ICTs). Our disciplinary focus is the teaching of mechanics in an conducive environment to meaningful learning that seeks to treat Physics, as Science, under the epistemological bias of Mario Bunge, namely that, bringing the underlying modeling in the analysis of the physical phenomena related to this study, besides applying this conception in computational activities with the spreadsheet Calc and the softwares Tracker and Modellus. It is also presented the application of this proposal to a public-school class in extracurricular hours that, in addition to highlighting topics traditionally important on Mechanics, innovates with experimental computational activities, dealing with air resistance and Magnus effect in launches with basketball and volleyball. Students can realize that it is not at 45º that a ball should be thrown to go further in practical situations. The results presented were possible because the student was exposed to a less naive view of Physics and closer to his reality with some essential tools such as Modellus software, determining a exploratory reach far greater, for situations involving sports such as soccer, basketball and volleyball, than the most idealized modeling, which only considers the gravitational interaction of bodies with the Earth. At the end of this work, the respective educational product (Appendix B), containing all didactic sequence applied with some improvements, organized in guides for the teacher and for the students.
Денисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, Тарас Володимирович Лютий, Тарас Владимирович Лютый, Taras Volodymyrovych Liutyi, O. V. Kvasnina, and A. S. Yermolenko. "Minimal Set of Equations for Drift of Ferromagnetic Nanoparticles Induced by Magnetic Fields in Fluids." Thesis, Sumy State University, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67955.
Full textПетровський, Михайло Васильович, Михаил Васильевич Петровский, Mykhailo Vasylovych Petrovskyi, Тарас Володимирович Лютий, Тарас Владимирович Лютый, Taras Volodymyrovych Liutyi, and А. С. Єрмоленко. "Метод електромагнітної сепарації феромагнітних наночастинок у суспензіях з урахуванням теплових флуктуацій." Thesis, Сумський державний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/67919.
Full textRutkauskienė, Rasa. "Levels of magnesium compounds of different solubility in predominant soil types in Lithuania, effects on agricultural plants." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130916_111245-03922.
Full textPožiūris į magnio poreikį žemės ūkio augalams, o tuo pačiu tręšimą magnio trąšomis, įvairiose šalyse nėra vienodas. Europos šalyse judrusis magnis dirvožemyje nustatomas labai įvairiais metodais. Skirtingas dirvožemio savybių vertinimas įvairiose šalyse, o taip pat labai nevienodos magnio trąšų normos augalams mus paskatino naujai peržiūrėti judriojo magnio nustatymo metodus dirvožemyje ir magnio trąšų įtaką augalams. Nustatytas ir moksliškai įvertintas dažniausiai Europoje naudojamų judriojo magnio nustatymo metodų taikymo tinkamumas įvairiuose dirvožemiuose, jų tarpusavio priklausomumas, parengti perskaičiavimo algoritmai tarp įvairiais metodais nustatytų judriojo magnio reikšmių. Vyraujančiuose Lietuvos dirvožemiuose ištirta įvairiais metodais nustatyto judriojo magnio kiekio ir magnio trąšų įtaka gausiažiedžių svidrių bei vasarinių miežių derliui ir kokybei. Apibendrinus atliktus tyrimus parengtos tinkamiausių judriojo magnio nustatymo Lietuvos dirvožemiuose metodų ir žemės ūkio augalų tręšimo magnio trąšomis rekomendacijos. Lietuvoje įvairaus tirpumo magnio kiekiai įvairiuose dirvožemiuose ir magnio trąšų įtaka žemės ūkio augalams tirta pirmą kartą.
Amjad, Asma. "Exchange coupling in molecular magnets: Zero, one and three dimensions." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5755.
Full textM.A.
Masters
Physics
Sciences
Physics
Barhoumi, Rabei. "Positioning and addressing single molecule magnets with an STM tip." Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/restreint/theses_doctorat/2019/BARHOUMI_Rabei_2019_ED182.pdf.
Full textWith their large magnetic anisotropy associated with long relaxation times of the magnetization, TbPc2 molecular magnets are good candidates for encoding and recording data. Their robustness and their propensity to arrange into networks lend themselves well to a study of their electronic and magnetic structure by STM/STS at very low temperature (4.5 K). In this thesis work, it was possible to highlight a Kondo screening of the π and 4f electrons of the TbPc2 molecule by the electrons of the metal substrate. The magnetic properties of the molecule depend on their degree of interaction with the substrate and lateral interactions with other molecules. Thus, the π radical of the molecule is preserved on Au (111) but disappears on Ag (111) under the effect of a charge transfer between the substrate and the molecular monolayer. Finally, when the molecule is in strong interaction with the Cu(111) substrate, a direct access to the 4f states of the central Tb ion by STM is possible as shown by the detection of a Kondo effect on the central Tb ion
Books on the topic "Magnus effect"
Stoddard, Jamey L. Effects of multi-generational exposure of Daphnia magna to copper. Bellingham, WA: Huxley College of the Environment, Western Washington University, 2007.
Find full textKaisha, Sumika Tekunosābisu Kabushiki. Heisei 22-nendo gyorui dokusei shiken chōsa , shoki seikatsu dankai dokusei shiken) gyōmu: Kankyōshō gyōmu kekka hōkokusho. [Hyōgo-ken Takarazuka-shi]: Sumika Tekunosābisu, 2011.
Find full textNiedra, Janis M. Short-term aging of NeFeB magnets for Stirling linear alternator applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Find full textPorter, John P. Toxicity of the herbicide, triclopyr, and its metabolites to Daphnia magna. Pullman, Wash: State of Washington Water Research Center, 1991.
Find full textReinbold, Keturah A. Effects of exposure to ammonia on sensitive life stages of aquatic organisms. Champaign, IL: Illinois Natural History Survey, Center for Aquatic Ecology, 1990.
Find full textInternational Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (2nd 2007 Kumamoto, Japan). Explosion, shock wave and hypervelocity phenomena in materials II: Selected peer reviewed papers from the 2nd International Symposium on Explosion, Shock Wave and Hypervelocity Phenomena (ESHP-2), 6-9 March 2007, Kumamoto, Japan. Stafa-Zurich, Switzerland: Trans Tech Publications, 2008.
Find full textHypertension, brain catecholamines, and peptides: Proceedings of the symposium held at the Rudolf Magnus Institute, Utrecht, the Netherlands, 19 October 1988. Amsterdam: Elsevier, 1989.
Find full textValenzuela, S. O. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0011.
Full textBrietzke, Zander. Magnum Opus. Yale University Press, 2021. http://dx.doi.org/10.12987/yale/9780300248470.001.0001.
Full textWernsdorfer, W. Molecular nanomagnets. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.4.
Full textBook chapters on the topic "Magnus effect"
Sonin, Edouard. "Magnus Force and Aharonov—Bohm Effect in Superfluids." In Springer Series in Solid-State Sciences, 119–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04665-4_8.
Full textHably, Ahmad, Jonathan Dumon, Garrett Smith, and Pascal Bellemain. "Control of a Magnus Effect-Based Airborne Wind Energy System." In Airborne Wind Energy, 277–301. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1947-0_12.
Full textMielke, Alina, Daniel Klatt, and Christian Mundt. "Magnus Effect for Finned Bodies of Revolution in Supersonic Flow." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 317–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25253-3_31.
Full textPlakhov, Alexander. "The Magnus Effect and the Dynamics of a Rough Disc." In Exterior Billiards, 197–218. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4481-7_7.
Full textMilutinović, Milan, Mirko Čorić, and Joško Deur. "Optimization-Inspired Control Strategy for a Magnus Effect-Based Airborne Wind Energy System." In Airborne Wind Energy, 303–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1947-0_13.
Full textPenedo, Ricardo J. M., Tiago C. D. Pardal, Pedro M. M. S. Silva, Nuno M. Fernandes, and T. Rei C. Fernandes. "High Altitude Wind Energy from a Hybrid Lighter-than-Air Platform Using the Magnus Effect." In Airborne Wind Energy, 491–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39965-7_29.
Full textKlatt, Daniel, Robert Hruschka, and Friedrich Leopold. "Numerical Investigation of the Magnus Effect of a Generic Projectile at Mach 3 up to 90 $$^{\circ }$$ ∘ Angle of Attack." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 513–21. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03158-3_52.
Full textPetrakovskii, G. A. "Spin-Peierls Magnet CuGeO3." In Itinerant Electron Magnetism: Fluctuation Effects, 437–50. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5080-4_27.
Full textAnnala, J., D. Harding, V. Shiltsev, M. Syphers, and J. Volk. "Magnets and Magnetic Field Effects." In Accelerator Physics at the Tevatron Collider, 93–124. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0885-1_3.
Full textLange, Rebecca A. "Chapter 9. THE EFFECT OF H20, CO2 AND F ON THE DENSITY AND VISCOSITY OF SILICATE MELTS." In Volatiles in Magmas, edited by Michael R. Carroll and John R. Holloway, 331–70. Berlin, Boston: De Gruyter, 1994. http://dx.doi.org/10.1515/9781501509674-015.
Full textConference papers on the topic "Magnus effect"
Canestraro Quadros, Rodrigo, and Luciano Araki. "Comparison Between Turbulence Models Over Magnus Effect." In Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2018. http://dx.doi.org/10.26678/abcm.encit2018.cit18-0180.
Full textSalomaa, M. M., and R. H. Salmelin. "Intrinsic magnus effect in superfluid 3He-A." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38805.
Full textBorodavka, O. S., Alexander V. Volyar, Vladlen G. Shvedov, and Sergey A. Reshetnikoff. "Optical magnus effect in a free space." In International Conference on Correlation Optics, edited by Oleg V. Angelsky. SPIE, 1999. http://dx.doi.org/10.1117/12.370454.
Full textKundikova, N. D. "Optical magnus effect in a few modes fiber." In 16th Congress of the International Commission for Optics: Optics as a Key to High Technology. SPIE, 1993. http://dx.doi.org/10.1117/12.2308637.
Full textSerag-Eldin, Mohamed A., and Mohammed A. Abdul Latif. "Magnus-Effect Rotors for Solar Chimney Power Plants." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31064.
Full textMielke, Alina, Daniel Klatt, and Christian Mundt. "Magnus Effect for Finned Bodies in Supersonic Flow." In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3164.
Full textLukin, Aleksandr, Galina Demidova, Dmitry Lukichev, Anton Rassolkin, Toomas Vaimann, and Ants Kallaste. "Investigation of FEM Software for Magnus Effect Simulation." In 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED). IEEE, 2021. http://dx.doi.org/10.1109/iwed52055.2021.9376396.
Full textKataevskaya, I. V. "Deformation of the speckle pattern under optical magnus effect." In 17th Congress of the International Commission for Optics: Optics for Science and New Technology. SPIE, 1996. http://dx.doi.org/10.1117/12.2298940.
Full textFeng, Bin, and Chao Ming. "Numerical Prediction of Magnus Effect for Dual-Spin Projectile." In 2018 6th International Conference on Mechanical, Automotive and Materials Engineering (CMAME). IEEE, 2018. http://dx.doi.org/10.1109/cmame.2018.8592353.
Full textBabayeva, Marina, Artur Abdullin, Nikolay Polyakov, and Stanislav Aranovskiy. "MPPT Algorithms for Magnus Effect Wind Turbine Control System." In 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS). IEEE, 2020. http://dx.doi.org/10.1109/icepds47235.2020.9249348.
Full textReports on the topic "Magnus effect"
DeSpirito, James. CFD Prediction of Magnus Effect in Subsonic to Supersonic Flight. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada508090.
Full textNishida, Yusuke. Efimov effect in quantum magnets. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1054678.
Full textGoldman M. A. BOOSTER DIPOLE MAGNET HALF-CELL ALIGNMENT INCLUDING MAGNET FRINGE FIELD EFFECTS. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/1150541.
Full textMorgan, G. Effects of interface resistance between magnet laminations. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/1150410.
Full textWei, Jie. Effect of Longitudinal Variation of Multipoles in QRJ Magnets. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/1119433.
Full textSyphers M. J. and A. Jain. Effect on Spin of Systematic Twist iin RHIC Dipole Magnets. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1149858.
Full textParzen, G. The PHENIX Axial Field Magnets Effects and Correction. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/1119123.
Full textSyphers M. J. and F. Mariam. Effects of Leakage Fields from Polarimeter Toroid Magnets. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/1149814.
Full textGiulio Stancari. Parameterization of hysteresis effects in accumulator quadrupole magnets. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/14279.
Full textChung, Y., and J. Galayda. Effect of eddy current in the laminations on the magnet field. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/89553.
Full text