Academic literature on the topic 'Mahler measure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mahler measure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Mahler measure"

1

Rogers, Mathew D. "Hypergeometric functions and Mahler measure." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1420.

Full text
Abstract:
The logarithmic Mahler measure of an n-variable Laurent polynomial, P(x1,...,xn) is defined by [expression]. Using experimental methods, David Boyd conjectured a large number of explicit relations between Mahler measures of polynomials and special values of different types of L-series. This thesis contains four papers which either prove or attempt to prove conjectures due to Boyd. The introductory chapter contains an overview of the contents of each manuscript.
APA, Harvard, Vancouver, ISO, and other styles
2

Staines, Matthew. "On the inverse problem for Mahler Measure." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/48118/.

Full text
Abstract:
We investigate a number of aspects of the inverse problem for Mahler Measure. If β is an algebraic unit, we demonstrate how to determine if there are any reciprocal numbers with measure β. We also give a formula for the number of integer polynomials with measure β and given degree.
APA, Harvard, Vancouver, ISO, and other styles
3

Chern, Shey-jey. "Estimates for the number of polynomials with bounded degree and bounded Mahler measure /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De, Silva Dilum P. "Lind-Lehmer constant for groups of the form Z[superscript]n[subscript]p." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohamed, Ismail Mohamed Ishak. "Lower bounds for heights in cyclotomic extensions and related problems." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mehrabdollahei, Mahya. "La mesure de Mahler d’une famille de polynômes exacts." Thesis, Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS170.pdf.

Full text
Abstract:
Dans cette thèse, nous étudions la suite de mesures de Mahler d’une famille de polynômes à deux variables exacts et réguliers, que nous notons Pd := P0≤i+j≤d xiyj . Elle n’est bornée ni en volume, ni en genre de la courbe algébrique sous-jacente. Nous obtenons une expression pour la mesure de Mahler de Pd comme somme finie de valeurs spéciales du dilogarithme de Bloch-Wigner. Nous utilisons SageMath pour approximer m(Pd) pour 1 ≤ d ≤ 1000. En recourant à trois méthodes différentes, nous prouvons que la limite de la suite de mesures de Mahler de cette famille converge vers 92π2 ζ(3). De plus, nous calculons le développement asymptotique de la mesure de Mahler de Pd et prouvons que sa vitesse de convergence est de O(log dd2 ). Nous démontrons également une généralisation du théorème de Boyd-Lawton, affirmant que les mesures de Mahler multivariées peuvent être approximéess en utilisant les mesures de Mahler de dimension inférieure. Enfin, nous prouvons que la mesure de Mahler de Pd pour d arbitraire peut être écrite comme une combinaison linéaire de fonctions L associées à un caractère de Dirichlet primitif impair. Nous calculons finalement explicitement la représentation de la mesure de Mahler de Pd en termes de fonctions L, pour 1 ≤ d ≤ 6<br>In this thesis we investigate the sequence of Mahler measures of a family of bivariate regular exact polynomials, called Pd := P0≤i+j≤d xiyj , unbounded in both degree and the genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in termsof special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,with arbitrary precision using SageMath. Using 3 different methods we prove that the limitof the sequence of the Mahler measure of this family converges to 92π2 ζ(3). Moreover, we compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of the convergence is O(log dd2 ). We also prove a generalization of the theorem of the Boyd-Lawton which asserts that the multivariate Mahler measures can be approximated using the lower dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d can be written as a linear combination of L-functions associated with an odd primitive Dirichlet character. In addition, we compute explicitly the representation of the Mahler measure of Pd in terms of L-functions, for 1 ≤ d ≤ 6
APA, Harvard, Vancouver, ISO, and other styles
7

Santos, Jefferson Marques. "Altura e equidistribuição de pontos algébricos." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7564.

Full text
Abstract:
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-07-05T14:04:12Z No. of bitstreams: 2 Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T14:31:22Z (GMT) No. of bitstreams: 2 Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>Made available in DSpace on 2017-07-10T14:31:23Z (GMT). No. of bitstreams: 2 Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-06-20<br>The concept of roots of a polynomial is quite simple but has several applications. This concept extends more generally to the case of "small" algebraic points sequences in a curve. This dissertation aims to estimate the size of algebraic numbers by means of Weil height. In addition to showing that they are distributed evenly around the unit circle, through Bilu Equidistribution Theorem.<br>O conceito de raízes de um polinômio é bastante simples mas possui várias aplicações. Este conceito se estende de forma mais geral para o caso de sequências de pontos algébricos “pequenos” em uma curva. Esta dissertação tem por objetivo estimar o tamanho de números algébricos por meio da altura de Weil. Além de mostrar que os mesmos se distribuem uniformemente em torno do círculo unitário, por meio do Teorema de Equidistribuição de Bilu.
APA, Harvard, Vancouver, ISO, and other styles
8

Fhlathuin, Brid ni. "Mahler's measure on Abelian varieties." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296951.

Full text
Abstract:
This thesis is a study of the integration of proximity functions over certain compact groups. Mean values are found of the ultrametric valuation of certain rational functions associated with a divisor on an abelian variety, and it is shown how these may be expressed in terms of an integral, thus finding the analogue, for an abelian variety, of Mahler's definition of the measure of a polynomial. These integrals are shown to arise in a manner which mimics classical Riemann sums, and their relation with the global canonical height is investigated. It is shown that the measure is a rational multiple of log p. Similar results are given for elliptic curves, taking the divisor to be the identity of the group law, and somewhat stronger mean value theorems proven in this more specific case by working directly with local canonical heights rather than approaching them through related functions. Effective asymptotic formulae for the local height are derived, first for the kernel of reduction of a curve and then, via a detailed analysis of the local reduction of the curve, for the group of rational points. The theory of uniform distribution is used to show that the mean value also takes an integral form in the case of an archimedean valuations, and recent inequalities for elliptic forms in logarithms are used to give error terms for the convergence towards the measure. This is undertaken first for the local height on an elliptic curve, and then, in terms of general theta-functions, on an abelian variety. We then seek to exploit these generalisations of the Mahler measure to yield an alternative method to that of Silverman and Tate for the determining of the global height. The integration over a cyclic group of the laws satisfied locally by the height allows us to reformulate our theorems in a manner conducive to practical application. It is demonstrated how our asymptotic formulae may be used together with an appropriate computer software package, PARI in our case, to calculate the mean value of heights, and, more generally, of rational functions, on an elliptic curve and on abehan varieties of higher genus. Some such calculations are displayed, with comments on their efficacy and their possible future development.
APA, Harvard, Vancouver, ISO, and other styles
9

Condon, John Donald. "Mahler measure evaluations in terms of polylogarithms." Thesis, 2004. http://hdl.handle.net/2152/1218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Condon, John Donald Rodríguez Villegas Fernando. "Mahler measure evaluations in terms of polylogarithms." 2004. http://wwwlib.umi.com/cr/utexas/fullcit?p3142710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!