To see the other types of publications on this topic, follow the link: Mahler.

Journal articles on the topic 'Mahler'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mahler.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kämper, Dietrich. "Alfredo Casella und Gustav Mahler." Die Musikforschung 47, no. 2 (2021): 118–27. http://dx.doi.org/10.52412/mf.1994.h2.1108.

Full text
Abstract:
Der Wunsch sich größeren musikalischen Formen zuzuwenden, führte Casella dazu, sich mit der sinfonischen Musik Mahlers zu befassen. Casellas intensives Studium macht sich als erstes in seiner zweiten Sinfonie, c-moll 1908/09, bemerkbar. In den späteren Jahren unternimmt Casella den Versuch, Mahlers sinfonisches Werk auch in Frankreich publik zu machen. Die Wechselbeziehung beider Musiker sind gleichermaßen bedeutsam für die Mahler-Rezeption wie auch für die Entwicklung des zwei Jahrzehnte jüngeren italienischen Komponisten. (Autor)
APA, Harvard, Vancouver, ISO, and other styles
2

Banks, Paul. "Mahler." Musical Times 128, no. 1735 (1987): 497. http://dx.doi.org/10.2307/964854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Banks, Paul. "Mahler." Musical Times 129, no. 1739 (1988): 26. http://dx.doi.org/10.2307/964981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sasaki, Yoshitaka. "Zeta Mahler measures, multiple zeta values and L-values." International Journal of Number Theory 11, no. 07 (2015): 2239–46. http://dx.doi.org/10.1142/s1793042115501006.

Full text
Abstract:
The zeta Mahler measure is the generating function of higher Mahler measures. In this article, explicit formulas of higher Mahler measures, and relations between higher Mahler measures and multiple zeta (star) values are showed by observing connections between zeta Mahler measures and the generating functions of multiple zeta (star) values. Additionally, connections between higher Mahler measures and Dirichlet L-values associated with primitive quadratic characters are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Issa, Zahraa, and Matilde Lalín. "A Generalization of a Theorem of Boyd and Lawton." Canadian Mathematical Bulletin 56, no. 4 (2013): 759–68. http://dx.doi.org/10.4153/cmb-2012-010-2.

Full text
Abstract:
Abstract.The Mahler measure of a nonzero n-variable polynomial P is the integral of log |P| on the unit n-torus. A result of Boyd and Lawton says that the Mahler measure of a multivariate polynomial is the limit of Mahler measures of univariate polynomials. We prove the analogous result for different extensions of Mahler measure such as generalized Mahler measure (integrating the maximum of log |P| for possibly different P’s), multiple Mahler measure (involving products of log |P| for possibly different P’s), and higher Mahler measure (involving logk |P|).
APA, Harvard, Vancouver, ISO, and other styles
6

Oechsle, Siegfried. "Strukturen der Katastrophe." Die Musikforschung 50, no. 2 (2021): 162–82. http://dx.doi.org/10.52412/mf.1997.h2.982.

Full text
Abstract:
Die Finalwirkung im Schlußsatz von Gustav Mahlers 6. <Symphonie> resultiert aus dem komplexen Zusammenwirken unterschiedlicher Schlußmechanismen. Die Katastrophe des Satzes ist präzise kalkuliert, der negative Ausgang gelingt als strenger Sonatensatz. Die Idee der Universalität, die den ästhetischen Kern des Symphonischen im 19. Jahrhundert bildet, wird von Mahler in äußerster Radikalität beansprucht: Die Symphonie meistert souverän ihr eigenes Ende.
APA, Harvard, Vancouver, ISO, and other styles
7

Estrada, Lucía. "ALMA MAHLER." Perseitas 6, no. 1 (2018): 224. http://dx.doi.org/10.21501/23461780.2690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franklin, Peter, and Henry A. Lea. "Marginal Mahler." Musical Times 127, no. 1718 (1986): 209. http://dx.doi.org/10.2307/964711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Banks, Paul. "Mahler/Berio." Musical Times 129, no. 1744 (1988): 305. http://dx.doi.org/10.2307/964892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Anderson, Robert. "Mahler 2..." Musical Times 130, no. 1760 (1989): 618. http://dx.doi.org/10.2307/965596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zychowicz, James L., and Stephen E. Hefling. "Mahler Studies." Notes 55, no. 1 (1998): 89. http://dx.doi.org/10.2307/900353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Namenwirth, S. Micha, and Stephen E. Hefling. "Mahler Studies." Revue belge de Musicologie / Belgisch Tijdschrift voor Muziekwetenschap 53 (1999): 261. http://dx.doi.org/10.2307/3686861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Seidel, Bob. "Hank Mahler." SMPTE Motion Imaging Journal 130, no. 10 (2021): 57–58. http://dx.doi.org/10.5594/jmi.2021.3121487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Threlfall, Robert. "Mahler Misprints." Musical Times 130, no. 1757 (1989): 384. http://dx.doi.org/10.2307/1193427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Snyder, Alison. "Halfdan Mahler." Lancet 389, no. 10064 (2017): 30. http://dx.doi.org/10.1016/s0140-6736(16)32604-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bisson, Frédéric. "Mahler prophète." Multitudes 55, no. 4 (2013): 118. http://dx.doi.org/10.3917/mult.055.0118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Voloshyn, Mykhailo. "GUSTAV MAHLER." Ukrainian music 39, no. 1 (2021): 144–46. http://dx.doi.org/10.32782/2224-0926-2021-1-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kroon, Krista. "Margje Mahler." Zorgvisie 54, no. 2 (2024): 63. http://dx.doi.org/10.1007/s41187-024-2373-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ujvári, Hedvig. "Gustav Mahler és Magyarország." Magyar Könyvszemle 139, no. 3-4 (2023): 488–506. http://dx.doi.org/10.17167/mksz.2023.3-4.488-506.

Full text
Abstract:
Az alábbi tanulmány a Gustav Mahler-kutatáshoz kíván kapcsolódni a magyarországi német nyelvű sajtó, elsősorban annak zászlóshajója, a Pester Lloyd kultúraközvetítő tevékenysége kapcsán. A vizsgálódás egyrészt a lap által közvetített Gustav Mahler-narratívára fókuszál, másfelől a napilap zenekritikai irányultságát is érinti. Adódik a kérdés: mi indokolja a kutatást, amikor Gustav Mahler két és fél évet felölelő budapesti munkássága – nem utolsósorban sajtótörténeti szempontból is – igen jól kikutatott területnek mondható? Zoltan Roman Mahler-monográfiája tudományos igénnyel íródott, elsősorban
APA, Harvard, Vancouver, ISO, and other styles
20

Vilches Fuentes, Gerardo. "Reseña de "Thomas Bernhard. Maestros antiguos según Mahler" de Nicolas Mahler." CuCo, Cuadernos de cómic, no. 2 (April 30, 2014): 240–43. http://dx.doi.org/10.37536/cuco.2014.2.1312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

COONS, MICHAEL. "DEGREE-ONE MAHLER FUNCTIONS: ASYMPTOTICS, APPLICATIONS AND SPECULATIONS." Bulletin of the Australian Mathematical Society 102, no. 3 (2020): 399–409. http://dx.doi.org/10.1017/s0004972720000040.

Full text
Abstract:
We present a complete characterisation of the radial asymptotics of degree-one Mahler functions as $z$ approaches roots of unity of degree $k^{n}$, where $k$ is the base of the Mahler function, as well as some applications concerning transcendence and algebraic independence. For example, we show that the generating function of the Thue–Morse sequence and any Mahler function (to the same base) which has a nonzero Mahler eigenvalue are algebraically independent over $\mathbb{C}(z)$. Finally, we discuss asymptotic bounds towards generic points on the unit circle.
APA, Harvard, Vancouver, ISO, and other styles
22

Lazarević, Anja. "Boulez's orientation towards understanding the beginnings of contemporary music: 'Mahler - our contemporary?'." New Sound, no. 48-2 (2016): 20–27. http://dx.doi.org/10.5937/newso1648020l.

Full text
Abstract:
The central part of Orientations - the collected writings of Pierre Boulez is based on Boulez's mostly short texts about composers whom he considered relevant for his oeuvre and contemplations of music. In addition to other texts, in the part of the book entitled "Examples", Boulez wrote three chapters on the composer Gustav Mahler. Besides Orientations, Boules often spoke about Mahler in his interviews and at lectures he gave. His idea of Mahler was in fact the idea of the beginnings of contemporary music. Considering Boulez's sharp sentences, we come across a wealthy network of judgments abo
APA, Harvard, Vancouver, ISO, and other styles
23

Рябцева, І. М., and С. В. Романовський. "The french horns in the First Symphony by Gustav Mahler." Музикознавча думка Дніпропетровщини, no. 15 (November 4, 2019): 138–49. http://dx.doi.org/10.33287/221911.

Full text
Abstract:
The purpose of the article is to consider the function of the group of French horns in Symphony No. 1 by G. Mahler. In the center of attention of the author – the performance requirements for hornstones, due to the specificity of the interpretation of the symphonic score by G. Mahler. The methods of the research are based on the application of empirical approaches, namely – observation, generalization and systematization of the holstoristic tasks. These methods form a distinct practical component of the proposed scientific research. Structural-functional method of development of the investigat
APA, Harvard, Vancouver, ISO, and other styles
24

Blecha, Ivan. "Thomas Mann and Gustav Mahler." Hudební věda 60, no. 2 (2023): 192–209. http://dx.doi.org/10.54759/musicology-2023-0203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lalín, Matilde, and Gang Wu. "Regulator proofs for Boyd’s identities on genus 2 curves." International Journal of Number Theory 15, no. 05 (2019): 945–67. http://dx.doi.org/10.1142/s1793042119500519.

Full text
Abstract:
We use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the Mahler measures and using hypergeometric identities. Since our proofs involve the regulator, they yield light into the expected relation of each Mahler measure to special values of [Formula: see text]-functions of certain elliptic curves.
APA, Harvard, Vancouver, ISO, and other styles
26

Guilloux, Antonin, and Julien Marché. "Volume function and Mahler measure of exact polynomials." Compositio Mathematica 157, no. 4 (2021): 809–34. http://dx.doi.org/10.1112/s0010437x21007016.

Full text
Abstract:
We study a class of two-variable polynomials called exact polynomials which contains $A$ -polynomials of knot complements. The Mahler measure of these polynomials can be computed in terms of a volume function defined on the vanishing set of the polynomial. We prove that the local extrema of the volume function are on the two-dimensional torus and give a closed formula for the Mahler measure in terms of these extremal values. This formula shows that the Mahler measure of an irreducible and exact polynomial divided by $\pi$ is greater than the amplitude of the volume function. We also prove a K-
APA, Harvard, Vancouver, ISO, and other styles
27

Banks, Paul, More Mahler, Herta Blaukopf, and Richard Stokes. "More Mahler Letters." Musical Times 128, no. 1731 (1987): 267. http://dx.doi.org/10.2307/965109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kennedy, Michael, and Donald Mitchell. "Mahler in Depth." Musical Times 127, no. 1717 (1986): 153. http://dx.doi.org/10.2307/965496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

MAHLER, MICHAEL. "Dr. Mahler replies." Journal of Rheumatology 40, no. 1 (2013): 94. http://dx.doi.org/10.3899/jrheum.121234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Feeney,, Joseph J. "Hopkins, Mahler, Bruckner." Thought 65, no. 4 (1990): 535–43. http://dx.doi.org/10.5840/thought199065439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

De Vos, Jozef. "Euripides meets Mahler." Documenta 29, no. 3-4 (2019): 245–47. http://dx.doi.org/10.21825/doc.v29i3-4.10576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cassels, J. W. S. "Obituary: Kurt Mahler." Bulletin of the London Mathematical Society 24, no. 4 (1992): 381–97. http://dx.doi.org/10.1112/blms/24.4.381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Himsworth, R. "Robert Frederick Mahler." BMJ 333, no. 7565 (2006): 450. http://dx.doi.org/10.1136/bmj.333.7565.450-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Akatsuka, Hirotaka. "Zeta Mahler measures." Journal of Number Theory 129, no. 11 (2009): 2713–34. http://dx.doi.org/10.1016/j.jnt.2009.05.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mossinghoff, Michael J., Georges Rhin, and Qiang Wu. "Minimal Mahler Measures." Experimental Mathematics 17, no. 4 (2008): 451–58. http://dx.doi.org/10.1080/10586458.2008.10128872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rockney, Randy M. "Molly and Mahler." Journal of Medical Humanities 11, no. 3 (1990): 143–45. http://dx.doi.org/10.1007/bf01149322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Schmidt, Elgar. "Mahler contra Lachenmann." Contemporary Music Review 23, no. 3-4 (2004): 115–23. http://dx.doi.org/10.1080/0749445042000285735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Gehlbach, Dan. "Message From Mahler." JAMA: The Journal of the American Medical Association 261, no. 1 (1989): 104. http://dx.doi.org/10.1001/jama.1989.03420010114046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gurram, Sujitha. "Margaret schonberger mahler." Archives of Mental Health 17, no. 1 (2016): 45. http://dx.doi.org/10.4103/2589-9171.228062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zychowicz, James L. "Discovering Mahler: Writings on Mahler 1955–2005 (review)." Notes 64, no. 4 (2008): 733–36. http://dx.doi.org/10.1353/not.0.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Väänänen, Keijo. "On rational approximations of certain Mahler functions with a connection to the Thue–Morse sequence." International Journal of Number Theory 11, no. 02 (2015): 487–93. http://dx.doi.org/10.1142/s1793042115500244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

GON, YASURO, and HIDEO OYANAGI. "GENERALIZED MAHLER MEASURES AND MULTIPLE SINE FUNCTIONS." International Journal of Mathematics 15, no. 05 (2004): 425–42. http://dx.doi.org/10.1142/s0129167x04002363.

Full text
Abstract:
We introduce a generalized Mahler measure. It has relations to multiple sine functions and Dirichlet L-functions. In particular, we are able to express special values of Dirichlet L-functions by sum of logarithmic generalized Mahler measures.
APA, Harvard, Vancouver, ISO, and other styles
43

Fei, Jiarui. "Mahler measure of 3D Landau–Ginzburg potentials." Forum Mathematicum 33, no. 5 (2021): 1369–401. http://dx.doi.org/10.1515/forum-2020-0339.

Full text
Abstract:
Abstract We express the Mahler measures of 23 families of Laurent polynomials in terms of Eisenstein–Kronecker series. These Laurent polynomials arise as Landau–Ginzburg potentials on Fano 3-folds, sixteen of which define K ⁢ 3 {K3} hypersurfaces of generic Picard rank 19, and the rest are of generic Picard rank less than 19. We relate the Mahler measure at each rational singular moduli to the value at 3 of the L-function of some weight-3 newform. Moreover, we find ten exotic relations among the Mahler measures of these families.
APA, Harvard, Vancouver, ISO, and other styles
44

Brimnes, Niels. "Negotiating social medicine in a postcolonial context: Halfdan Mahler in India 1951–61." Medical History 67, no. 1 (2023): 5–22. http://dx.doi.org/10.1017/mdh.2023.11.

Full text
Abstract:
AbstractThis article investigates how World Health Organisation (WHO) Director-General Halfdan Mahler’s views on health care were formed by his experience in India between 1951 and 1961. Mahler spent a large part of the 1950s in India assigned as WHO medical officer to tuberculosis control projects. It argues that Mahler took inspiration from the official endorsement of the doctrine of social medicine that prevailed in India; even if it was challenged by an increasing preference for vertical, techno-centric campaigns. It shows how, from the outset, Mahler was remarkably hostile towards the hig
APA, Harvard, Vancouver, ISO, and other styles
45

Rodriguez-Villegas, Fernando, Ricardo Toledano, and Jeffrey D. Vaaler. "ESTIMATES FOR MAHLER’S MEASURE OF A LINEAR FORM." Proceedings of the Edinburgh Mathematical Society 47, no. 2 (2004): 473–94. http://dx.doi.org/10.1017/s0013091503000701.

Full text
Abstract:
AbstractLet $L_{\bm{a}}(\bm{z})=a_1z_1+a_2z_2+\cdots+a_Nz_N$ be a linear form in $N$ complex variables $z_1,z_2,\dots,z_N$ with non-zero coefficients. We establish several estimates for the logarithmic Mahler measure of $L_{\bm{a}}$. In general, we show that the logarithmic Mahler measure of $L_{\bm{a}}(\bm{z})$ and the logarithm of the norm of $\bm{a}$ differ by a bounded amount that is independent of $N$. We prove a further estimate which is useful for making an approximate numerical evaluation of the logarithmic Mahler measure.AMS 2000 Mathematics subject classification: Primary 11C08; 11Y3
APA, Harvard, Vancouver, ISO, and other styles
46

Johnson, J. "Discovering Mahler: Writings on Mahler 1955-2005. By Donald Mitchell. * The Cambridge Companion to Mahler. Ed. by Jeremy Barham." Music and Letters 90, no. 4 (2009): 703–7. http://dx.doi.org/10.1093/ml/gcp073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

FLAMMANG, V. "THE MAHLER MEASURE OF TRINOMIALS OF HEIGHT 1." Journal of the Australian Mathematical Society 96, no. 2 (2013): 231–43. http://dx.doi.org/10.1017/s1446788713000633.

Full text
Abstract:
AbstractWe study the Mahler measure of the trinomials ${z}^{n} \pm {z}^{k} \pm 1$. We give two criteria to identify those whose Mahler measure is less than $1. 381\hspace{0.167em} 356\cdots = M(1+ {z}_{1} + {z}_{2} )$. We prove that these criteria are true for $n$ sufficiently large.
APA, Harvard, Vancouver, ISO, and other styles
48

Flammang, V. "Comparaison de Deux Mesures de Polynômes." Canadian Mathematical Bulletin 38, no. 4 (1995): 438–44. http://dx.doi.org/10.4153/cmb-1995-064-5.

Full text
Abstract:
RésuméL'objet de cet article est d'une part la comparaison de la mesure de Mahler et de la longueur d'un polynôme à coefficients entiers dont toutes les racines sont réelles positives. Nous comparons ensuite la mesure de Mahler d'un polynôme à coefïîcients entiers ayant toutes ses racines réelles à une mesure généralisant la longueur.
APA, Harvard, Vancouver, ISO, and other styles
49

Arkle, Genevieve Robyn. "Gustav Mahler and the Crisis of Jewish Masculinity." 19th-Century Music 47, no. 3 (2024): 157–75. http://dx.doi.org/10.1525/ncm.2024.47.3.157.

Full text
Abstract:
The fin de siecle was a transformative period for gender identity in Austro-Germany. As women gained more social and sexual independence, many men began to suffer a crisis of masculinity. Gustav Mahler was no exception. Issues of gender identity, sex, and masculinity are woven into the composer’s biography. Mahler’s relationship with masculinity is further complicated when contextualized within his Jewish heritage. Otto Weininger’s Sex and Character of 1903 chided Jewish men for their inherent femininity and added a new, gendered dimension to antisemitic criticism. Attempting to escape this pr
APA, Harvard, Vancouver, ISO, and other styles
50

Dobrowolski, Edward, and Chris Smyth. "Mahler measures of polynomials that are sums of a bounded number of monomials." International Journal of Number Theory 13, no. 06 (2016): 1603–10. http://dx.doi.org/10.1142/s1793042117500907.

Full text
Abstract:
We study Laurent polynomials in any number of variables that are sums of at most [Formula: see text] monomials. We first show that the Mahler measure of such a polynomial is at least [Formula: see text], where [Formula: see text] is the height of the polynomial. Next, restricting to such polynomials having integer coefficients, we show that the set of logarithmic Mahler measures of the elements of this restricted set is a closed subset of the nonnegative real line, with [Formula: see text] being an isolated point of the set. In the final section, we discuss the extent to which such an integer
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!