Academic literature on the topic 'Makromolekula'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Makromolekula.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Makromolekula"

1

Maiz Fernández, Sheila, and Leyre Pérez Álvarez. "Azido hialuroniko nanogelak." EKAIA Euskal Herriko Unibertsitateko Zientzia eta Teknologia Aldizkaria, no. 32 (November 7, 2017): 137–50. http://dx.doi.org/10.1387/ekaia.17857.

Full text
Abstract:
Azido hialuronikoa (AH) izaki bizidun guztien zelulaz kanpoko matrizean (ECM) aurkitzen den polisakarido lineala da. Naturan dauden polimeroen artean aplikazio gehien dituena da. Biobateragarria, ez-zitotoxikoa eta biodegradagarria den makromolekula honek eskala nanometrikoan sintetizatzen denean, ezaugarri ezin hobeak aurkezten dituzten nanogelak garatzeko aukera paregabea eskaintzen du. Lan honetan azido hialuronikoaren eta bere nanogelen sintesi-metodoak, ezaugarriak eta erabilerak laburki deskribatuko dira, nanogel hauen potentziala biomedikuntzaren arloan jakinarazteko asmotan.
APA, Harvard, Vancouver, ISO, and other styles
2

Dargó, Gergő, and György Tibor Balogh. "Új vizsgálati módszerek gyógyszer-makromolekula kölcsönhatások fizikai-kémiai jellemzésére." Magyar Kémiai Folyóirat 127, no. 1 (2021): 21–30. http://dx.doi.org/10.24100/mkf.2021.01.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pokrovskii, V. N. "Dynamics of weakly-coupled linear macromolecules." Uspekhi Fizicheskih Nauk 162, no. 5 (1992): 87. http://dx.doi.org/10.3367/ufnr.0162.199205b.0087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Darusman, Fitrianti, and Taufik Muhammad Fakih. "Studi Interaksi Senyawa Turunan Saponin dari Daun Bidara Arab (Ziziphus spina-christi L.) sebagai Antiseptik Alami secara In Silico." Jurnal Sains Farmasi & Klinis 7, no. 3 (December 28, 2020): 229. http://dx.doi.org/10.25077/jsfk.7.3.229-235.2020.

Full text
Abstract:
Christinin merupakan senyawa turunan glikosida saponin yang paling banyak terdapat dalam daun bidara arab (Ziziphus spina-christi L.). Terdapat empat tipe christinin yaitu christinin-A, B, C, dan D yang diduga memiliki aktivitas sebagai antimikroba yang efektif terhadap bakteri dan jamur, seperti Staphylococcus epidermidis, Echerichia coli, dan Candida albicans yang sering menyebabkan infeksi pada permukaan kulit yang biasanya dapat diatasi dengan penggunaan cairan antiseptik. Penelitian ini bertujuan untuk mengidentifikasi, mengevaluasi serta mengeksplorasi afinitas dan interaksi molekular antara senyawa christinin-A, B, C, dan D terhadap makromolekul target pada Staphylococcus epidermidis, Echerichia coli dan Candida albicans dengan menggunakan simulasi penambatan molekular secara in silico. Molekul senyawa uji terlebih dahulu dioptimasi geometri dengan menggunakan perangkat lunak GaussView 5.0.8 dan Gaussian09. Konformasi terbaik dipilih untuk dilakukan studi interaksi terhadap makromolekul target dengan menggunakan perangkat lunak MGLTools 1.5.6 yang dilengkapi dengan AutoDock 4.2. Interaksi yang terbentuk selanjutnya diamati dengan menggunakan perangkat lunak BIOVIA Discovery Studio 2020. Berdasarkan hasil dari simulasi penambatan molekular, senyawa christinin memiliki afinitas yang baik terhadap makromolekul target pada Staphylococcus epidermidis, Echerichia coli dan Candida albicans. Dengan demikian, senyawa tersebut diprediksi dapat digunakan sebagai kandidat komponen utama dari antiseptik alami.
APA, Harvard, Vancouver, ISO, and other styles
5

Darusman, Fitrianti, and Taufik Muhammad Fakih. "Studi Interaksi Senyawa Turunan Saponin dari Daun Bidara Arab (Ziziphus spina-christi L.) sebagai Antiseptik Alami secara In Silico." Jurnal Sains Farmasi & Klinis 7, no. 3 (December 28, 2020): 233. http://dx.doi.org/10.25077/jsfk.7.3.233-239.2020.

Full text
Abstract:
Christinin merupakan senyawa turunan glikosida saponin yang paling banyak terdapat dalam daun bidara arab (Ziziphus spina-christi L.). Terdapat empat tipe christinin yaitu christinin-A, B, C, dan D yang diduga memiliki aktivitas sebagai antimikroba yang efektif terhadap bakteri dan jamur, seperti Staphylococcus epidermidis, Echerichia coli, dan Candida albicans yang sering menyebabkan infeksi pada permukaan kulit yang biasanya dapat diatasi dengan penggunaan cairan antiseptik. Penelitian ini bertujuan untuk mengidentifikasi, mengevaluasi serta mengeksplorasi afinitas dan interaksi molekular antara senyawa christinin-A, B, C, dan D terhadap makromolekul target pada Staphylococcus epidermidis, Echerichia coli dan Candida albicans dengan menggunakan simulasi penambatan molekular secara in silico. Molekul senyawa uji terlebih dahulu dioptimasi geometri dengan menggunakan perangkat lunak GaussView 5.0.8 dan Gaussian09. Konformasi terbaik dipilih untuk dilakukan studi interaksi terhadap makromolekul target dengan menggunakan perangkat lunak MGLTools 1.5.6 yang dilengkapi dengan AutoDock 4.2. Interaksi yang terbentuk selanjutnya diamati dengan menggunakan perangkat lunak BIOVIA Discovery Studio 2020. Berdasarkan hasil dari simulasi penambatan molekular, senyawa christinin memiliki afinitas yang baik terhadap makromolekul target pada Staphylococcus epidermidis, Echerichia coli dan Candida albicans. Dengan demikian, senyawa tersebut diprediksi dapat digunakan sebagai kandidat komponen utama dari antiseptik alami.
APA, Harvard, Vancouver, ISO, and other styles
6

Linscheid, Michael. "Aufgeklärte Makromoleküle." Chemie in unserer Zeit 36, no. 6 (December 2002): 405–7. http://dx.doi.org/10.1002/1521-3781(200212)36:6<405::aid-ciuz405>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmitz, Sarah, and Helmut Ritter. "Makromolekulare Chemie." Macromolecular Chemistry and Physics 207, no. 13 (July 5, 2006): 1182. http://dx.doi.org/10.1002/macp.200600161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seiffert, Sebastian. "Makromolekulare Chemie." Nachrichten aus der Chemie 64, no. 3 (March 2016): 332–40. http://dx.doi.org/10.1002/nadc.20164046973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lomakin, A. V. "Study of the internal dynamics of macromolecules by the method of laser correlation spectroscopy." Uspekhi Fizicheskih Nauk 153, no. 10 (1987): 360. http://dx.doi.org/10.3367/ufnr.0153.198710j.0360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hermans, J. J. "Makromoleküle in Lösung." Recueil des Travaux Chimiques des Pays-Bas 63, no. 10 (September 3, 2010): 205–10. http://dx.doi.org/10.1002/recl.19440631004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Makromolekula"

1

Maja, Milanović. "Uticaj anjonskog i nejonskog tenzida na fizičko-hemijske osobine vodenih rastvora makromolekula." Phd thesis, Univerzitet u Novom Sadu, Medicinski fakultet u Novom Sadu, 2016. http://www.cris.uns.ac.rs/record.jsf?recordId=101078&source=NDLTD&language=en.

Full text
Abstract:
Razvoj savremenih sistema za ciljanu aplikaciju farmakološki aktivne supstance zasniva se na postojanju interakcija između funkcionalnih grupa makromolekula i površinski aktivne materije što omogućava kontrolisano oslobađanje, smanjenu toksičnost i bolji režim doziranja leka. Prisustvo tenzida, kako se jos površinski aktivne materije nazivaju, u niskim koncentracijima može značajno da izmeni konformaciju makromolekula i viskozitet sistema, i samim tim proširi mogućnosti primene modifikovanjem svojstava. Stoga je poznavanje fizičko-hemijskih osobina vodenih rastvora makromolekul-površinski aktivna materija neophodno radi dobijanja adekvatnog finalnog proizvoda unapređenih osobina uz primenu optimalnih koncentracija pomoćnih supstanci. U radu su prikazani rezultati ispitivanja uticaja natrijum lauril sulfata, predstavnika anjonskih tenzida, odnosno polioksietilen (20) sorbitan monooleata, kao široko korišćenog nejonskog tenzida na fizičko-hemijske osobine vodenih rastvora makromolekula karbomera 940 i ksantan gume. U cilju potpunog razumevanja ovih sistema, čiste komponente su prvo analizirane infracrvenom spektroskopijom primenom Fourierove tranformacije. Ponašanje karbomera 940 odnosno ksantan gume u prisustvu tenzida, ispitano je kombinacijom različitih tehnika (viskozimetrije, konduktometrije, tenziometrije, spektroskopije, spektrofluorimetrije, skenirajuće elektronske mikroskopije) koje pružaju uporedive rezultate. Određene vrednosti interakcionih parametara, potvrdjuju hipotezu o postojanju međudejstva između karbomera 940/ksantan gume i ispitivanih tenzida i ukazuju da povećanje koncentracije makromolekula u rastvoru uslovljava širenje opsega interakcije. Tenzidom indukovane promene konformacije ksantan gume odnosno karbomera 940 potvrđene su i na mikroskopskom nivou. Takođe, rezultati uticaja ispitivanih tenzida na osobine vodenih rastvora smeša karbomera 940 i ksantan gume dobijeni su istim tehnikama. Međudejstvom dva različita polimera bez dodatne sinteze na jeftin i brz način mogu se postići željene karakteristike sistema. Na osnovu eksperimentalnih rezultata definisani su matematički modeli primenom metodologije odzivnih površina i višestruke linearne regresije, čija je validnost statistički potvrđena te se mogu primeniti u optimizaciji i predviđanju fizičko-hemijskih osobina vodenih rastvora analiziranih binarnih sistema.
The possible interactions between polymers and surfactants are of great interest in the development of drug delivery systems, where they improve therapeutic efficiency by the controlled release and reduced toxicity. The addition of even a small amount of surfactant could change the physico-chemical properties of polymer dispersions in terms of viscosity and stability of the system and, consequently, enlarge possibilities for their application. Therefore, understanding the physico-chemical properties of polymer-surfactant aqueous solutions are necessary in order to optimize the formulation of these compounds and consequently to get product with acceptable properties and desired effect. In this thesis the physico-chemical changes of carbomer 940 and xanthan gum influenced by different surfactants were investigated. Widely used anionic surfactant sodium dodecyl sulfate, and nonionic polyoxyethylene (20) sorbitan monooleate were used. In order to completely understand the mechanism of interaction the pure polymers and surfactants were tested by Fourier transform infrared spectrometer. The behaviour of carbomer 940 as well as xanthan gum in the presence of examined surfactants were analysed by the combination of different techniques such as viscometry, conductometry, tensiometry, spectrophotometry, fluorimetry and scanning electron microscopy. The obtained results confirmed the existence of interactions between carbomer 940 / xanthan gum and tested surfactants. Furthermore, the interaction parameters were determined and the polymer saturation points for both surfactants increased with the increase in carbomer 940 and xanthan gum content, respectively. Additionally, the surfactant induced microstructural changes of carbomer 940 as well as xanthan gum were confirmed. Moreover, the physico-chemical properties of the mixture of carbomer 940 and xanthan gum influenced by the addition of anionic and nonionic surfactant were examined by the same techniques. Without additional synthesis the desired characteristics of the system could be achieved by optimizing the interaction between two different polymers. The obtained results were analysed by response surface methodology and multiple linear regression analysis. The defined mathematical models could be used to optimize and predict physico-chemical properties of aqueous solutions of the tested binary systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Wilhelms, Tim A. "Neuartige hydrophile makromolekulare Netzwerke." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=979447399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kapar, Jiří. "Testování možností enkapsulace vybraných druhů makromolekul a bakterií." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2013. http://www.nusl.cz/ntk/nusl-216966.

Full text
Abstract:
Presented diploma thesis is focused on testing encapsulation methods of enzymes and probiotic bacteria. In the theoretical part a summary of different encapsulation techniques used in food industry is given. Further, materials for encapsulation, above all polysaccharides are presented. Next, some procedures of encapsulation of biopolymers and microorganisms – mainly enzymes and probiotic cultures are discussed. In the experimental part methods for preparation of several types of particles based on polysaccharides and liposomes are introduced. Particles were used for encapsulation of selected hydrolytic enzymes and probiotic strains Bifidobacterium breve a Lactobacillus acidophilus. The encapsulation effectiveness was evaluated by analysis of total proteins and enzyme activities. Particles sizes and their stability in water, in selected model foods and model body fluids were observed, too. According to results obtained in this work it was found that encapsulation of enzymes into polysaccharide particles were succesfull in all types of particles (encapsulation effectivness was more than 50 %). Polysaccharide particles showed a very good stability in body fluids as well as in model foods. As the most suitable materials for enzymes encapsulation chitosan and liposomes were found. Polysaccharide particles were used also for the encapsulation of microorganisms. The stability of particles with lactic acid bacteria was similar to particles containig enzymes, very good stability was verified aslo in model foods and model body fluids. Encapsulation enables long-term stabilization of biologically active compounds as well as posibility of their transport and controlled releasing in gastrointestinal tract. Encapsulation of probiotic bacteria could preserve their viability and long-term survival until the product expiration date. Thus, encapsulation is one of the most promissing procedures for production of foods and food suplements of great quality and high additional value.
APA, Harvard, Vancouver, ISO, and other styles
4

Hohner, Andreas. "Amphiphile und Makromoleküle: Phasenverhalten hybrider Mizellen." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-46973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hohner, Andreas. "Amphiphile und Makromoleküle: Phasenverhalten hybrider Mizellen." [S.l.] : [s.n.], 2005. http://edoc.ub.uni-muenchen.de/archive/00004697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fritzler, Roberto. "Bindungsverhalten von Geruchstoffen an makromolekulare Lebensmittelinhaltstoffe." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=972416854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gottlieb, Ronny, and Karl-Friedrich Arndt. "Intelligente Werkstoffe - Vom Makromolekül zum intelligenten Material." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1188378259921-41093.

Full text
Abstract:
Sensitive polymers change their conformation in response to even a little change in the environmental conditions, e. g. temperature, pH value, concentration of a second component, or light. Crosslinking of these polymers and their swelling in water forms smart hydrogels (intelligent hydrogels). Different shapes and dimensions are possible: bulk gel, thin layers, intraor intermolecular crosslinked globular particles. Smart hydrogels display two important properties: Their volume (swelling degree) depends on the environment and can be switched between two states. The gels can thus be used as actuators. As the change in the gel properties is stimulated by changes in the environment, the gels can also be used as sensors. Smart hydrogels are suitable for applications in microsystems, and gel particles are potential carriers for drugs in the human body
Umgebungssensitive Polymere ändern in Abhängigkeit von Umgebungsbedingungen, wie zum Beispiel dem Licht, der Temperatur, dem pH-Wert oder der Konzentration einer zweiten Komponente neben dem Polymer, drastisch ihre Molekülgestalt. Vernetzt und in Wasser gequollen, bilden sie sogenannte smarte Hydrogele. Dabei werden die Besonderheiten eines Makromoleküls, dessen Eigenschaften durch die Umgebung beeinflusst werden, auf ein polymeres Material übertragen. Dies kann ein großer Körper, eine dünne Schicht oder ein Nanopartikel sein. Das Volumen der smarten Hydrogele kann zwischen zwei Zuständen geschaltet werden. Dabei können die Hydrogele wie Aktoren eine Kraft ausüben. Da das Schalten durch die Umgebung stimuliert wird, sind sie als Sensoren verwendbar. Die Polymerstrukturen sind miniaturisierbar, sodass smarte Hydrogele als Komponenten in Mikrosystemen angewendet werden können. Zum Beispiel werden die Partikel zur kontrollierten Abgabe von Arzneimittelwirkstoffen verwendet
APA, Harvard, Vancouver, ISO, and other styles
8

Groß, Andreas [Verfasser]. "Polymorphismus biologischer Makromoleküle in Zellen : Eine Elektronenspinresonanzspektroskopiestudie / Andreas Groß." Konstanz : Bibliothek der Universität Konstanz, 2015. http://d-nb.info/1109923236/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jäger, Barbara Maria. "Holographische Abbildung nicht-kristalliner organischer und biologischer Makromoleküle mit Elektronenpunktquellen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=961536330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Müller, Uwe. "Makromolekulare Kristallographie bei atomarer Auflösung synthetische Nukleinsäurefragmente und bakterielle Kälteschockproteine /." [S.l. : s.n.], 1999. http://www.diss.fu-berlin.de/1999/38/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Makromolekula"

1

Introduction to macromolecular science. New York: Wiley, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Malleshappa, Aminabhavi Tejraj, ed. Introduction to macromolecular science. 2nd ed. [New York]: Wiley, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gotlib, I͡U I͡A. Fizicheskai͡a kinetika makromolekul. Leningrad: "Khimii͡a," Leningradskoe otd-nie, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

R, Khokhlov A., ed. Statisticheskai͡a fizika makromolekul. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Konformat͡s︡ionnyĭ analiz makromolekul. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lechner, M. D., K. Gehrke, and E. H. Nordmeier. Makromolekulare Chemie. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-6011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lechner, M. D., Klaus Gehrke, and Eckhard H. Nordmeier. Makromolekulare Chemie. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41769-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lechner, M. D., E. H. Nordmeier, and K. Gehrke. Makromolekulare Chemie. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-5601-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lechner, M. D., E. H. Nordmeier, and K. Gehrke. Makromolekulare Chemie. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8891-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lechner, M. D., K. Gehrke, and E. H. Nordmeier. Makromolekulare Chemie. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-5094-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Makromolekula"

1

Gondesen, Björn. "Makromoleküle." In Chemie 9, 61–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55100-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bährle-Rapp, Marina. "Makromolekül." In Springer Lexikon Kosmetik und Körperpflege, 337. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karow, Julia. "Polymere – Makromoleküle." In Biochemie 1, 15–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-55060-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seiffert, S. "Struktur der Makromoleküle." In Lechner, Gehrke, Nordmeier - Makromolekulare Chemie, 3–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61109-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lechner, M. D., E. H. Nordmeier, and K. Gehrke. "Struktur der Makromoleküle." In Makromolekulare Chemie, 2–47. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8891-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lechner, M. D., E. H. Nordmeier, and K. Gehrke. "Struktur der Makromoleküle." In Makromolekulare Chemie, 2–42. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-5601-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lechner, M. D., K. Gehrke, and E. H. Nordmeier. "Struktur der Makromoleküle." In Makromolekulare Chemie, 2–47. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-6011-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lechner, M. D., and E. H. Nordmeier. "Struktur der Makromoleküle." In Makromolekulare Chemie, 3–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41769-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lechner, M. D., K. Gehrke, and E. H. Nordmeier. "Struktur der Makromoleküle." In Makromolekulare Chemie, 2–47. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-5094-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vennemann, N., M. Susoff, C. Kummerlöwe, and R. Heering. "Makromolekulare Festkörper und Schmelzen." In Lechner, Gehrke, Nordmeier - Makromolekulare Chemie, 597–810. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61109-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography