Academic literature on the topic 'Malicious domain names'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Malicious domain names.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Malicious domain names"
Yang, Cheng, Tianliang Lu, Shangyi Yan, Jianling Zhang, and Xingzhan Yu. "N-Trans: Parallel Detection Algorithm for DGA Domain Names." Future Internet 14, no. 7 (2022): 209. http://dx.doi.org/10.3390/fi14070209.
Full textYang, Luhui, Guangjie Liu, Weiwei Liu, Huiwen Bai, Jiangtao Zhai, and Yuewei Dai. "Detecting Multielement Algorithmically Generated Domain Names Based on Adaptive Embedding Model." Security and Communication Networks 2021 (May 31, 2021): 1–20. http://dx.doi.org/10.1155/2021/5567635.
Full textWagan, Atif Ali, Qianmu Li, Zubair Zaland, et al. "A Unified Learning Approach for Malicious Domain Name Detection." Axioms 12, no. 5 (2023): 458. http://dx.doi.org/10.3390/axioms12050458.
Full textZhao, Hong, Zhaobin Chang, Guangbin Bao, and Xiangyan Zeng. "Malicious Domain Names Detection Algorithm Based on N-Gram." Journal of Computer Networks and Communications 2019 (February 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4612474.
Full textAlhogail, Areej, and Isra Al-Turaiki. "Improved Detection of Malicious Domain Names Using Gradient Boosted Machines and Feature Engineering." Information Technology and Control 51, no. 2 (2022): 313–31. http://dx.doi.org/10.5755/j01.itc.51.2.30380.
Full textDesmet, Lieven, Jan Spooren, Thomas Vissers, Peter Janssen, and Wouter Joosen. "P remadoma." Digital Threats: Research and Practice 2, no. 1 (2021): 1–24. http://dx.doi.org/10.1145/3419476.
Full textSatoh, Akihiro, Yutaka Fukuda, Gen Kitagata, and Yutaka Nakamura. "A Word-Level Analytical Approach for Identifying Malicious Domain Names Caused by Dictionary-Based DGA Malware." Electronics 10, no. 9 (2021): 1039. http://dx.doi.org/10.3390/electronics10091039.
Full textChiba, Daiki, Mitsuaki Akiyama, Takeshi Yagi, Kunio Hato, Tatsuya Mori, and Shigeki Goto. "DomainChroma: Building actionable threat intelligence from malicious domain names." Computers & Security 77 (August 2018): 138–61. http://dx.doi.org/10.1016/j.cose.2018.03.013.
Full textMoskvichev, Anton, and Ksenia Moskvicheva. "Using DNS Tunneling to Transfer Malicious Software." Voprosy kiberbezopasnosti, no. 4(50) (2022): 91–99. http://dx.doi.org/10.21681/2311-3456-2022-4-91-99.
Full textHo, Hieu Duc, and Huong Van Ho. "Technical research of detection algorithmically generated malicious domain names using machine learning methods." Journal of Science and Technology on Information security 7, no. 1 (2020): 37–43. http://dx.doi.org/10.54654/isj.v7i1.54.
Full textDissertations / Theses on the topic "Malicious domain names"
Likarish, Peter F. "Early detection of malicious web content with applied machine learning." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/4871.
Full textKim, Dae Wook. "Data-Driven Network-Centric Threat Assessment." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495191891086814.
Full textLin, Chia Hung, and 林家宏. "A Lexical Identification Model for Detecting Malicious Domain Names Without Vowels." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/22631757717078302432.
Full textMatveichev, Dmitrii, and DmitriiVladimirovichMatveichev. "Detection of algorithmically generated malicious domain names based on lexical features." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/ecgxj8.
Full textKara, Abdullah Mert. "Malicious Payload Distribution Channels in Domain Name System." Thesis, 2013. http://spectrum.library.concordia.ca/978079/1/Kara_MASc_S2014.pdf.
Full textLIN, HAO-HSIANG, and 林皓翔. "Analyzing Domain Name System Log Data to Detect Suspicious Malicious Websites." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/yya8v7.
Full textBook chapters on the topic "Malicious domain names"
Zhang, Ying, Yongzheng Zhang, and Jun Xiao. "Detecting the DGA-Based Malicious Domain Names." In Trustworthy Computing and Services. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43908-1_17.
Full textRajalakshmi, R., S. Ramraj, and R. Ramesh Kannan. "Transfer Learning Approach for Identification of Malicious Domain Names." In Communications in Computer and Information Science. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5826-5_51.
Full textLasota, Krzysztof, and Adam Kozakiewicz. "Analysis of the Similarities in Malicious DNS Domain Names." In Communications in Computer and Information Science. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22365-5_1.
Full textZeng, Yuwei, Xunxun Chen, Tianning Zang, and Haiwei Tsang. "Winding Path: Characterizing the Malicious Redirection in Squatting Domain Names." In Passive and Active Measurement. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72582-2_6.
Full textGhalati, Nastaran Farhadi, Nahid Farhady Ghalaty, and José Barata. "Towards the Detection of Malicious URL and Domain Names Using Machine Learning." In IFIP Advances in Information and Communication Technology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45124-0_10.
Full textAarthi, B., N. Jeenath Shafana, Judy Flavia, and Balika J. Chelliah. "A Hybrid Multiclass Classifier Approach for the Detection of Malicious Domain Names Using RNN Model." In Computational Vision and Bio-Inspired Computing. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9573-5_35.
Full textHaddadi, Fariba, H. Gunes Kayacik, A. Nur Zincir-Heywood, and Malcolm I. Heywood. "Malicious Automatically Generated Domain Name Detection Using Stateful-SBB." In Applications of Evolutionary Computation. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37192-9_53.
Full textYan, Xiaodan, Baojiang Cui, and Jianbin Li. "Malicious Domain Name Recognition Based on Deep Neural Networks." In Security, Privacy, and Anonymity in Computation, Communication, and Storage. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05345-1_43.
Full textKe, Wuping, Desheng Zheng, Cong Zhang, Biying Deng, Hui Yao, and Lulu Tian. "CGFMD: CNN and GRU Based Framework for Malicious Domain Name Detection." In Advances in Artificial Intelligence and Security. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06767-9_47.
Full textXiong, Cuiwen, Pengxiao Li, Peng Zhang, Qingyun Liu, and Jianlong Tan. "MIRD: Trigram-Based Malicious URL Detection Implanted with Random Domain Name Recognition." In Applications and Techniques in Information Security. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48683-2_27.
Full textConference papers on the topic "Malicious domain names"
Hu, Hongwei, Tingyu Yang, and Haoyue Sun. "Malicious domain name detection based on deep learning and software-defined networks." In Second International Conference on Big Data, Computational Intelligence and Applications (BDCIA 2024), edited by Sos S. Agaian. SPIE, 2025. https://doi.org/10.1117/12.3059691.
Full textÇolhak, Furkan, Mert İlhan Ecevit, Hasan Dağ, and Reiner Creutzburg. "Comparing Deep Neural Networks and Machine Learning for Detecting Malicious Domain Name Registrations." In 2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS). IEEE, 2024. http://dx.doi.org/10.1109/coins61597.2024.10622643.
Full textÇolhak, Furkan, Mert İlhan Ecevit, Hasan Dağ, and Reiner Creutzburg. "SecureReg: Combining NLP and MLP for Enhanced Detection of Malicious Domain Name Registrations." In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2024. http://dx.doi.org/10.1109/icecet61485.2024.10698551.
Full textYadav, Sandeep, Ashwath Kumar Krishna Reddy, A. L. Narasimha Reddy, and Supranamaya Ranjan. "Detecting algorithmically generated malicious domain names." In the 10th annual conference. ACM Press, 2010. http://dx.doi.org/10.1145/1879141.1879148.
Full textKidmose, Egon, Erwin Lansing, Soren Brandbyge, and Jens Myrup Pedersen. "Detection of Malicious and Abusive Domain Names." In 2018 1st International Conference on Data Intelligence and Security (ICDIS). IEEE, 2018. http://dx.doi.org/10.1109/icdis.2018.00015.
Full textYoshida, Kenichi, Kazunori Fujiwara, Akira Sato, and Shuji Sannomiya. "Cardinality Analysis to Classify Malicious Domain Names." In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2020. http://dx.doi.org/10.1109/compsac48688.2020.0-161.
Full textChiba, Daiki, Mitsuaki Akiyama, Takeshi Yagi, Takeshi Yada, Tatsuya Mori, and Shigeki Goto. "DomainChroma: Providing Optimal Countermeasures against Malicious Domain Names." In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2017. http://dx.doi.org/10.1109/compsac.2017.112.
Full textLv, Pin, Lingling Bai, Tingwen Liu, Zhenhu Ning, Jinqiao Shi, and Binxing Fang. "Detection of Malicious Domain Names Based on Hidden Markov Model." In 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). IEEE, 2018. http://dx.doi.org/10.1109/dsc.2018.00105.
Full textLuo, Suliang, Gang Han, An Li, and Jialiang Peng. "Detecting malicious domain names from domain generation algorithms using bi-directional LSTM network." In International Conference on Signal Processing and Communication Security (ICSPCS 2022), edited by Min Xiao and Lisu Yu. SPIE, 2022. http://dx.doi.org/10.1117/12.2655178.
Full textMagalhaes, Fernanda, and Joao Paulo Magalhaes. "Adopting Machine Learning to Support the Detection of Malicious Domain Names." In 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). IEEE, 2020. http://dx.doi.org/10.1109/iotsms52051.2020.9340159.
Full textReports on the topic "Malicious domain names"
Spring, Jonathan M. Modeling Malicious Domain Name Take-down Dynamics: Why eCrime Pays. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada609796.
Full text