Journal articles on the topic 'Malicious domain names'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Malicious domain names.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, Cheng, Tianliang Lu, Shangyi Yan, Jianling Zhang, and Xingzhan Yu. "N-Trans: Parallel Detection Algorithm for DGA Domain Names." Future Internet 14, no. 7 (2022): 209. http://dx.doi.org/10.3390/fi14070209.
Full textYang, Luhui, Guangjie Liu, Weiwei Liu, Huiwen Bai, Jiangtao Zhai, and Yuewei Dai. "Detecting Multielement Algorithmically Generated Domain Names Based on Adaptive Embedding Model." Security and Communication Networks 2021 (May 31, 2021): 1–20. http://dx.doi.org/10.1155/2021/5567635.
Full textWagan, Atif Ali, Qianmu Li, Zubair Zaland, et al. "A Unified Learning Approach for Malicious Domain Name Detection." Axioms 12, no. 5 (2023): 458. http://dx.doi.org/10.3390/axioms12050458.
Full textZhao, Hong, Zhaobin Chang, Guangbin Bao, and Xiangyan Zeng. "Malicious Domain Names Detection Algorithm Based on N-Gram." Journal of Computer Networks and Communications 2019 (February 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4612474.
Full textAlhogail, Areej, and Isra Al-Turaiki. "Improved Detection of Malicious Domain Names Using Gradient Boosted Machines and Feature Engineering." Information Technology and Control 51, no. 2 (2022): 313–31. http://dx.doi.org/10.5755/j01.itc.51.2.30380.
Full textDesmet, Lieven, Jan Spooren, Thomas Vissers, Peter Janssen, and Wouter Joosen. "P remadoma." Digital Threats: Research and Practice 2, no. 1 (2021): 1–24. http://dx.doi.org/10.1145/3419476.
Full textSatoh, Akihiro, Yutaka Fukuda, Gen Kitagata, and Yutaka Nakamura. "A Word-Level Analytical Approach for Identifying Malicious Domain Names Caused by Dictionary-Based DGA Malware." Electronics 10, no. 9 (2021): 1039. http://dx.doi.org/10.3390/electronics10091039.
Full textChiba, Daiki, Mitsuaki Akiyama, Takeshi Yagi, Kunio Hato, Tatsuya Mori, and Shigeki Goto. "DomainChroma: Building actionable threat intelligence from malicious domain names." Computers & Security 77 (August 2018): 138–61. http://dx.doi.org/10.1016/j.cose.2018.03.013.
Full textMoskvichev, Anton, and Ksenia Moskvicheva. "Using DNS Tunneling to Transfer Malicious Software." Voprosy kiberbezopasnosti, no. 4(50) (2022): 91–99. http://dx.doi.org/10.21681/2311-3456-2022-4-91-99.
Full textHo, Hieu Duc, and Huong Van Ho. "Technical research of detection algorithmically generated malicious domain names using machine learning methods." Journal of Science and Technology on Information security 7, no. 1 (2020): 37–43. http://dx.doi.org/10.54654/isj.v7i1.54.
Full textVinayakumar, R., K. P. Soman, and Prabaharan Poornachandran. "Detecting malicious domain names using deep learning approaches at scale." Journal of Intelligent & Fuzzy Systems 34, no. 3 (2018): 1355–67. http://dx.doi.org/10.3233/jifs-169431.
Full textBubnov, Ya V., and N. N. Ivanov. "Text analysis of DNS queries for data exfiltration protection of computer networks." Informatics 17, no. 3 (2020): 78–86. http://dx.doi.org/10.37661/1816-0301-2020-17-3-78-86.
Full textJeng, Tzung-Han, Yi-Ming Chen, Chien-Chih Chen, and Chuan-Chiang Huang. "MD-MinerP: Interaction Profiling Bipartite Graph Mining for Malware-Control Domain Detection." Security and Communication Networks 2020 (October 29, 2020): 1–20. http://dx.doi.org/10.1155/2020/8841544.
Full textHuang, XiangDong, Hao Li, Jiajia Liu, et al. "A Malicious Domain Detection Model Based on Improved Deep Learning." Computational Intelligence and Neuroscience 2022 (June 25, 2022): 1–13. http://dx.doi.org/10.1155/2022/9241670.
Full textLuo, Xi, Yixin Li, Hongyuan Cheng, and Lihua Yin. "AGCN-Domain: Detecting Malicious Domains with Graph Convolutional Network and Attention Mechanism." Mathematics 12, no. 5 (2024): 640. http://dx.doi.org/10.3390/math12050640.
Full textZeng, Feng. "Classification for DGA-Based Malicious Domain Names with Deep Learning Architectures." International Journal of Intelligent Information Systems 6, no. 6 (2017): 67. http://dx.doi.org/10.11648/j.ijiis.20170606.11.
Full textSelvi, Jose, Ricardo J. Rodríguez, and Emilio Soria-Olivas. "Detection of algorithmically generated malicious domain names using masked N-grams." Expert Systems with Applications 124 (June 2019): 156–63. http://dx.doi.org/10.1016/j.eswa.2019.01.050.
Full textFUKUSHI, Naoki, Daiki CHIBA, Mitsuaki AKIYAMA, and Masato UCHIDA. "Exploration into Gray Area: Toward Efficient Labeling for Detecting Malicious Domain Names." IEICE Transactions on Communications E103.B, no. 4 (2020): 375–88. http://dx.doi.org/10.1587/transcom.2019nrp0005.
Full textTang, Hengliang, and Chengang Dong. "Detection of malicious domain names based on an improved hidden Markov model." International Journal of Wireless and Mobile Computing 16, no. 1 (2019): 58. http://dx.doi.org/10.1504/ijwmc.2019.097426.
Full textDong, Chengang, and Hengliang Tang. "Detection of malicious domain names based on an improved hidden Markov model." International Journal of Wireless and Mobile Computing 16, no. 1 (2019): 58. http://dx.doi.org/10.1504/ijwmc.2019.10018546.
Full textZhao, Hong, Zhaobin Chang, Weijie Wang, and Xiangyan Zeng. "Malicious Domain Names Detection Algorithm Based on Lexical Analysis and Feature Quantification." IEEE Access 7 (2019): 128990–99. http://dx.doi.org/10.1109/access.2019.2940554.
Full textNdichu, Samuel, Sangwook Kim, Seiichi Ozawa, Tao Ban, Takeshi Takahashi, and Daisuke Inoue. "Detecting Web-Based Attacks with SHAP and Tree Ensemble Machine Learning Methods." Applied Sciences 12, no. 1 (2021): 60. http://dx.doi.org/10.3390/app12010060.
Full textSATOH, Akihiro, Yutaka NAKAMURA, Yutaka FUKUDA, Daiki NOBAYASHI, and Takeshi IKENAGA. "An Approach for Identifying Malicious Domain Names Generated by Dictionary-Based DGA Bots." IEICE Transactions on Information and Systems E104.D, no. 5 (2021): 669–72. http://dx.doi.org/10.1587/transinf.2020ntl0001.
Full textSatoh, Akihiro, Yutaka Fukuda, Toyohiro Hayashi, and Gen Kitagata. "A Superficial Analysis Approach for Identifying Malicious Domain Names Generated by DGA Malware." IEEE Open Journal of the Communications Society 1 (2020): 1837–49. http://dx.doi.org/10.1109/ojcoms.2020.3038704.
Full textLiu, Zhanghui, Yudong Zhang, Yuzhong Chen, Xinwen Fan, and Chen Dong. "Detection of Algorithmically Generated Domain Names Using the Recurrent Convolutional Neural Network with Spatial Pyramid Pooling." Entropy 22, no. 9 (2020): 1058. http://dx.doi.org/10.3390/e22091058.
Full textPapadopoulos, Pavlos, Nikolaos Pitropakis, William J. Buchanan, Owen Lo, and Sokratis Katsikas. "Privacy-Preserving Passive DNS." Computers 9, no. 3 (2020): 64. http://dx.doi.org/10.3390/computers9030064.
Full textLin, Shaoqing, Shangping Zhong, and Kaizhi Cheng. "A Method with Pre-trained Word Vectors for Detecting Wordlist-based Malicious Domain Names." Journal of Physics: Conference Series 1757, no. 1 (2021): 012171. http://dx.doi.org/10.1088/1742-6596/1757/1/012171.
Full textChen, Shaojie, Bo Lang, Yikai Chen, and Chong Xie. "Detection of Algorithmically Generated Malicious Domain Names with Feature Fusion of Meaningful Word Segmentation and N-Gram Sequences." Applied Sciences 13, no. 7 (2023): 4406. http://dx.doi.org/10.3390/app13074406.
Full textAl-Nawasrah, Ahmad, Ammar Ali Almomani, Samer Atawneh, and Mohammad Alauthman. "A Survey of Fast Flux Botnet Detection With Fast Flux Cloud Computing." International Journal of Cloud Applications and Computing 10, no. 3 (2020): 17–53. http://dx.doi.org/10.4018/ijcac.2020070102.
Full textRaju, Mr B. Ravi, S. Sai likhitha, N. Deepa, and S. Sushma. "Survey on Phishing Websites Detection using Machine Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (2022): 2376–81. http://dx.doi.org/10.22214/ijraset.2022.42843.
Full textBubnov, Y. V., and N. N. Ivanov. "DGA domain detection and botnet prevention using Q-learning for POMDP." Doklady BGUIR 19, no. 2 (2021): 91–99. http://dx.doi.org/10.35596/1729-7648-2021-19-2-91-99.
Full textAnoop, Reddy Thatipalli, Aravamudu Preetham, Kartheek K., and Dennisan Aju. "Exploring and comparing various machine and deep learning technique algorithms to detect domain generation algorithms of malicious variants." Computer Science and Information Technologies 3, no. 2 (2022): 94–103. https://doi.org/10.11591/csit.v3i2.pp94-103.
Full textBerman, Daniel, Anna Buczak, Jeffrey Chavis, and Cherita Corbett. "A Survey of Deep Learning Methods for Cyber Security." Information 10, no. 4 (2019): 122. http://dx.doi.org/10.3390/info10040122.
Full textThatipalli, Anoop Reddy, Preetham Aravamudu, K. Kartheek, and Aju Dennisan. "Exploring and comparing various machine and deep learning technique algorithms to detect domain generation algorithms of malicious variants." Computer Science and Information Technologies 3, no. 2 (2022): 94–103. http://dx.doi.org/10.11591/csit.v3i2.p94-103.
Full textAnoop Reddy Thatipalli, Preetham Aravamudu, K. Kartheek, and Aju Dennisan. "Exploring and comparing various machine and deep learning technique algorithms to detect domain generation algorithms of malicious variants." Computer Science and Information Technologies 3, no. 2 (2022): 94–103. http://dx.doi.org/10.11591/csit.v3i2.pp94-103.
Full textYang, Luhui, Jiangtao Zhai, Weiwei Liu, et al. "Detecting Word-Based Algorithmically Generated Domains Using Semantic Analysis." Symmetry 11, no. 2 (2019): 176. http://dx.doi.org/10.3390/sym11020176.
Full textMaia, Ricardo J. M., Dustin Ray, Sikha Pentyala, et al. "An end-to-end framework for private DGA detection as a service." PLOS ONE 19, no. 8 (2024): e0304476. http://dx.doi.org/10.1371/journal.pone.0304476.
Full textLi, Runchuan, Shuhong Chen, Jiawei Yang, and Entao Luo. "Edge-Based Detection and Classification of Malicious Contents in Tor Darknet Using Machine Learning." Mobile Information Systems 2021 (November 22, 2021): 1–13. http://dx.doi.org/10.1155/2021/8072779.
Full textKomalasari, Dinny, Tri Basuki Kurniawan, Deshinta Arrova Dewi, Mohd Zaki Zakaria, Zubaile Abdullah, and Alde Alanda. "Phishing Domain Detection Using Machine Learning Algorithms." International Journal on Advanced Science, Engineering and Information Technology 15, no. 1 (2025): 318–27. https://doi.org/10.18517/ijaseit.15.1.12553.
Full textAbu Al-Haija, Qasem, Manar Alohaly, and Ammar Odeh. "A Lightweight Double-Stage Scheme to Identify Malicious DNS over HTTPS Traffic Using a Hybrid Learning Approach." Sensors 23, no. 7 (2023): 3489. http://dx.doi.org/10.3390/s23073489.
Full textAslin, Sushmitha R. "Phishing attack detection using gradient boosting." i-manager's Journal on Digital Forensics & Cyber Security 2, no. 1 (2024): 33. http://dx.doi.org/10.26634/jdf.2.1.20840.
Full textYan, Guanghua, Qiang Li, Dong Guo, and Bing Li. "AULD: Large Scale Suspicious DNS Activities Detection via Unsupervised Learning in Advanced Persistent Threats." Sensors 19, no. 14 (2019): 3180. http://dx.doi.org/10.3390/s19143180.
Full textZou, Futai, Siyu Zhang, Weixiong Rao, and Ping Yi. "Detecting Malware Based on DNS Graph Mining." International Journal of Distributed Sensor Networks 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/102687.
Full textKamalov, Bulat R., and Marina V. Tumbinskaya. "Software for detecting “hidden miners” in a browser environment." Journal Of Applied Informatics 18, no. 1 (2023): 96–110. http://dx.doi.org/10.37791/2687-0649-2023-18-1-96-110.
Full textT, Ms MADHU, Ms MONICA M, and Ms SHYMA S. "URL BASED PHISHING DETECTION." International Scientific Journal of Engineering and Management 04, no. 01 (2025): 1–6. https://doi.org/10.55041/isjem02220.
Full textOzmen, Muslum Ozgur, Mehmet Oguz Sakaoglu, Jackson Bizjak, et al. "Why Am I Seeing Double? An Investigation of Device Management Flaws in Voice Assistant Platforms." Proceedings on Privacy Enhancing Technologies 2025, no. 2 (2025): 719–33. https://doi.org/10.56553/popets-2025-0084.
Full textZhuravchak, Danyil, Eduard Kiiko, and Valeriy Dudykevych. "Using EBPF to identify ransomware that use DGA DNS queries." Collection "Information Technology and Security" 11, no. 2 (2023): 166–74. http://dx.doi.org/10.20535/2411-1031.2023.11.2.293760.
Full textKolli, Chandra Sekhar, Nihar M. Ranjan, Dharani Kumar Talapula, Vikram S. Gawali, and Siddhartha Sankar Biswas. "Multiverse fractional calculus based hybrid deep learning and fusion approach for detecting malicious behavior in cloud computing environment." Multiagent and Grid Systems 18, no. 3-4 (2023): 193–217. http://dx.doi.org/10.3233/mgs-220214.
Full textRazaque, Abdul, Bandar Alotaibi, Munif Alotaibi, Shujaat Hussain, Aziz Alotaibi, and Vladimir Jotsov. "Clickbait Detection Using Deep Recurrent Neural Network." Applied Sciences 12, no. 1 (2022): 504. http://dx.doi.org/10.3390/app12010504.
Full textWu, Bozhi, Sen Chen, Cuiyun Gao, et al. "Why an Android App Is Classified as Malware." ACM Transactions on Software Engineering and Methodology 30, no. 2 (2021): 1–29. http://dx.doi.org/10.1145/3423096.
Full text