To see the other types of publications on this topic, follow the link: Maltose binding protein (MBP).

Dissertations / Theses on the topic 'Maltose binding protein (MBP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Maltose binding protein (MBP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Zhiguo. "Structure, secretion, and proteolysis study of MBP-containing heterologous proteins in Pichia pastoris." Scholarly Commons, 2010. https://scholarlycommons.pacific.edu/uop_etds/2415.

Full text
Abstract:
The E. coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N -terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris , a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N -terminal partner to several C -terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C -terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C -terminal of the MBP domain, including the spacer and cargo regions, but the MEP domain could still act to enhance the secretion of certain cargo proteins. The attempt to identify the unknown protease was unsuccessful. However, in contrast to other fusion partners, MBP was secreted with the cargo when it was fused as a C -terminal peptide to an N -terminal cargo protein. These studies provide insights into the role of proteases and fusion partners in the secretory mechanism of P. pastoris , suggesting new strategies to optimize this expression system.
APA, Harvard, Vancouver, ISO, and other styles
2

Gomes, Pâmela Oliveira Martins. "Imobilização de Galectina-1 e Galectina-1 fusionada com Maltose Binding Protein (MBP-Gal-1) sobre superfície eletropolimerizada com [N-(3-Pirrol-1-il-propil)-4,4\'-bipiridina] (PPB) para a construção de um biossensor de lactose." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-11102018-100311/.

Full text
Abstract:
As galectinas são proteínas que se ligam a -galactosídeos por meio do domínio de reconhecimento de carboidratos (CRD do inglês, Carbohydrate Recognition Domain) e que participam de vários processos de reconhecimento celular, sinalização, adesão e destinação intracelular de proteínas recém-sintetizadas. A primeira galectina, Galectina-1 (Gal-1), foi identificada em 1976 e possui um papel importante na progressão e proliferação tumoral, angiogênese, resistência a drogas e processos inflamatórios. Assim, é interessante a construção de dispositivos com Galectinas imobilizadas, preservando o CRD para o estudo de mecanismos e/ou detecção destas doenças. Neste trabalho a produção e caracterização de uma proteína recombinante fusionada, a MBP-Gal-1, foi descrita. A proposta do projeto foi pautada na hipótese de que a fusão da MBP à Gal-1 seria uma excelente estratégia para imobilização orientada da proteína de interesse, (Gal-1), sobre eletrodos modificados com filme polimérico, auxiliando na preservação da atividade da biomolécula imobilizada para posterior desenvolvimento de biossensor. A MBP-Gal-1 foi purificada utilizando 2 colunas com resinas diferentes: sepharose/lactose e amilose onde foi possível comprovar a atividade/preservação dos sítios ativos da Gal-1 e MBP, respectivamente. A proteína fusionada teve seu estado oligomérico estimado e seu raio hidrodinâmico determinado pela técnica Espalhamento Dinâmico da Luz sendo que a mesma se encontrava na forma monomérica com raio hidrodinâmico de 4 nm ± 1,26. A massa molecular de 57,834 kDa para a MBP-Gal-1 foi obtida através da técnica de Espectrometria de Massas MALDI-TOF/TOF. O PPB, material polimérico empregado na modificação dos eletrodos de carbono vítreo e ouro, foi sintetizado e teve sua estrutura confirmada pela técnica de Ressonância Magnética Nuclear; este material foi utilizado para a realização dos ensaios de Espectroscopia de Impedância Eletroquímica (EIE) e Ressonância de Plásmons de Superfície (SPR) para a construção do biossensor. Os ensaios EIE utilizando eletrodo de carbono vítreo modificado com PPB mostraram a importância da imobilização orientada da sonda (MBP-Gal-1) para garantir a preservação da atividade biológica da mesma, uma vez que os resultados relativos ao aumento da Resistência à Transferência de Carga (Rtc), após adição do alvo (lactose), foram da ordem de 80% a mais para a proteína fusionada MBP-Gal-1 quando comparados à proteína nativa Gal-1. Os ensaios de SPR revelaram maior SPR efetiva para a MBP-Gal-1 imobilizada sobre superfície de eletrodo Au-SPR modificado com PPB o qual apresentou bom desempenho na detecção de lactose.
Galectins are proteins that bind to -galactosides by the Carbohydrate Recognition Domain (CRD) and participate in various processes of cell recognition, signaling, adhesion and intracellular destination of newly synthesized proteins. The first galectin, Galectin-1 (Gal-1), was identified in 1976 and plays an important role in tumor progression and proliferation, angiogenesis, drug resistance and inflammatory processes. Thus, it is interesting to desing devices with immobilized Galectins, preserving its CRD for the study of mechanisms and /or detection of such diseases. In this work the production and characterization of a fused recombinant protein, MBP-Gal-1, has been described. The project goal was based on the hypothesis that the fusion of the MBP to Gal-1 would be an excellent strategy for oriented immobilization of the protein of interest, (Gal-1), onto PPB- modified electrodes, promoting the preservation of the biomolecule activity immobilized for further development of a biosensor. MBP-Gal-1 was purified using 2 columns with different resins: sepharose/lactose and amylose and it was possible to prove the activity/preservation of both CRDs from Gal-1 and MBP, respectively. Dynamic Light Scattering showed that MBP-Gal-1 was in a monomeric form and with a hydrodynamic radius of 4 nm ± 1,26. The molecular mass of 57.834 kDa for MBP-Gal-1 was obtained by the technique of MALDI-TOF/TOF Mass Spectrometry. The PPB, a polymeric material used in the modification of glassy carbon and gold electrodes, was synthesized and its structure was confirmed by the Nuclear Magnetic Resonance (NMR); this material was used to carry out the Electrochemical Impedance Spectroscopy (EIS) and Surface Plasmon Resonance (SPR) tests for the construction of the biosensor. EIS assays using PPB-modified glassy carbon electrode showed the importance of probe-immobilization (MBP-Gal-1) to ensure the preservation of the biological activity of the protein, since the results related to the increase in Resistance of Charge Transfer (Rct), after addition of the target (lactose), were 80% higher for the fused protein MBP-Gal-1 when compared to the Gal-1 native-form protein. The SPR assays revealed a greater effective SPR for MBP-Gal-1 immobilized onto PPB-modified Au-SPR electrode surface which showed good performance in the detection of lactose.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Xiaochen. "The binding modes of maltose binding protein with different ligands studied by NMR." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29813.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xiaochen 1969. "The binding modes of maltose binding protein with different ligands studied by NMR /." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27438.

Full text
Abstract:
Maltose Binding Protein (MBP) of Escherichia Coli, a kind of periplasmic protein, can bind its ligands interacting predominantly either with their anomeric end (end-on binding) or with the middle of the maltodextrin chain (middle binding). Using NMR spectroscopy, we have studied the modes by which maltose, linear maltodextrin and some derivatives like $ beta$-cyclodextrin bind to MBP. 1D proton difference spectra and 2D HSQC proton-nitrogen correlation spectra were acquired of MBP in the presence of different ligands. Spectra with linear maltodextrins showed many common features and were distinctly different from those of MBP with $ beta$-cyclodextrin. 2D HSQC spectra suggest further that MBP- $ beta$-cyclodextrin adopts an open form conformation similar to that of ligand free MBP because of the surprisingly similarity of their spectra. Ligands such as $ beta$-cyclodextrin, can not be transported into the cyto-plasm but have high affinity for MBP, multiple $ alpha$(1-4) linkages and no reducing end. These ligands bind to MBP mainly by the middle binding mode. This suggests that this mode determines high affinity binding of ligand to MBP, but doesn't produce a physiologically active complex.
APA, Harvard, Vancouver, ISO, and other styles
5

Shahir, Shafinaz. "Engineering and the maltose binding protein for metal ions sensing." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tabona, Peter. "The role and regulation of mannose binding protein : studies in transgenic mice." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Day, Matthew. "Production and analysis of escherichia coli groE chaperonins." Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Merstorf, Céline. "Stabilité conformationnelle et dépliement de la protéine MalE : Étude par nanopore et par spectroscopie RMN." Thesis, Cergy-Pontoise, 2011. http://www.theses.fr/2011CERG0571/document.

Full text
Abstract:
Nous avons étudié le couplage dépliement-transport de la Maltose Binding Protein (MBP ou MalE), une protéine périplasmique d'E. Coli et d'un mutant instable, le MalE219, en fonction de la concentration d'un agent dénaturant, le chlorure de guanidium (GdnHCl) à l'échelle de la molécule unique. La technique utilisée est basée sur la détection électrique du transport de macromolécules à travers un nanopore protéique (l'Aérolysine d'Aeromonas Hydrophila) inséré dans une bicouche lipidique plane. Les résultats obtenus ont été comparés à ceux obtenus lors d'une précédente étude réalisée à travers un autre nanopore protéique, l'alpha-hémolysine du Staphylocoque doré, de géométrie et de charge nette différente. Nous avons montré l'existence de temps courts et longs de blocage du courant associés à des protéines dépliées ou partiellement repliées. La fréquence des blocages du courant permet d'obtenir la fraction de protéine dépliée passant à travers le pore en fonction de la concentration en GdnHCl. Les courbes de dénaturation obtenues avec les deux pores montrent un comportement sigmoïdale très similaire. Le type de pore n'influence donc pas la dénaturation des protéines, mais uniquement leur dynamique de transport. En revanche, la courbe de dénaturation du mutant instable présente un déplacement vers les concentrations plus faibles en GdnHCl. Il a été montré également que la présence du maltose comme ligand sur le MalE219 stabilise nettement sa structure. Pour La MBP, les temps de blocages longs diminuent avec l'augmentation de la concentration de GdnHCl montrant une dynamique de transition vitreuse . Cette technique est appropriée à l'étude du dépliement et des changements de conformation de protéines, mais ne permet pas d'obtenir des informations structurales sur les états intermédiaires de repliement. Ainsi, la spectroscopie RMN a été utilisée pour tenter de caractériser ces états intermédiaires de repliement, notamment par la méthode d'échange proton-deutérium. Elle consiste à suivre les cinétiques d'échange des résidus de la protéine sur des spectres 2D 1H-15N HSQC à différentes concentrations de GdnHCl.Ainsi 180 résidus sur les 370 que compte la MBP ont été suivis lors de la dénaturation en présence de GdnHCl. Les deux hélices en C-terminal sont très accessibles au solvant et se dénaturent facilement. La MBP est composée de deux domaines globulaires, le domaine N-ter et le domaine C-ter. Les éléments de structures secondaires situés dans la zone intermédiaire entre les deux domaines (principalement des brins β) sont particulièrement affectés par l'agent dénaturant. D'autres structures secondaires dans les domaines globulaires sont très protégées et plutôt stables. Il est donc proposé que les protéines partiellement dépliées s'insèrent dans le pore par l'extrémité C-terminal et que des parties de structuration tertiaire restent stable entraînant le blocage du pore
We study the unfolding-transport mechanism of the Maltose Binding Protein (MBP or MalE), a periplasm protein of E. Coli and a destabilised variant, the MalE219, as the function of the concentration of denaturing agent, Guanidine Hydrochloride(GdnHCl) at the single molecule level. The technique is based on the electrical detection of the macromolecule transport through a nanometer-scale channel, Aerolysin channel, inserted into a planar lipid bilayer. Results obtained were compared to previous data with another channel, the alpha-Hemolysin. Both channels have different geometry and net charge.We show that we can distinguish unfolded states from partially folded ones with aerolysin pore.Unfolded proteins induce short current blockades, their duration is constant as a function of the concentration of denaturing agent. Partially folded proteins exhibit long blockades whose life times decrease as the concentration of GdnHCl increase, this indicates a possible glassy dynamics.The frequency of the short current blockades increases as the concentration of denaturing agent increases, following a sigmoidal denaturation curve.The unfolding curve of native MBP with Aerolysin pore is similar to the one previously measured with Hemolysin channel. The denaturation curve of the destabilized variant obtained with Aerolysin is shifted towards lower value of GdnHCl concentration in agreement with bulk measurements. We show also that the addition of maltose stabilizes the structure of MalE219. This nanopore recording technique is also suitable for the study of unfolding and conformation changes of proteins.In order to obtain structural informations that nanopore recording cannot provides, the structure of MBP along its denaturation curve was studied by NMR spectroscopy. The Hydrogen-exchange method known to be sensitive to folding intermediates was specially used. It consists in tracking hydrogen-deuterium exchange rates for amino on the 2D 1H-15N HSQC spectra.Thus, 180 residus of 370 for MBP was followed during denaturation in the presence of GdnHCl. The two last helices in C-terminal of MBP are accessible to the solvent and are denaturated easily. MBP is a two domains protein, N-ter domain and C-ter domain. It was found out that the C- and D-domain of MBP (mainly alpha-helices) could be relatively stable in presence of denaturing agent and that beta strands which make the link between the two domains would be affected by the denaturing agent. It was proposed that partially unfolded proteins enter the pore by the C-terminal end and that stable tertiary structure still present block the pore
APA, Harvard, Vancouver, ISO, and other styles
9

Sanchez, Lecaros Luis. "Cloning and expression of superoxide dismutase from Sarcoptes scabiei in Escherichia coli." Thesis, Uppsala University, Department of Medical Biochemistry and Microbiology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7428.

Full text
Abstract:

Sarcoptes scabiei is a disease-causing parasitic mite of humans and animals that is prevalent worldwide. The parasite lives in burrows in the epidermis of its host. These burrows are formed by a combination of mechanical destruction by the mite and secretion of various factors.

The enzyme superoxide dismutase (SOD) catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide. As such, it is an important antioxidant defense in nearly all cells exposed to oxygen. In this project, the enzyme was expressed in transformed Escherichia coli cells. The SOD cDNA from S. scabiei was ligated into two different expression vectors: pPU16 and pET-14b. The S. scabiei SOD open reading frame reported here is 696 nucleotides long and yields a protein with a molecular weight of  69.5 kDa. Only one of the constructs was successfully created, using pPU16. The construct was designated pPU110 and has a sequence coding for a hexahistidine tag downstream of the SOD cDNA and has a sequence coding for the maltose binding protein (MBP) upstream.

The expression plasmid pPU110 was verified by DNA-sequencing and the tested in different expression experiments. Analysis using SDS-PAGE showed that recombinant fusion SOD could be readily expressed in E.coli.

APA, Harvard, Vancouver, ISO, and other styles
10

Nickolaus, Chen [Verfasser], and Wolfgang E. [Akademischer Betreuer] Trommer. "The Molten Globule State of Maltose-Binding Protein: Structural Characterization by Electron Paramagnetic Resonance Spectroscopy / Chen Nickolaus ; Betreuer: Wolfgang E. Trommer." Kaiserslautern : Technische Universität Kaiserslautern, 2017. http://d-nb.info/1123572135/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ferraroni, Natasha Rebouças. "Níveis séricos e polimorfismos gênicos da Lectina Ligadora de Manose (MBL) e da Serino Protease Associada à MBP (MASP)-2 em uma amostra da população brasileira." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/5/5133/tde-20072011-141341/.

Full text
Abstract:
A Lectina Ligadora de Manose (MBL) é uma proteína que reconhece carboidratos na superfície microbiana levando à ativação do sistema complemento. Este processo é mediado por Serino Proteases tal como a MASP-2. O complexo MBL/MASP-2 é responsável pela formação da C3 convertase C4bC2b. Os níveis séricos de MBL e a MASP-2 (genes MBL2 e MASP-2, respectivamente) são geneticamente determinados, e podem ser influenciados pela presença de polimorfismos em um único nucleotídeo SNPs em genes codificadores destas proteínas. OBJETIVO: Determinar os níveis séricos e polimorfismos gênicos da MBL e MASP-2 em uma amostra da população brasileira. MÉTODOS: 294 amostras de doadores de sangue [mediana = 36,51 ± 10,56; 18-63 anos; 91/294 (30,95%) sexo feminino, 203/294 (69,05%) sexo masculino] foram genotipadas para os SNPs do éxon 1 (MBL2): SNPs localizados nos códons 52 (ArgCys), 54 (GlyAsp) e 57 (GlyGlu) e SNP Asp371Tyr (D371Y, A>C ) do gene da MASP-2 (éxon 9). Foi utilizado o ensaio de temperatura de dissociação para éxon 1 (MBL2) e sequenciamento direto dos promoters (H/L, X/Y e P/Q, nas posições -550, -221 e +4, respectivamente). A combinação das variantes do éxon 1 MBL2 foram agrupadas e denominadas alelo O e o genótipo selvagem foi denominado A. O éxon 9 da MASP-2 foi genotipado através da plataforma TaqMan. RESULTADOS: MBL2: 58,5% A/A, 36,39% A/O e 5,1% O/O; promoters: 13% H/H, 39% H/L, 48% L/L; 2% X/X, 26% X/Y, 72% Y/Y; 52% P/P, 37% P/Q, 11% Q/Q; haplótipos encontrados: 15% LXPA, 28% HYPA, 8% LYQO, 12% LYPO, 11% LYPA, 22% LYQA e 4% HYPO. Quanto à produção, 56,12% produziram altos níveis de MBL, 30,61% níveis médios e 13,27% níveis baixos ou insuficientes de MBL. Para MASP-2: 38,78% A/A, 44,56% A/C e 16,67% C/C. CONCLUSÃO: A prevalência (5,1%) SNP O/O do éxon 1 (MBL2) está de acordo com a literatura brasileira, é semelhante à européia (4%) e japonesa (5%), menor que a africana (10-14%). Níveis séricos de MBL corresponderam aos genótipos determinados. Esta é a primeira avaliação da frequência do SNP D371Y do gene MASP-2 em uma população brasileira. Os resultados deste trabalho fornecem subsídios para estudos sobre repercussão de MBL e MASP-2 em situações clínicas
BACKGROUND: Mannose-binding lectin (MBL) is a protein that recognizes carbohydrates on microbial surface leading to complement activation. This process is mediated by MBL-associated serine proteases, such as MASP-2. MBL/MASP-2 complex is responsible for generating the C3 convertase C4bC2b. Both MBL and MASP-2 levels are genetically determined, and can be influenced by the presence of single nucleotide polymorphisms (SNPs) in the genes encoding for these proteins (namely MBL2 and MASP-2). OBJTECTIVE: to determine MBL and MASP-2 serum levels and the frequencies of MBL2 and MASP-2 gene polymorphisms in a Brazilian population sample. METHODS: 294 blood donor samples [median age = 36.51 ± 10.56 years, range 18-63, 91/294 (31%) females and 203/294 (69%) males] were genotyped for MBL2 exon 1 SNPs: single point mutation in codon 52 (ArgCys), 54 (GlyAsp) and 57 (GlyGlu), and MASP-2 polymorphism Asp371Tyr (D371Y, A>C) (exon 9). A melting temperature assay was used to perform the genotyping of MBL2 SNPs. The combination of variants of MBL2 were grouped together as allele O, wild types were indicated as A. Exon 1 promoters were evaluated by direct genotype sequencing- alleles H/L, X/Y and P/Q (positions -550, -221 and +4, respectively). MASP-2 exon 9 genotyping was performed by using TaqMan pre-developed assay. RESULTS: MBL2: 58.5% A/A, 36.39% A/O, 5.1% O/O; promoters: 13% H/H, 39% H/L, 48% L/L; 2% X/X, 26% X/Y, 72% Y/Y; 52% P/P, 37% P/Q, 11% Q/Q; haplotypes: 15% LXPA, 28% HYPA, 8% LYQO, 12% LYPO, 11% LYPA, 22% LYQA and 4% HYPO. MASP-2: 38.78% A/A, 44.56% A/C and 16.67% C/C. CONCLUSION: The prevalence (5.1%) of O/O genotype of MBL2 exon 1 SNPs in our population is in accordance with Brazilian reports, similar to European (4%) and Japanese (5%); lower than Africans (10-14%). There is a correlation between MBL serum levels and genotyping. Moreover, this is the first report of D371Y MASP-2 polymorphism frequency in a Brazilian population. Our data may contribute to new insights on the role of MBL and MASP-2 in clinical conditions
APA, Harvard, Vancouver, ISO, and other styles
12

Nelson, Bryn D. "Examining the role of MalG in the assembly and function of the maltose transport complex in Escherichia coli : implications for the study of integral membrane proteins /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/11508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

New, Christopher Paul. "Analysis of Tha4 Function and Organization in Chloroplast Twin Arginine Transport." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1586878527570538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Prajapati, Ravindra Singh. "Thermodynamic Characterization Of Wild Type And Mutants Of The E.coli Periplasmic Binding Proteins LBP, LIVBP, MBP And RBP." Thesis, 2006. https://etd.iisc.ac.in/handle/2005/428.

Full text
Abstract:
Native states of globular proteins typically show stabilization in the range of 5 to 15 kcal/mol with respect to their unfolded states. There has been a considerable progress in the area of protein stability and folding in recent years, but increasing protein stability through rationally designed mutations has remained a challenging task. Current ability to predict protein structure from the amino acid sequence is also limited due to the lack of quantitative understanding of various factors that defines the single lowest energy fold or native state. The most important factors, which are considered primarily responsible for the structure and stability of the biological active form of proteins, are hydrophobic interactions, hydrogen bonding and electrostatic interactions such as salt bridges as well as packing interactions. Several studies have been carried out to decipher the importance of each these factors in protein stability and structure via rationally designed mutant proteins. The limited success of previous studies emphasizes the need for comprehensive studies on various aspect of protein stability. An integrated approach involving thermodynamic and structural analysis of a protein is very useful in understanding this particular phenomenon. This approach is very useful in relating the thermodynamic stability with the structure of a protein. A survey of the current literature on thermodynamic stability of protein indicates that the majority of the model proteins which have been used for understanding the determinants of protein stability are small, monomeric, single domain globular proteins like RNase A, Lysozyme and Myoglobin. On the other hand large proteins often show complex unfolding transition profiles that are rarely reversible. The major part of this thesis is focused on studying potential stabilizing/destabilizing interactions in small and large globular proteins. These interactions have been identified and characterized by exploring the effects of various rationally designed mutations on protein stability. Spectroscopic, molecular biological and calorimetric techniques were employed to understand the relationships between protein sequence, structure and stability. The experimental systems used are Leucine binding proteins, Leucine isoleucine valine binding protein (LIVBP), Maltose binding protein (MBP), Ribose binding protein (RBP) and Thioredoxin (Trx). The last section of the thesis discusses thermodynamic properties of molten globule states of the periplasmic protein LBP, LIVBP, MBP and RBP. The amino acid Pro is unique among all the twenty naturally occurring amino acids. In the case of proline, the Cδ of the side chain is covalently linked with the main chain nitrogen atom in a five membered ring. Therefore, Pro lacks amide hydrogen and it is not able to form a main chain hydrogen bond with a carbonyl oxygen. Hence Pro is typically not found in the hydrogen bonded, interior region of α-helix. There have been several studies which showed that introduction of the Pro residue into the interior of an α-helix is destabilizing. Although, it is not common to find Pro residue in the interiors of an α-helix, it has been reported that it occurs with appreciable frequency (14%). The thermodynamic effects of replacements of Pro residue in helix interiors of MBP were investigated in Chapter 2 of this thesis. Unlike many other small proteins, MBP contains 21 Pro residues distributed throughout the structure. It contains three residues in the interiors of α-helices, at positions 48, 133 and 159. These Pro residues were replaced with an alanine and serine amino acids using site directed mutagenesis. Stabilities of all the mutant and wild type proteins have been studied via isothermal chemical denaturation at pH 7.4 and thermal denaturation as a function of pH ranging from pH 6.5 to 10.4. It has been observed that replacement of a proline residue in the middle of an α-helix does not always stabilize a protein. It can be stabilizing if the carbonyl oxygen of residue (i-3) or (i-4) is well positioned to form a hydrogen bond with the ith (mutated) residue and the position of mutation is not buried or conserved in the protein. Partially exposed position have the ability to form main chain hydrogen bonds and Ala seems to be a better choice to substitute Pro than Ser. Unlike other amino acids, the pyrolidine ring of Pro residue imposes rigid constraints on the rotation about the N---Cα bond in the peptide backbone. This causes conformational restriction of the φ dihedral angle of Pro to -63±15º in polypeptides. Therefore, introduction of a rigid Pro residue into an appropriate position in a protein sequence is expected to decrease the conformational entropy of the denatured state and consequently lead to protein stabilization. In Chapter 3 of this thesis, the thermodynamic effects of Pro introduction on protein stability has been investigated in LIVBP, MBP, RBP and Trx. Thirteen single and two double mutants have been generated in the above four proteins. Three of the MBP mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, CD spectroscopy was used to show the absence of structural changes. Stability of all the mutant and wild type proteins was studied via isothermal chemical denaturation at neutral pH and thermal denaturation as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, six of the thirteen single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, two mutants showed no change and five were destabilized. In five of the six cases, the stabilization was because of a reduced entropy of unfolding. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were non-additive. In addition to the hydrogen bond, hydrophobic and electrostatic interactions, other interactions like cation-π and aromatic-aromatic interactions etc. are also considered to make important contributions to protein stability. The relevance of cation-π interaction in biological systems has been recognized in recent years. It has been reported that positively charged amino acids (Lys, Arg and His) are often located within 6 Å of the ring centroids of aromatic amino acids (Phe, Tyr and Trp). The importance of cation-π interaction in protein stability has been suggested by previous theoretical and experimental studies. We have attempted to determine the magnitude of cation-π interactions of Lys with aromatic amino acids in four different proteins (LIVBP, MBP, RBP and Trx) in Chapter 4 of the thesis. Cation-π pairs have been identified by using the program CaPTURE. We have found thirteen cation-π pairs in five different proteins (PDB ID’s 2liv, 1omp, 1anf, 1urp and 2trx). Five cation-π pairs were selected for the study. In each pair, Lys was replaced with Gln and Met. In a separate series of experiments, the aromatic amino acid in each cation-π pair was replaced by Leu. Stabilities of wild type (WT) and mutant proteins were characterized by similar methods, to those discussed in previous chapters. Gln and Aromatic → Leu mutants were consistently less stable than the corresponding Met mutants reflecting the non-isosteric nature of these substitutions. The strength of the cation-π interaction was assessed by the value of the change in the free energy of unfolding (ΔΔG0=ΔG0 (Met) - ΔG0(WT)). This ranged from +1.1 to –1.9 kcal/mol (average value – 0.4 kcal/mol) at 298 K and +0.7 to –2.6 kcal/mol (average value –1.1 kcal/mol) at the Tm of each WT. It therefore appears that the strength of cation-π interactions increases with temperature. In addition, the experimentally measured values are appreciably smaller in magnitude than the calculated values with an average difference |ΔG0expt -ΔG0calc|avg of 2.9 kcal/mol. At room temperature, the data indicate that cation-π interactions are at best weakly stabilizing and in some cases are clearly destabilizing. However at elevated temperatures, close to typical Tm’s, cation-π interactions are generally stabilizing. In Chapter 5, we have attempted to characterize molten globule states for the periplasmic proteins LBP, LIVBP, MBP and RBP. It was observed that all these proteins form molten globule states at acidic pH (3 - 3.4). All these molten globule states showed cooperative thermal transitions and bound with their ligand comparable to (LBP and LIVBP) or with lower (MBP and RBP) affinity than the corresponding native states. Trp, ANS fluorescence and near-UV CD spectra for ligand bound and free forms of molten globule states were found to be very similar. This shows that molten globule states of these proteins have the ability to bind to their corresponding ligand without conversion to the native state. All four molten globule states showed destabilization relative to the native state. ΔCp values indicate that these molten globule states contain approximately 29-67% of tertiary structure relative to the native state. All four proteins lack prosthetic groups and disulfide bonds. Therefore, it is likely that molten globule states of these proteins are stabilized via hydrophobic and hydrogen bonding interactions.
APA, Harvard, Vancouver, ISO, and other styles
15

Prajapati, Ravindra Singh. "Thermodynamic Characterization Of Wild Type And Mutants Of The E.coli Periplasmic Binding Proteins LBP, LIVBP, MBP And RBP." Thesis, 2006. http://hdl.handle.net/2005/428.

Full text
Abstract:
Native states of globular proteins typically show stabilization in the range of 5 to 15 kcal/mol with respect to their unfolded states. There has been a considerable progress in the area of protein stability and folding in recent years, but increasing protein stability through rationally designed mutations has remained a challenging task. Current ability to predict protein structure from the amino acid sequence is also limited due to the lack of quantitative understanding of various factors that defines the single lowest energy fold or native state. The most important factors, which are considered primarily responsible for the structure and stability of the biological active form of proteins, are hydrophobic interactions, hydrogen bonding and electrostatic interactions such as salt bridges as well as packing interactions. Several studies have been carried out to decipher the importance of each these factors in protein stability and structure via rationally designed mutant proteins. The limited success of previous studies emphasizes the need for comprehensive studies on various aspect of protein stability. An integrated approach involving thermodynamic and structural analysis of a protein is very useful in understanding this particular phenomenon. This approach is very useful in relating the thermodynamic stability with the structure of a protein. A survey of the current literature on thermodynamic stability of protein indicates that the majority of the model proteins which have been used for understanding the determinants of protein stability are small, monomeric, single domain globular proteins like RNase A, Lysozyme and Myoglobin. On the other hand large proteins often show complex unfolding transition profiles that are rarely reversible. The major part of this thesis is focused on studying potential stabilizing/destabilizing interactions in small and large globular proteins. These interactions have been identified and characterized by exploring the effects of various rationally designed mutations on protein stability. Spectroscopic, molecular biological and calorimetric techniques were employed to understand the relationships between protein sequence, structure and stability. The experimental systems used are Leucine binding proteins, Leucine isoleucine valine binding protein (LIVBP), Maltose binding protein (MBP), Ribose binding protein (RBP) and Thioredoxin (Trx). The last section of the thesis discusses thermodynamic properties of molten globule states of the periplasmic protein LBP, LIVBP, MBP and RBP. The amino acid Pro is unique among all the twenty naturally occurring amino acids. In the case of proline, the Cδ of the side chain is covalently linked with the main chain nitrogen atom in a five membered ring. Therefore, Pro lacks amide hydrogen and it is not able to form a main chain hydrogen bond with a carbonyl oxygen. Hence Pro is typically not found in the hydrogen bonded, interior region of α-helix. There have been several studies which showed that introduction of the Pro residue into the interior of an α-helix is destabilizing. Although, it is not common to find Pro residue in the interiors of an α-helix, it has been reported that it occurs with appreciable frequency (14%). The thermodynamic effects of replacements of Pro residue in helix interiors of MBP were investigated in Chapter 2 of this thesis. Unlike many other small proteins, MBP contains 21 Pro residues distributed throughout the structure. It contains three residues in the interiors of α-helices, at positions 48, 133 and 159. These Pro residues were replaced with an alanine and serine amino acids using site directed mutagenesis. Stabilities of all the mutant and wild type proteins have been studied via isothermal chemical denaturation at pH 7.4 and thermal denaturation as a function of pH ranging from pH 6.5 to 10.4. It has been observed that replacement of a proline residue in the middle of an α-helix does not always stabilize a protein. It can be stabilizing if the carbonyl oxygen of residue (i-3) or (i-4) is well positioned to form a hydrogen bond with the ith (mutated) residue and the position of mutation is not buried or conserved in the protein. Partially exposed position have the ability to form main chain hydrogen bonds and Ala seems to be a better choice to substitute Pro than Ser. Unlike other amino acids, the pyrolidine ring of Pro residue imposes rigid constraints on the rotation about the N---Cα bond in the peptide backbone. This causes conformational restriction of the φ dihedral angle of Pro to -63±15º in polypeptides. Therefore, introduction of a rigid Pro residue into an appropriate position in a protein sequence is expected to decrease the conformational entropy of the denatured state and consequently lead to protein stabilization. In Chapter 3 of this thesis, the thermodynamic effects of Pro introduction on protein stability has been investigated in LIVBP, MBP, RBP and Trx. Thirteen single and two double mutants have been generated in the above four proteins. Three of the MBP mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, CD spectroscopy was used to show the absence of structural changes. Stability of all the mutant and wild type proteins was studied via isothermal chemical denaturation at neutral pH and thermal denaturation as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, six of the thirteen single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, two mutants showed no change and five were destabilized. In five of the six cases, the stabilization was because of a reduced entropy of unfolding. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were non-additive. In addition to the hydrogen bond, hydrophobic and electrostatic interactions, other interactions like cation-π and aromatic-aromatic interactions etc. are also considered to make important contributions to protein stability. The relevance of cation-π interaction in biological systems has been recognized in recent years. It has been reported that positively charged amino acids (Lys, Arg and His) are often located within 6 Å of the ring centroids of aromatic amino acids (Phe, Tyr and Trp). The importance of cation-π interaction in protein stability has been suggested by previous theoretical and experimental studies. We have attempted to determine the magnitude of cation-π interactions of Lys with aromatic amino acids in four different proteins (LIVBP, MBP, RBP and Trx) in Chapter 4 of the thesis. Cation-π pairs have been identified by using the program CaPTURE. We have found thirteen cation-π pairs in five different proteins (PDB ID’s 2liv, 1omp, 1anf, 1urp and 2trx). Five cation-π pairs were selected for the study. In each pair, Lys was replaced with Gln and Met. In a separate series of experiments, the aromatic amino acid in each cation-π pair was replaced by Leu. Stabilities of wild type (WT) and mutant proteins were characterized by similar methods, to those discussed in previous chapters. Gln and Aromatic → Leu mutants were consistently less stable than the corresponding Met mutants reflecting the non-isosteric nature of these substitutions. The strength of the cation-π interaction was assessed by the value of the change in the free energy of unfolding (ΔΔG0=ΔG0 (Met) - ΔG0(WT)). This ranged from +1.1 to –1.9 kcal/mol (average value – 0.4 kcal/mol) at 298 K and +0.7 to –2.6 kcal/mol (average value –1.1 kcal/mol) at the Tm of each WT. It therefore appears that the strength of cation-π interactions increases with temperature. In addition, the experimentally measured values are appreciably smaller in magnitude than the calculated values with an average difference |ΔG0expt -ΔG0calc|avg of 2.9 kcal/mol. At room temperature, the data indicate that cation-π interactions are at best weakly stabilizing and in some cases are clearly destabilizing. However at elevated temperatures, close to typical Tm’s, cation-π interactions are generally stabilizing. In Chapter 5, we have attempted to characterize molten globule states for the periplasmic proteins LBP, LIVBP, MBP and RBP. It was observed that all these proteins form molten globule states at acidic pH (3 - 3.4). All these molten globule states showed cooperative thermal transitions and bound with their ligand comparable to (LBP and LIVBP) or with lower (MBP and RBP) affinity than the corresponding native states. Trp, ANS fluorescence and near-UV CD spectra for ligand bound and free forms of molten globule states were found to be very similar. This shows that molten globule states of these proteins have the ability to bind to their corresponding ligand without conversion to the native state. All four molten globule states showed destabilization relative to the native state. ΔCp values indicate that these molten globule states contain approximately 29-67% of tertiary structure relative to the native state. All four proteins lack prosthetic groups and disulfide bonds. Therefore, it is likely that molten globule states of these proteins are stabilized via hydrophobic and hydrogen bonding interactions.
APA, Harvard, Vancouver, ISO, and other styles
16

Sharma, Likhesh. "Modulation of Protein Stability and Function by Cysteine Mutations and Signal Peptides." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3746.

Full text
Abstract:
Chapter 1gives a general introduction to the CXXC motif found in natural proteins. It then reviews the studies where disulphides were engineered in various proteins. The various strategies developed to engineer metal binding activity and redox activity are described. The objectives behind engineering the CXXC motif into a protein, such as imparting it novel metal-binding and redox activities, are discussed next. Alternative strategies which achieve the same objectives are described as well. This chapter then introduces the model proteins used in the course of this thesis: maltose-binding protein (MBP) and E. coli. Thioredoxin (Trx). This chapter also briefly discusses the role of signal peptide in protein export. Chapter 2describes the experimental studies and their results in which we introduced the widely occurring cysteine motif CXXC into the maltose binding protein (one-at-a-time, in five alpha-helices, at the N-termini) to test three hypotheses: 1) Does a disulphide bond form at the N-terminus? 2) Does the protein acquire any oxido-reductase activity? 3) Does it acquire new metal-binding properties? The results confirmed: 1) Each cysteine pair forms a stable intrahelical disulphide bond under non-reducing conditions. 2) The five mutant proteins acquire considerable oxidoreductase activity, tested by the insulin aggregation assay. 3) The mutants acquire novel metal-binding properties for Ni2+, Cd2+, and Zn2+ upon reduction. Further, introducing the CXXC motif neither destabilizes the protein nor affects its global structure. Our results demonstrated that introduction of CXXC motifs can be used to probe alpha-helix start sites and to introduce oxidoreductase and metal binding functionality into proteins. Chapter 3describes further experimentson a few of the metal ion binding mutants discussed in the previous chapter. We explore the effect and usefulness of reducing agents (DTT and TCEP) on the binding of metal salts to the CXXC mutants. We also studied the explore of metal salts on the thermal stability of the mutants and show that metal ions bind to the CXXC motif even when the protein is in the unfolded state. The chapter describes the use of an immobilized metal affinity chromatography (IMAC) based method for the purification of MBP mutants.Yields ranging from 60-85% were obtained for thethree MBP mutants. The cysteines were located at different positions in thesethree MBP mutants (MBP 42-45 Cys, MBP 128-131 Cys, and MBP 359-359 Cys mutants). The yields for wild-type MBP, a single cysteine mutant (MBP S211C), a double cysteine mutant (MBP 230, 30) were all below 15%. Chapter 3 also reports a new crystal structure of the MBP356-359 mutant in ligand bound form:it crystallizes as an intermolecular dimer, bonded by two disulfides formed by the cysteines of the CXXC motif. Chapter 4describes the effects of inserting signal peptide sequences on protein folding and expression. We fused the malE and pelB signal sequences at the N-terminus of the model protein thioredoxin and observed that the wild-type and pelB fusion constructs are soluble when expressed, but the malE construct was targeted to inclusion bodies. Nonetheless, it could be refolded in vitro to yield a monomeric product with a secondary structure identical to the wild-type thioredoxin. This chapter also details the thermodynamic stability, aggregation propensity and activity of the purified recombinant proteins in comparison with the wild-type thioredoxin. The presence of the signal sequences reduces the thermodynamic stability and activity of the recombinants and increases their aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, different signal sequences affect protein stability and aggregation differently. Chapter 5describes three different strategies to label a protein at different sites with cysteine-specific fluorophores using MBP as the model. The first strategy exploits the differential accessibility of residues within MBP in its maltose-bound and maltose-free states. The second strategy involves insertion of a 14-amino-acid loop called V3 from the HIV gp120 protein into MBP; anti-V3 antibodies shield the cysteine residue present inside the inserted loop, while we label another cysteine present outside the loop. In the third strategy, we introduce a third cysteine residue onto the background of the MBP mutant already containing a disulphide bridge at the N-terminus of one of its helices (discussed in Chapter 2). We label the third, free cysteine while the cysteines involved in the disulphide bridge remain protected. We observed successful differential labelling using the first strategy and also observed FRET between the fluorophore labels. Similarly, after trying the second strategy we could individually label all the mutants except one. The third strategy based on the triple-cysteine mutant was not successful because the fluorophore we chose (DBM) did not show site specificity and instead labelled all three cysteines. In addition, the triple-cysteine mutant did not even show disulphide-bridge formation.We showed that indeed the V3 loop inserted in MBP binds anti-V3 antibodies and we could individually label all the mutants expect D41C. The third strategy was not successful because unfortunately in the triple cysteine mutant, the fluorophore we chose (DBM) did not show site specificity and labeled all three cysteines. In addition, the disulfide bridge was not found to be present in the triple cysteine mutant. Chapter 6discusses the synthesis, characterization and binding of various maltolipids, (and their corresponding maltose-free controls) to MBP. The maltolipids were synthesised with varying linker lengths and anchor- & head-groups and then used to prepare liposomes and micelles. Although both liposomal and micellar forms could bind to MBP, only the micelles were screened subsequently for their ability to bind to MBP. The binding was assessed using various techniques such as fluorescence spectroscopy, gel filtration and thermal stability assay. We screened the maltolipids and determined how their anchor group, linker length and charge on the head group influences the binding of MBP to micelles formed by these maltolipids.
APA, Harvard, Vancouver, ISO, and other styles
17

Sharma, Likhesh. "Modulation of Protein Stability and Function by Cysteine Mutations and Signal Peptides." Thesis, 2016. http://etd.iisc.ernet.in/2005/3746.

Full text
Abstract:
Chapter 1gives a general introduction to the CXXC motif found in natural proteins. It then reviews the studies where disulphides were engineered in various proteins. The various strategies developed to engineer metal binding activity and redox activity are described. The objectives behind engineering the CXXC motif into a protein, such as imparting it novel metal-binding and redox activities, are discussed next. Alternative strategies which achieve the same objectives are described as well. This chapter then introduces the model proteins used in the course of this thesis: maltose-binding protein (MBP) and E. coli. Thioredoxin (Trx). This chapter also briefly discusses the role of signal peptide in protein export. Chapter 2describes the experimental studies and their results in which we introduced the widely occurring cysteine motif CXXC into the maltose binding protein (one-at-a-time, in five alpha-helices, at the N-termini) to test three hypotheses: 1) Does a disulphide bond form at the N-terminus? 2) Does the protein acquire any oxido-reductase activity? 3) Does it acquire new metal-binding properties? The results confirmed: 1) Each cysteine pair forms a stable intrahelical disulphide bond under non-reducing conditions. 2) The five mutant proteins acquire considerable oxidoreductase activity, tested by the insulin aggregation assay. 3) The mutants acquire novel metal-binding properties for Ni2+, Cd2+, and Zn2+ upon reduction. Further, introducing the CXXC motif neither destabilizes the protein nor affects its global structure. Our results demonstrated that introduction of CXXC motifs can be used to probe alpha-helix start sites and to introduce oxidoreductase and metal binding functionality into proteins. Chapter 3describes further experimentson a few of the metal ion binding mutants discussed in the previous chapter. We explore the effect and usefulness of reducing agents (DTT and TCEP) on the binding of metal salts to the CXXC mutants. We also studied the explore of metal salts on the thermal stability of the mutants and show that metal ions bind to the CXXC motif even when the protein is in the unfolded state. The chapter describes the use of an immobilized metal affinity chromatography (IMAC) based method for the purification of MBP mutants.Yields ranging from 60-85% were obtained for thethree MBP mutants. The cysteines were located at different positions in thesethree MBP mutants (MBP 42-45 Cys, MBP 128-131 Cys, and MBP 359-359 Cys mutants). The yields for wild-type MBP, a single cysteine mutant (MBP S211C), a double cysteine mutant (MBP 230, 30) were all below 15%. Chapter 3 also reports a new crystal structure of the MBP356-359 mutant in ligand bound form:it crystallizes as an intermolecular dimer, bonded by two disulfides formed by the cysteines of the CXXC motif. Chapter 4describes the effects of inserting signal peptide sequences on protein folding and expression. We fused the malE and pelB signal sequences at the N-terminus of the model protein thioredoxin and observed that the wild-type and pelB fusion constructs are soluble when expressed, but the malE construct was targeted to inclusion bodies. Nonetheless, it could be refolded in vitro to yield a monomeric product with a secondary structure identical to the wild-type thioredoxin. This chapter also details the thermodynamic stability, aggregation propensity and activity of the purified recombinant proteins in comparison with the wild-type thioredoxin. The presence of the signal sequences reduces the thermodynamic stability and activity of the recombinants and increases their aggregation propensity, with malE having much larger effects than pelB. These studies show that besides acting as address labels, different signal sequences affect protein stability and aggregation differently. Chapter 5describes three different strategies to label a protein at different sites with cysteine-specific fluorophores using MBP as the model. The first strategy exploits the differential accessibility of residues within MBP in its maltose-bound and maltose-free states. The second strategy involves insertion of a 14-amino-acid loop called V3 from the HIV gp120 protein into MBP; anti-V3 antibodies shield the cysteine residue present inside the inserted loop, while we label another cysteine present outside the loop. In the third strategy, we introduce a third cysteine residue onto the background of the MBP mutant already containing a disulphide bridge at the N-terminus of one of its helices (discussed in Chapter 2). We label the third, free cysteine while the cysteines involved in the disulphide bridge remain protected. We observed successful differential labelling using the first strategy and also observed FRET between the fluorophore labels. Similarly, after trying the second strategy we could individually label all the mutants except one. The third strategy based on the triple-cysteine mutant was not successful because the fluorophore we chose (DBM) did not show site specificity and instead labelled all three cysteines. In addition, the triple-cysteine mutant did not even show disulphide-bridge formation.We showed that indeed the V3 loop inserted in MBP binds anti-V3 antibodies and we could individually label all the mutants expect D41C. The third strategy was not successful because unfortunately in the triple cysteine mutant, the fluorophore we chose (DBM) did not show site specificity and labeled all three cysteines. In addition, the disulfide bridge was not found to be present in the triple cysteine mutant. Chapter 6discusses the synthesis, characterization and binding of various maltolipids, (and their corresponding maltose-free controls) to MBP. The maltolipids were synthesised with varying linker lengths and anchor- & head-groups and then used to prepare liposomes and micelles. Although both liposomal and micellar forms could bind to MBP, only the micelles were screened subsequently for their ability to bind to MBP. The binding was assessed using various techniques such as fluorescence spectroscopy, gel filtration and thermal stability assay. We screened the maltolipids and determined how their anchor group, linker length and charge on the head group influences the binding of MBP to micelles formed by these maltolipids.
APA, Harvard, Vancouver, ISO, and other styles
18

Das, Ishita. "Effect Of Proline And Signal Peptide Mutations On Protein Stability." Thesis, 2005. https://etd.iisc.ac.in/handle/2005/1495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Das, Ishita. "Effect Of Proline And Signal Peptide Mutations On Protein Stability." Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kerhoas, Maud. "Un nouveau clone et une nouvelle méthode pour la production et la purification de l’entérotoxine STb d’Escherichia coli." Thèse, 2016. http://hdl.handle.net/1866/18649.

Full text
Abstract:
Le gène de l’entérotoxine thermostable b (estB) d’Escherichia coli a été fusionné au gène de la protéine liant le maltose (malE) dans le vecteur pMAL-p via PCR. Par la suite, deux constructions plasmidiques ont été realisées à partir de ce nouveau vecteur, nommé pMAL-STb. Dans un premier temps, un marqueur hexahistidine (His6) a été ajouté entre malE et estB, et dans un deuxième temps, un marqueur décahistidine (His10) a été placé en amont de malE. La séquence signal de la protéine liant le maltose (MBP) dirige l’exportation de la protéine de fusion du cytoplasme vers le périplasme, où l’entérotoxine STb acquière sa conformation active. MBP est également reconnue pour améliorer le rendement et la solubilité de la protéine passagère tandis que le marqueur histidine, connu comme étant le meilleur marqueur d’affinité pour la purification protéique, facilite sa purification jusqu’à homogénéité. De plus, les gènes fusionnés sont sous le contrôle du promoteur tac (Ptac), un promoteur fort et inductible. Suite à l’induction par l’IPTG, la souche recombinante exprime une protéine d’environ 48 kDa, qui est facilement identifiable par électrophorèse à partir du surnageant obtenu via choc osmotique. Une séquence encodant un site de clivage spécifique au facteur Xa est présente dans le plasmide afin de séparer les marqueurs MBP et histidine de STb. Le clivage de la protéine de fusion avec le facteur Xa libère MBP (42 kDa) attachée au marqueur histidine et un polypeptide de 5.2 kDa, correspondant au poids moléculaire de STb mature. Avec cette méthode, nous visons à obtenir une méthode plus efficace pour la production et la purification de STb.
The heat-stable enterotoxin b gene (estB) of Escherichia coli was fused to the gene for maltose-binding protein (malE) into the pMAL-p vector using PCR. Afterward, two plasmid constructs were realized from this new vector, named pMAL-STb. Firstly, a hexahistidine tag (His6) was added between malE and estB and secondly, a decahistidine tag (His10) was placed upstream of malE. The signal sequence of maltose-binding protein (MBP) directs the export of the fusion protein from the cytoplasm to the periplasm, where the enterotoxin STb acquires its active conformation. MBP is also known to improve the yield and solubility of the passenger protein while the histidine tag, viewed as the best affinity tag for protein purification, facilitates its purification to homogeneity. Furthermore, the fused genes are controlled by the tac promoter (Ptac), a strong inducible promoter. Following IPTG induction, the recombinant strain expressed a protein of approximately 48 kDa, which is easily identified from osmotic shock fluid following electrophoresis. A sequence encoding a factor Xa cleavage site is present in the plasmid to separate MBP and histidine tags from STb. The cleavage of the fusion protein with factor Xa generates the maltose-binding protein (42 kDa) attached to the histidine tag and a polypeptide of 5.2 kDa, corresponding to the molecular mass of mature STb. With this method, we aim at obtaining a more efficient way to produce and purify STb.
APA, Harvard, Vancouver, ISO, and other styles
21

Ganesh, C. "Thermodynamic & Kinetic Characterization Of The Folding Of E.coli Maltose-Binding Protein." Thesis, 1999. https://etd.iisc.ac.in/handle/2005/1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ganesh, C. "Thermodynamic & Kinetic Characterization Of The Folding Of E.coli Maltose-Binding Protein." Thesis, 1999. http://etd.iisc.ernet.in/handle/2005/1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Spurlino, John Curtis. "The three-dimensional structure of the D-maltose-binding protein from Escherichia coli." Thesis, 1988. http://hdl.handle.net/1911/16190.

Full text
Abstract:
The structure of the sc D-maltose-binding protein, an essential component of the Escherichia coli high affinity osmotic-shock sensitive transport and chemotaxis systems for 1-$\alpha$-4 linked glucose oligosaccharides, has been determined at a resolution of 2.3A by x-ray crystallography. The R-factor is 25% for 15,162 reflections by a restrained least squares method. The maltose-binding protein is ellipsoidal with dimensions of 30 A $\times$ 40 A $\times$ 65 A. The secondary structure is folded from a single polypeptide chain of 370 residues into two domains connected by three segments. The N-domain is made up of a five strand $\beta$ sheet (with the fourth strand antiparallel) flanked by two $\alpha$ helices on one side and three on the other. The C-domain is arranged similarly with the addition of a pair of antiparallel $\alpha$ helices that span the cleft. These helices act to extend the length of the cleft. The antiparallel strand is the first element after the initial crossover into either domain. The three crossovers are located in close physical proximity, although widely separated in sequence. The first two crossovers form a short $\beta$ sheet. The crossovers serve as the base for the cleft. The maltose-binding protein consists of 40% $\alpha$ helix and 20% $\beta$ sheet. The principle folding pattern is of alternating $\beta$ sheet and $\alpha$ helix. The binding site(s) for maltose and maltotriose were determined to lie in the cleft formed by the two domains. The reducing end of both sugars was found to occupy the same site in MBP. Hydrogen bonds formed between side chain residues of MBP and hydroxyl groups of the sugar are the main stabilizing force in the binding of substrate. Maltose is almost entirely buried by the protein. The binding site is rich in aromatic residues. The location of site specific mutations in MBP that are defective in chemotaxis, but not in transport have been found to lie in exterior portions of MBP in different domains. Other mutations affecting a region on the opposite side of the $\beta$ sheet from the chemotactic mutant in the C-domain eliminate transport but do not effect substrate binding or chemotaxis. These findings support the theory of recognition of ligand-bound binding protein by differential separation of two sites on opposite sides of the cleft due to conformational change upon ligand binding. The structural evidence also supports the existence of separate recognition sites for transport and chemotaxis.
APA, Harvard, Vancouver, ISO, and other styles
24

DELORME, CAROLINE. "Structural and Functional Characterization of a Novel Heterodimeric Kinesin in Candida albicans." Thesis, 2012. http://hdl.handle.net/1974/7023.

Full text
Abstract:
Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.
Thesis (Master, Biochemistry) -- Queen's University, 2012-02-29 17:15:03.654
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography