Academic literature on the topic 'Malware similarity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Malware similarity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Malware similarity"
Chen, Yu-Hung, Jiann-Liang Chen, and Ren-Feng Deng. "Similarity-Based Malware Classification Using Graph Neural Networks." Applied Sciences 12, no. 21 (October 26, 2022): 10837. http://dx.doi.org/10.3390/app122110837.
Full textYANG, Yi, Pu-Rui SU, Ling-Yun YING, and Deng-Guo FENG. "Dependency-Based Malware Similarity Comparison Method." Journal of Software 22, no. 10 (October 25, 2011): 2438–53. http://dx.doi.org/10.3724/sp.j.1001.2011.03888.
Full textJang, Jae-wook, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang Kim. "Andro-AutoPsy: Anti-malware system based on similarity matching of malware and malware creator-centric information." Digital Investigation 14 (September 2015): 17–35. http://dx.doi.org/10.1016/j.diin.2015.06.002.
Full textJang, Jae-wook, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang Kim. "Andro-Dumpsys: Anti-malware system based on the similarity of malware creator and malware centric information." Computers & Security 58 (May 2016): 125–38. http://dx.doi.org/10.1016/j.cose.2015.12.005.
Full textPavithra, J., and S. Selvakumara Samy. "An Adaptive Feature Centric XG Boost Ensemble Classifier Model for Improved Malware Detection and Classification." International Journal on Recent and Innovation Trends in Computing and Communication 10, no. 2s (December 31, 2022): 208–17. http://dx.doi.org/10.17762/ijritcc.v10i2s.5930.
Full textVenkatraman, Sitalakshmi, and Mamoun Alazab. "Use of Data Visualisation for Zero-Day Malware Detection." Security and Communication Networks 2018 (December 2, 2018): 1–13. http://dx.doi.org/10.1155/2018/1728303.
Full textShi, Hongbo, Tomoki Hamagami, Katsunari Yoshioka, Haoyuan Xu, Kazuhiro Tobe, and Shigeki Goto. "Structural classification and similarity measurement of malware." IEEJ Transactions on Electrical and Electronic Engineering 9, no. 6 (September 27, 2014): 621–32. http://dx.doi.org/10.1002/tee.22018.
Full textChen, Chia-Mei, and Shi-Hao Wang. "Advancing Malware Classification With an Evolving Clustering Method." International Journal of Applied Metaheuristic Computing 9, no. 3 (July 2018): 1–12. http://dx.doi.org/10.4018/ijamc.2018070101.
Full textFrenklach, Tatiana, Dvir Cohen, Asaf Shabtai, and Rami Puzis. "Android malware detection via an app similarity graph." Computers & Security 109 (October 2021): 102386. http://dx.doi.org/10.1016/j.cose.2021.102386.
Full textPark, Chan-Kyu, Hyong-Shik Kim, Tae Jin Lee, and Jae-Cheol Ryou. "Function partitioning methods for malware variant similarity comparison." Journal of the Korea Institute of Information Security and Cryptology 25, no. 2 (April 30, 2015): 321–30. http://dx.doi.org/10.13089/jkiisc.2015.25.2.321.
Full textDissertations / Theses on the topic "Malware similarity"
Wrench, Peter Mark. "Detecting derivative malware samples using deobfuscation-assisted similarity analysis." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/383.
Full textLi, Yuping. "Similarity Based Large Scale Malware Analysis: Techniques and Implications." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7691.
Full textSubramanian, Nandita. "Analysis of Rank Distance for Malware Classification." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479823187035784.
Full textNamanya, Anitta P., Irfan U. Awan, J. P. Disso, and M. Younas. "Similarity hash based scoring of portable executable files for efficient malware detection in IoT." Elsevier, 2019. http://hdl.handle.net/10454/17168.
Full textThe current rise in malicious attacks shows that existing security systems are bypassed by malicious files. Similarity hashing has been adopted for sample triaging in malware analysis and detection. File similarity is used to cluster malware into families such that their common signature can be designed. This paper explores four hash types currently used in malware analysis for portable executable (PE) files. Although each hashing technique produces interesting results, when applied independently, they have high false detection rates. This paper investigates into a central issue of how different hashing techniques can be combined to provide a quantitative malware score and to achieve better detection rates. We design and develop a novel approach for malware scoring based on the hashes results. The proposed approach is evaluated through a number of experiments. Evaluation clearly demonstrates a significant improvement (> 90%) in true detection rates of malware.
Ali-Gombe, Aisha Ibrahim. "Malware Analysis and Privacy Policy Enforcement Techniques for Android Applications." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2290.
Full textRegard, Viktor. "Studying the effectiveness of dynamic analysis for fingerprinting Android malware behavior." Thesis, Linköpings universitet, Databas och informationsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163090.
Full textOtočka, Dávid. "Rozpoznávání podobností souborů na základě chování." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236767.
Full textĎurfina, Lukáš. "Generický zpětný překlad za účelem rozpoznání chování." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-261238.
Full textVarga, Adam. "Identifikace a charakterizace škodlivého chování v grafech chování." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442388.
Full textJian, Yi, and 簡毅. "Android Malware Detection Based on Structural Content Similarity." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/39880338043570415216.
Full text中國文化大學
資訊管理學系
105
In recent years, smartphones have become the mainstream of the market, everyday there are more and more computing power and has a strong mobile device can store large amounts of data, and therefore allow a more private data, such as personal information, account passwords and even Financial information, etc., are likely to be stolen abuse of information. With the improvement of computing power and the progress of mobile communication technology, mobile devices become more popular, the proportion of In-ternet population is gradually increasing. Therefore, mobile devices are also emerging threats in the past PC facing attacks like Trojans, steal data, blocking attacks and extortion attacks. Mobile malware is very fast, and new versions and variants appear every day. In view of the fact that this study suggests that the malicious program is discovered from the occurrence to the discovery, the window period between the capture and the completion of the signature analysis must be shortened , it was first developed to reverse engineering technology source reduction, reuse of the source code in the class-meth od-API composi-tion for making a junction, MI selected malicious reuse common API, and finally through the above-described configuration than FIG comprising the sensitive API part to deter-mine whether the malware.
Book chapters on the topic "Malware similarity"
Lokoč, Jakub, Tomáš Grošup, Přemysl Čech, Tomáš Pevný, and Tomáš Skopal. "Malware Discovery Using Behaviour-Based Exploration of Network Traffic." In Similarity Search and Applications, 315–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68474-1_22.
Full textLiu, Jing, Yongjun Wang, Peidai Xie, Yuan Wang, and Zhijian Huang. "Malware Similarity Analysis Based on Graph Similarity Flooding Algorithm." In Advances in Computer Science and Ubiquitous Computing, 31–37. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0281-6_5.
Full textČech, Přemysl, Jan Kohout, Jakub Lokoč, Tomáš Komárek, Jakub Maroušek, and Tomáš Pevný. "Feature Extraction and Malware Detection on Large HTTPS Data Using MapReduce." In Similarity Search and Applications, 311–24. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46759-7_24.
Full textChoi, Sunoh. "Hierarchical Similarity Hash for Fast Malware Detection." In Lecture Notes in Electrical Engineering, 127–31. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9309-3_19.
Full textYi, Yang, Ying Lingyun, Wang Rui, Su Purui, and Feng Dengguo. "DepSim: A Dependency-Based Malware Similarity Comparison System." In Information Security and Cryptology, 503–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21518-6_35.
Full textMassarelli, Luca, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and Leonardo Querzoni. "SAFE: Self-Attentive Function Embeddings for Binary Similarity." In Detection of Intrusions and Malware, and Vulnerability Assessment, 309–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22038-9_15.
Full textShankarpani, M. K., K. Kancherla, R. Movva, and S. Mukkamala. "Computational Intelligent Techniques and Similarity Measures for Malware Classification." In Computational Intelligence for Privacy and Security, 215–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25237-2_13.
Full textLiu, Jing, Yongjun Wang, Peidai Xie, and Xingkong Ma. "Using a Fine-Grained Hybrid Feature for Malware Similarity Analysis." In Advances in Computer Science and Ubiquitous Computing, 54–60. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3023-9_9.
Full textKim, Jihun, and Jonghee M. Youn. "Dynamic Analysis Bypassing Malware Detection Method Utilizing Malicious Behavior Visualization and Similarity." In Lecture Notes in Electrical Engineering, 560–65. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5041-1_89.
Full textLiu, Liang, Yusen Wang, Shan Liao, Yang Tan, Kai Liu, and Lei Zhang. "CL-GCN: Malware Familial Similarity Calculation Based on GCN and Topic Model." In Proceedings of 2021 Chinese Intelligent Automation Conference, 607–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6372-7_66.
Full textConference papers on the topic "Malware similarity"
Apel, Martin, Christian Bockermann, and Michael Meier. "Measuring similarity of malware behavior." In 2009 IEEE 34th Conference on Local Computer Networks (LCN 2009). IEEE, 2009. http://dx.doi.org/10.1109/lcn.2009.5355037.
Full textUpchurch, Jason, and Xiaobo Zhou. "Variant: a malware similarity testing framework." In 2015 10th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2015. http://dx.doi.org/10.1109/malware.2015.7413682.
Full textBlack, Paul, Iqbal Gondal, Peter Vamplew, and Arun Lakhotia. "Evolved Similarity Techniques in Malware Analysis." In 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 2019. http://dx.doi.org/10.1109/trustcom/bigdatase.2019.00061.
Full textJian Li, Jun Xu, Ming Xu, HengLi Zhao, and Ning Zheng. "Malware obfuscation measuring via evolutionary similarity." In 2009 First International Conference on Future Information Networks (ICFIN). IEEE, 2009. http://dx.doi.org/10.1109/icfin.2009.5339567.
Full textAlkhateeb, Ehab Mufid Shafiq. "Dynamic Malware Detection Using API Similarity." In 2017 IEEE International Conference on Computer and Information Technology (CIT). IEEE, 2017. http://dx.doi.org/10.1109/cit.2017.14.
Full textShanhu Shang, Ning Zheng, Jian Xu, Ming Xu, and Haiping Zhang. "Detecting malware variants via function-call graph similarity." In 2010 5th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2010. http://dx.doi.org/10.1109/malware.2010.5665787.
Full textJones, Luke, Andrew Sellers, and Martin Carlisle. "CARDINAL: similarity analysis to defeat malware compiler variations." In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2016. http://dx.doi.org/10.1109/malware.2016.7888728.
Full textPark, Wonjoo, Sun-joong Kim, and Won Ryu. "Detecting malware with similarity to Android applications." In 2015 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2015. http://dx.doi.org/10.1109/ictc.2015.7354788.
Full textBak, Marton, Dorottya Papp, Csongor Tamas, and Levente Buttyan. "Clustering IoT Malware based on Binary Similarity." In NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020. http://dx.doi.org/10.1109/noms47738.2020.9110432.
Full textButtyan, Levente, Roland Nagy, and Dorottya Papp. "SIMBIoTA++: Improved Similarity-based IoT Malware Detection." In 2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS). IEEE, 2022. http://dx.doi.org/10.1109/citds54976.2022.9914145.
Full text