Journal articles on the topic 'Mammary cancer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mammary cancer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Miller, James L., Alexandra Reddy, Rebecca M. Harman, and Gerlinde R. Van de Walle. "A xenotransplantation mouse model to study physiology of the mammary gland from large mammals." PLOS ONE 19, no. 2 (2024): e0298390. http://dx.doi.org/10.1371/journal.pone.0298390.
Full textClavijo-Maldonado, Alejandro, Enio Ferreira, Carlos Vargas-Hernández, and Fredy A. Rivera-Páez. "Canine mammary cancer." Veterinarska stanica 51, no. 4 (2020): 425–39. http://dx.doi.org/10.46419/vs.51.4.2.
Full textHassan, B. B., S. M. Elshafae, W. Supsavhad, et al. "Feline Mammary Cancer." Veterinary Pathology 54, no. 1 (2016): 32–43. http://dx.doi.org/10.1177/0300985816650243.
Full textGestl, Shelley A., Travis L. Leonard, Jessica L. Biddle, Michael T. Debies, and Edward J. Gunther. "Dormant Wnt-Initiated Mammary Cancer Can Participate in Reconstituting Functional Mammary Glands." Molecular and Cellular Biology 27, no. 1 (2006): 195–207. http://dx.doi.org/10.1128/mcb.01525-06.
Full textHipp, Elizabeth, Xiaobing Fan, Sanaz A. Jansen, et al. "T2* relaxation times of intraductal murine mammary cancer, invasive mammary cancer, and normal mammary gland." Medical Physics 39, no. 3 (2012): 1309–13. http://dx.doi.org/10.1118/1.3684950.
Full textWu, Diana, Lilian U. Thompson, and Elena M. Comelli. "MicroRNAs: A Link between Mammary Gland Development and Breast Cancer." International Journal of Molecular Sciences 23, no. 24 (2022): 15978. http://dx.doi.org/10.3390/ijms232415978.
Full textDennison, Kirsten L., Nyssa Becker Samanas, Quincy Eckert Harenda, et al. "Development and characterization of a novel rat model of estrogen-induced mammary cancer." Endocrine-Related Cancer 22, no. 2 (2015): 239–48. http://dx.doi.org/10.1530/erc-14-0539.
Full textULLRICH, R. L., and R. J. PRESTON. "Radiation Induced Mammary Cancer." Journal of Radiation Research 32, SUPPLEMENT2 (1991): 104–9. http://dx.doi.org/10.1269/jrr.32.supplement2_104.
Full textMiller, WR. "Mammary Development and Cancer." British Journal of Cancer 78, no. 4 (1998): 558. http://dx.doi.org/10.1038/bjc.1998.538.
Full textDabydeen, Sarah A., та Priscilla A. Furth. "Genetically engineered ERα-positive breast cancer mouse models". Endocrine-Related Cancer 21, № 3 (2014): R195—R208. http://dx.doi.org/10.1530/erc-13-0512.
Full textShimono, Yohei, Masahiro Mizuno, Jumpei Yoshida, et al. "Abstract LB078: Adipocytes promote cancer stem cell properties and metastatic progression in breast cancers." Cancer Research 85, no. 8_Supplement_2 (2025): LB078. https://doi.org/10.1158/1538-7445.am2025-lb078.
Full textSari, Yuli Permata. "Hubungan Program Pengobatan Kanker terhadap Konsep Diri Wanita dengan Carsinoma Mammae." Jurnal Keperawatan Silampari 3, no. 1 (2019): 211–20. http://dx.doi.org/10.31539/jks.v3i1.765.
Full textBetgeri, Prof Santusti. "Mammary Tumor Screening." International Journal for Research in Applied Science and Engineering Technology 13, no. 5 (2025): 5962–67. https://doi.org/10.22214/ijraset.2025.71017.
Full textSubramani, Ramadevi, Adriana Estrada, Sheryl Rodriguez, et al. "Abstract P1-11-02: Parity reduces the risk of mammary cancer by altering the characteristics of mammary stem cells." Cancer Research 82, no. 4_Supplement (2022): P1–11–02—P1–11–02. http://dx.doi.org/10.1158/1538-7445.sabcs21-p1-11-02.
Full textMustafi, Devkumar, Abby Leinroth, Xiaobing Fan, et al. "Magnetic Resonance Angiography Shows Increased Arterial Blood Supply Associated with Murine Mammary Cancer." International Journal of Biomedical Imaging 2019 (January 17, 2019): 1–6. http://dx.doi.org/10.1155/2019/5987425.
Full textMazumdar, Abhijit, Jamal Hill, William Tahaney, et al. "Abstract 715: Targeting the mTOR pathway for the prevention of er-negative breast cancer." Cancer Research 82, no. 12_Supplement (2022): 715. http://dx.doi.org/10.1158/1538-7445.am2022-715.
Full textMarson, Fransiska Gratia Sonita, Palagan Senopati Sewoyo, I. Nyoman Mantik Astawa, et al. "Indonesian Newcastle Disease Virus Field Isolate Reduces c-Jun Expression in Rat Mammary Cancer Models." Media Kedokteran Hewan 36, no. 1 (2025): 13–20. https://doi.org/10.20473/mkh.v36i1.2025.13-20.
Full textPulver, Emilia M., Eline van der Burg, Anne Paulien Drenth, et al. "Abstract 6624: MYC promotes lobuloalveologenesis and mammary tumorigenesis in male mice." Cancer Research 84, no. 6_Supplement (2024): 6624. http://dx.doi.org/10.1158/1538-7445.am2024-6624.
Full textDagher, Elie, Laura Simbault, Jérôme Abadie, Delphine Loussouarn, Mario Campone, and Frédérique Nguyen. "Identification of an immune-suppressed subtype of feline triple-negative basal-like invasive mammary carcinomas, spontaneous models of breast cancer." Tumor Biology 42, no. 1 (2020): 101042831990105. http://dx.doi.org/10.1177/1010428319901052.
Full textWiebe, John P. "Role of progesterone metabolites in mammary cancer." Journal of Dairy Research 72, S1 (2005): 51–57. http://dx.doi.org/10.1017/s0022029905001214.
Full textSchedin, Pepper, Jenean O’Brien, Michael Rudolph, Torsten Stein, and Virginia Borges. "Microenvironment of the Involuting Mammary Gland Mediates Mammary Cancer Progression." Journal of Mammary Gland Biology and Neoplasia 12, no. 1 (2007): 71–82. http://dx.doi.org/10.1007/s10911-007-9039-3.
Full textSaad, Eman S. A., Jacqueline S. Y. Lam, Awf A. Al-Khan, et al. "A Comparative Review of Mixed Mammary Tumors in Mammals." Journal of Mammary Gland Biology and Neoplasia 24, no. 2 (2018): 125–37. http://dx.doi.org/10.1007/s10911-018-9422-2.
Full textMa, Zhiyuan, Dumin Yuan, Xiaoming Cheng, Biguang Tuo, Xuemei Liu, and Taolang Li. "Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 318, no. 1 (2020): R98—R111. http://dx.doi.org/10.1152/ajpregu.00202.2019.
Full textBierman, Howard R., Michael R. Faith, and Morgan E. Stewart. "Digital Dermatoglyphics in Mammary Cancer." Cancer Investigation 6, no. 1 (1988): 15–27. http://dx.doi.org/10.3109/07357908809077025.
Full textLamartiniere, C. A., J. Moore, M. Holland, and S. Barnes. "Neonatal Genistein Chemoprevents Mammary Cancer." Experimental Biology and Medicine 208, no. 1 (1995): 120–23. http://dx.doi.org/10.3181/00379727-208-43843.
Full textPrat, Aleix, and Charles M. Perou. "Mammary development meets cancer genomics." Nature Medicine 15, no. 8 (2009): 842–44. http://dx.doi.org/10.1038/nm0809-842.
Full textFink-Retter, A., D. Gschwantler-Kaulich, C. Singer, et al. "Proteomics in mammary cancer research." Journal of Clinical Oncology 26, no. 15_suppl (2008): 22206. http://dx.doi.org/10.1200/jco.2008.26.15_suppl.22206.
Full textSchirber, Stefan, William Thomas, and John Finley. "BREAST CANCER AFTER MAMMARY AUGMENTATION." Southern Medical Journal 84, Supplement (1991): 74. http://dx.doi.org/10.1097/00007611-199109001-00270.
Full textSCHIRBER, STEFAN, WILLIAM O. THOMAS, JOHN M. FINLEY, ALLAN E. GREEN, and JOHN J. FERRARA. "Breast Cancer After Mammary Augmentation." Southern Medical Journal 86, no. 3 (1993): 263–68. http://dx.doi.org/10.1097/00007611-199303000-00001.
Full textFink-Retter, A., D. Gschwantler-Kaulich, G. Hudelist, et al. "Proteomics in mammary cancer research." European Journal of Cancer Supplements 6, no. 7 (2008): 79. http://dx.doi.org/10.1016/s1359-6349(08)70420-8.
Full textPolk, Hiram C. "Improved understanding of mammary cancer." Cancer 57, no. 3 (1986): 411–15. http://dx.doi.org/10.1002/1097-0142(19860201)57:3<411::aid-cncr2820570303>3.0.co;2-3.
Full textRomieu-Mourez, Raphaëlle, Dong W. Kim, Sang Min Shin, et al. "Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors." Molecular and Cellular Biology 23, no. 16 (2003): 5738–54. http://dx.doi.org/10.1128/mcb.23.16.5738-5754.2003.
Full textBen-Yishay, Rakefet Ruth, Naama Herman, Vered Noy, Eyal Mor, Aiham Mansur, and Dana Ishay-Ronen. "Abstract 5847: Normal mammary epithelium of BRCA1 mutation carriers demonstrates increased susceptibility to cell plasticity." Cancer Research 82, no. 12_Supplement (2022): 5847. http://dx.doi.org/10.1158/1538-7445.am2022-5847.
Full textKern, Joseph, Andrew Tilston-Lunel, Anthony Federico, et al. "Abstract P2-05-01: Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas." Cancer Research 82, no. 4_Supplement (2022): P2–05–01—P2–05–01. http://dx.doi.org/10.1158/1538-7445.sabcs21-p2-05-01.
Full textAtashgaran, Vahid, Pallave Dasari, Leigh J. Hodson, Andreas Evdokiou, Simon C. Barry, and Wendy V. Ingman. "Foxp3 heterozygosity does not overtly affect mammary gland development during puberty or the oestrous cycle in mice." Reproduction, Fertility and Development 32, no. 8 (2020): 774. http://dx.doi.org/10.1071/rd19378.
Full textNishimura, Mayumi, Kazuhiro Daino, Maki Fukuda та ін. "Development of mammary cancer in γ-irradiated F1 hybrids of susceptible Sprague-Dawley and resistant Copenhagen rats, with copy-number losses that pinpoint potential tumor suppressors". PLOS ONE 16, № 8 (2021): e0255968. http://dx.doi.org/10.1371/journal.pone.0255968.
Full textCampbell, Caroline J., and Brian W. Booth. "The Influence of the Normal Mammary Microenvironment on Breast Cancer Cells." Cancers 15, no. 3 (2023): 576. http://dx.doi.org/10.3390/cancers15030576.
Full textGraim, Kiley. "Abstract 5030: Intra-patient tumor evolution analysis in dogs with many mammary tumors identifies signatures of tumor aggression in early-stage breast cancers." Cancer Research 82, no. 12_Supplement (2022): 5030. http://dx.doi.org/10.1158/1538-7445.am2022-5030.
Full textAvagliano, Angelica, Giuseppe Fiume, Maria Rosaria Ruocco, et al. "Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination." Cancers 12, no. 6 (2020): 1697. http://dx.doi.org/10.3390/cancers12061697.
Full textVazquez, Eliza, Yulia Lipovka, Alejandro Cervantes-Arias, et al. "Canine Mammary Cancer: State of the Art and Future Perspectives." Animals 13, no. 19 (2023): 3147. http://dx.doi.org/10.3390/ani13193147.
Full textSingh, Jacqulene Sunder, Purna Joshi, and Emma Unger. "Abstract PO4-28-02: Adipocyte Progenitor-Mediated Effects on Mammary Cancer Cells." Cancer Research 84, no. 9_Supplement (2024): PO4–28–02—PO4–28–02. http://dx.doi.org/10.1158/1538-7445.sabcs23-po4-28-02.
Full textJohnstone, Megan, Ashley Leck, Taylor Lange, and Lisa Privette Vinnedge. "Abstract A084: DEK overexpression in the murine mammary gland promotes epithelial hyperplasia." Cancer Research 84, no. 3_Supplement_1 (2024): A084. http://dx.doi.org/10.1158/1538-7445.advbc23-a084.
Full textMunteanu, Camelia, and Bianca Pop. "The link between mammary cancer, excessive adipose tissue and cholesterol." Cluj Veterinary Journal 26, no. 3 (2021): 21–27. http://dx.doi.org/10.52331/cvj.v26i3.35.
Full textBrisson, Lucie, Stéphanie Chadet, Osbaldo Lopez-Charcas, et al. "P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment." Cancers 12, no. 9 (2020): 2342. http://dx.doi.org/10.3390/cancers12092342.
Full textTavera-Mendoza, Luz E., and Myles Brown. "A less invasive method for orthotopic injection of breast cancer cells into the mouse mammary gland." Laboratory Animals 51, no. 1 (2016): 85–88. http://dx.doi.org/10.1177/0023677216640706.
Full textZheng, Yuanning, Linjie Luo, Isabel U. Lambertz, Claudio J. Conti, and Robin Fuchs-Young. "Early Dietary Exposures Epigenetically Program Mammary Cancer Susceptibility through Igf1-Mediated Expansion of the Mammary Stem Cell Compartment." Cells 11, no. 16 (2022): 2558. http://dx.doi.org/10.3390/cells11162558.
Full textWang, Yu. "Modulation of breast cancer development in MMTV-PyVT mice by adiponectin: A perspective on tumor microenvironment." Journal of Clinical Oncology 33, no. 28_suppl (2015): 34. http://dx.doi.org/10.1200/jco.2015.33.28_suppl.34.
Full textKultaev, A., and I. Zakiryarov. "S-DETECT FUNCTION AS THE LATEST METHOD OF ULTRASOUND EXAMINATION OF MAMMARY GLAND FORMATIONS: COMPARATIVE CHARACTERISTICS." Oncologia i radiologia Kazakhstana 66, no. 4 (2022): 24–32. http://dx.doi.org/10.52532/2663-4864-2022-4-66-24-32.
Full textWicker, Madison, and Kay-Uwe Wagner. "Cellular Plasticity in Mammary Gland Development and Breast Cancer." Cancers 15, no. 23 (2023): 5605. http://dx.doi.org/10.3390/cancers15235605.
Full textWidowati, Wahyu, Diana Krisanti Jasaputra, Yusuf Heriady, et al. "Case Study: Heterogeneity of and CD44+/CD24- Cancer Stem Cell Subpopulation of Breast Cancer Patients in Bandung, Indonesia." Trends in Sciences 21, no. 7 (2024): 7437. http://dx.doi.org/10.48048/tis.2024.7437.
Full text