Journal articles on the topic 'Mammary gland involution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Mammary gland involution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dickson, S. R., and M. J. Warburton. "Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland." Journal of Histochemistry & Cytochemistry 40, no. 5 (1992): 697–703. http://dx.doi.org/10.1177/40.5.1315355.
Full textLund, L. R., S. F. Bjorn, M. D. Sternlicht, et al. "Lactational competence and involution of the mouse mammary gland require plasminogen." Development 127, no. 20 (2000): 4481–92. http://dx.doi.org/10.1242/dev.127.20.4481.
Full textTalhouk, R. S., M. J. Bissell, and Z. Werb. "Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution." Journal of Cell Biology 118, no. 5 (1992): 1271–82. http://dx.doi.org/10.1083/jcb.118.5.1271.
Full textTian, Lei, Shancheng Guo, Zhiye Zhao, et al. "miR-30a-3p Regulates Autophagy in the Involution of Mice Mammary Glands." International Journal of Molecular Sciences 24, no. 18 (2023): 14352. http://dx.doi.org/10.3390/ijms241814352.
Full textBatan, Sonia, Jabunnesa Khanom, Sabarish Ramachandran, et al. "Abstract P3-04-04: The Butyrate Transporter SLC5A8 Selectively Inhibits Breast Tumor Metastasis." Clinical Cancer Research 31, no. 12_Supplement (2025): P3–04–04—P3–04–04. https://doi.org/10.1158/1557-3265.sabcs24-p3-04-04.
Full textSchwertfeger, Kathryn L., Monica M. Richert, and Steven M. Anderson. "Mammary Gland Involution Is Delayed by Activated Akt in Transgenic Mice." Molecular Endocrinology 15, no. 6 (2001): 867–81. http://dx.doi.org/10.1210/mend.15.6.0663.
Full textBernhardt, Sarah M., and Pepper Schedin. "Abstract B011: The anti-cancer effects of vitamin D are blocked postpartum, due to suppression of vitamin D metabolism in the involuting liver." Cancer Prevention Research 15, no. 12_Supplement_1 (2022): B011. http://dx.doi.org/10.1158/1940-6215.dcis22-b011.
Full textJena, Manoj Kumar, and Ashok Kumar Mohanty. "NEW INSIGHTS OF MAMMARY GLAND DURING DIFFERENT STAGES OF DEVELOPMENT." Asian Journal of Pharmaceutical and Clinical Research 10, no. 11 (2017): 35. http://dx.doi.org/10.22159/ajpcr.2017.v10i11.20801.
Full textAtabai, Kamran, Rafael Fernandez, Xiaozhu Huang, et al. "Mfge8 Is Critical for Mammary Gland Remodeling during Involution." Molecular Biology of the Cell 16, no. 12 (2005): 5528–37. http://dx.doi.org/10.1091/mbc.e05-02-0128.
Full textRivera, Olivia C., Stephen R. Hennigar, and Shannon L. Kelleher. "ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 315, no. 2 (2018): R323—R335. http://dx.doi.org/10.1152/ajpregu.00444.2017.
Full textFeng, Z., A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi. "Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland." Journal of Cell Biology 131, no. 4 (1995): 1095–103. http://dx.doi.org/10.1083/jcb.131.4.1095.
Full textAlexander, Caroline M., Sushma Selvarajan, John Mudgett, and Zena Werb. "Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution." Journal of Cell Biology 152, no. 4 (2001): 693–703. http://dx.doi.org/10.1083/jcb.152.4.693.
Full textLu, Jie, Guohao Huang, Xuan Chang, et al. "Effects of Serotonin on Cell Viability, Permeability of Bovine Mammary Gland Epithelial Cells and Their Transcriptome Analysis." International Journal of Molecular Sciences 24, no. 14 (2023): 11388. http://dx.doi.org/10.3390/ijms241411388.
Full textAdriani, Adriani. "Hubungan Involusi Sel-sel Sekretoris Kelenjar Ambing dengan Produksi Susu Domba Priangan dengan Dua Level Pakan." Jurnal Ilmiah Ilmu-Ilmu Peternakan 12, no. 3 (2009): 118–24. http://dx.doi.org/10.22437/jiiip.v0i0.173.
Full textNing, Yun, Bao Hoang, Alwin G. P. Schuller, et al. "Delayed Mammary Gland Involution in Mice with Mutation of the Insulin-Like Growth Factor Binding Protein 5 Gene." Endocrinology 148, no. 5 (2007): 2138–47. http://dx.doi.org/10.1210/en.2006-0041.
Full textXuan, Rong, Jianmin Wang, Xiaodong Zhao, et al. "Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution." International Journal of Molecular Sciences 23, no. 22 (2022): 14424. http://dx.doi.org/10.3390/ijms232214424.
Full textHurley, W. L. "Mammary Gland Function During Involution." Journal of Dairy Science 72, no. 6 (1989): 1637–46. http://dx.doi.org/10.3168/jds.s0022-0302(89)79276-6.
Full textCVEK, KATARINA, KRISTINA DAHLBORN, and YVONNE RIDDERSTRÅLE. "Localization of carbonic anhydrase in the goat mammary gland during involution and lactogenesis." Journal of Dairy Research 65, no. 1 (1998): 43–54. http://dx.doi.org/10.1017/s0022029997002537.
Full textYi, Yijun, Anne Shepard, Frances Kittrell, Biserka Mulac-Jericevic, Daniel Medina, and Thenaa K. Said. "p19ARFDetermines the Balance between Normal Cell Proliferation Rate and Apoptosis during Mammary Gland Development." Molecular Biology of the Cell 15, no. 5 (2004): 2302–11. http://dx.doi.org/10.1091/mbc.e03-11-0785.
Full textLi, Meng, Qingzhang Li, and Xuejun Gao. "Expression and function of leptin and its receptor in dairy goat mammary gland." Journal of Dairy Research 77, no. 2 (2010): 213–19. http://dx.doi.org/10.1017/s0022029910000063.
Full textOliver, S. P., and T. Bushe. "Growth inhibition of Escherichia coli and Klebsiella pneumoniae during involution of the bovine mammary gland: Relation to secretion composition." American Journal of Veterinary Research 48, no. 12 (1987): 1669–73. https://doi.org/10.2460/ajvr.1987.48.12.1669.
Full textMunarini, Nadia, Richard Jäger, Susanne Abderhalden, et al. "Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase." Journal of Cell Science 115, no. 1 (2002): 25–37. http://dx.doi.org/10.1242/jcs.115.1.25.
Full textTATARCZUCH, L., C. PHILIP, and C. S. LEE. "Involution of the sheep mammary gland." Journal of Anatomy 190, no. 3 (1997): 405–16. http://dx.doi.org/10.1046/j.1469-7580.1997.19030405.x.
Full textSOHN, B. Hwa, Hyung-Bae MOON, Tae-Yoon KIM та ін. "Interleukin-10 up-regulates tumour-necrosis-factor-α-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage". Biochemical Journal 360, № 1 (2001): 31–38. http://dx.doi.org/10.1042/bj3600031.
Full textSABATAKOS, Georgios, Gareth E. DAVIES, Maria GROSSE, Anthony CRYER, and Dipak P. RAMJI. "Expression of the genes encoding CCAAT-enhancer binding protein isoforms in the mouse mammary gland during lactation and involution." Biochemical Journal 334, no. 1 (1998): 205–10. http://dx.doi.org/10.1042/bj3340205.
Full textParés, Sílvia, Olivia Cano-Garrido, Alex Bach, et al. "The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off." Animals 11, no. 12 (2021): 3415. http://dx.doi.org/10.3390/ani11123415.
Full textLund, L. R., J. Romer, N. Thomasset, et al. "Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways." Development 122, no. 1 (1996): 181–93. http://dx.doi.org/10.1242/dev.122.1.181.
Full textClemenceau, Alisson, Caroline Diorio, and Francine Durocher. "Role of Secreted Frizzled-Related Protein 1 in Early Mammary Gland Tumorigenesis and Its Regulation in Breast Microenvironment." Cells 9, no. 1 (2020): 208. http://dx.doi.org/10.3390/cells9010208.
Full textHadsell, Darryl L., Tatiana Alexeenko, Yann Klemintidis, Daniel Torres, and Adrian V. Lee. "Inability of Overexpressed des(1–3)Human Insulin-Like Growth Factor I (IGF-I) to Inhibit Forced Mammary Gland Involution Is Associated with Decreased Expression of IGF Signaling Molecules*." Endocrinology 142, no. 4 (2001): 1479–88. http://dx.doi.org/10.1210/endo.142.4.8087.
Full textMuraoka, Rebecca S., Anne E. G. Lenferink, Jean Simpson, et al. "Cyclin-Dependent Kinase Inhibitor P27Kip1 Is Required for Mouse Mammary Gland Morphogenesis and Function." Journal of Cell Biology 153, no. 5 (2001): 917–32. http://dx.doi.org/10.1083/jcb.153.5.917.
Full textKennedy, S., and H. J. Ball. "Pathology of Experimental Ureaplasma Mastitis in Ewes." Veterinary Pathology 24, no. 4 (1987): 302–7. http://dx.doi.org/10.1177/030098588702400403.
Full textMonaghan, P., N. Perusinghe, G. Carlile, and W. H. Evans. "Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution." Journal of Histochemistry & Cytochemistry 42, no. 7 (1994): 931–38. http://dx.doi.org/10.1177/42.7.8014476.
Full textWatson, Christine J. "Post-lactational mammary gland regression: molecular basis and implications for breast cancer." Expert Reviews in Molecular Medicine 8, no. 32 (2006): 1–15. http://dx.doi.org/10.1017/s1462399406000196.
Full textRieanrakwong, Duangjai, Titaree Laoharatchatathanin, Ryota Terashima, et al. "Prolactin Suppression of Gonadotropin-Releasing Hormone Initiation of Mammary Gland Involution in Female Rats." Endocrinology 157, no. 7 (2016): 2750–58. http://dx.doi.org/10.1210/en.2016-1180.
Full textGangi, Lisa, Garrison Owens, Robin Humphreys, Lothar Hennighausen, and Edison Liu. "Mammary gland involution studies with cDNA microarrays." Nature Genetics 23, S3 (1999): 46. http://dx.doi.org/10.1038/14308.
Full textRYON, Joel, Lee BENDICKSON, and Marit NILSEN-HAMILTON. "High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein." Biochemical Journal 367, no. 1 (2002): 271–77. http://dx.doi.org/10.1042/bj20020026.
Full textLi, Xiangdong, Anni Wärri, Sari Mäkelä, et al. "Mammary Gland Development in Transgenic Male Mice Expressing Human P450 Aromatase." Endocrinology 143, no. 10 (2002): 4074–83. http://dx.doi.org/10.1210/en.2002-220181.
Full textStibbards-Lyle, Maya, Kristina Rinker, Laura Hall, Seleem Badawy, and Kathy Zhan. "Abstract PO4-24-05: Fluid forces and hormone levels during mammary gland development drive changes in breast epithelium that are relevant to the progression of postpartum breast cancer." Cancer Research 84, no. 9_Supplement (2024): PO4–24–05—PO4–24–05. http://dx.doi.org/10.1158/1538-7445.sabcs23-po4-24-05.
Full textPai, Vaibhav P., Laura L. Hernandez, Malinda A. Stull, and Nelson D. Horseman. "The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/364746.
Full textBoutinaud, M., JH Shand, MA Park, et al. "A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development." Journal of Molecular Endocrinology 33, no. 1 (2004): 195–207. http://dx.doi.org/10.1677/jme.0.0330195.
Full textRamaswamy, Bhuvaneswari, Neelam Shinde, Morgan Bauer, et al. "Abstract P5-01-08: Mechanistic differences between abrupt and gradual involution of mouse mammary gland." Cancer Research 82, no. 4_Supplement (2022): P5–01–08—P5–01–08. http://dx.doi.org/10.1158/1538-7445.sabcs21-p5-01-08.
Full textNishikage, Mami, Yumiko Tateoka, and Fuyuki Itani. "Effectiveness of Onigirishibori Asa Self-care Technique for Weaning: A Study Using Intra Breast Ultrasound Imaging." International Journal of Medical Science and Health Research 08, no. 06 (2024): 40–48. https://doi.org/10.51505/ijmshr.2024.8604.
Full textPlath-Gabler, A., C. Gabler, F. Sinowatz, B. Berisha, and D. Schams. "The expression of the IGF family and GH receptor in the bovine mammary gland." Journal of Endocrinology 168, no. 1 (2001): 39–48. http://dx.doi.org/10.1677/joe.0.1680039.
Full textChakraborty, Moumita, and Michal Hershfinkel. "Zinc Signaling in the Mammary Gland: For Better and for Worse." Biomedicines 9, no. 9 (2021): 1204. http://dx.doi.org/10.3390/biomedicines9091204.
Full textPlath, A., R. Einspanier, F. Peters, F. Sinowatz, and D. Schams. "Expression of transforming growth factors alpha and beta-1 messenger RNA in the bovine mammary gland during different stages of development and lactation." Journal of Endocrinology 155, no. 3 (1997): 501–11. http://dx.doi.org/10.1677/joe.0.1550501.
Full textNguyen, A. V., and J. W. Pollard. "Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution." Development 127, no. 14 (2000): 3107–18. http://dx.doi.org/10.1242/dev.127.14.3107.
Full textZaragozá, R., E. R. García-Trevijano, V. J. Miralles, et al. "Role of GSH in the modulation of NOS-2 expression in the weaned mammary gland." Biochemical Society Transactions 33, no. 6 (2005): 1397–98. http://dx.doi.org/10.1042/bst0331397.
Full textWatson, Christine J., and Peter A. Kreuzaler. "Remodeling mechanisms of the mammary gland during involution." International Journal of Developmental Biology 55, no. 7-8-9 (2011): 757–62. http://dx.doi.org/10.1387/ijdb.113414cw.
Full textSutherland, Kate D., Geoffrey J. Lindeman, and Jane E. Visvader. "The Molecular Culprits Underlying Precocious Mammary Gland Involution." Journal of Mammary Gland Biology and Neoplasia 12, no. 1 (2007): 15–23. http://dx.doi.org/10.1007/s10911-007-9034-8.
Full textStein, Torsten, Nathan Salomonis, and Barry A. Gusterson. "Mammary Gland Involution as a Multi-step Process." Journal of Mammary Gland Biology and Neoplasia 12, no. 1 (2007): 25–35. http://dx.doi.org/10.1007/s10911-007-9035-7.
Full text