Academic literature on the topic 'Manganese ferrite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Manganese ferrite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Manganese ferrite"
Al-Khabouri, Saja, Salim Al-Harthi, Toru Maekawa, Mohamed E. Elzain, Ashraf Al-Hinai, Ahmed D. Al-Rawas, Abbsher M. Gismelseed, Ali A. Yousif, and Myo Tay Zar Myint. "Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes." Beilstein Journal of Nanotechnology 11 (December 29, 2020): 1891–904. http://dx.doi.org/10.3762/bjnano.11.170.
Full textDenecke, Melissa A., W. Gunßer, G. Buxbaum, and P. Kuske. "Manganese valence in precipitated manganese ferrite." Materials Research Bulletin 27, no. 4 (April 1992): 507–14. http://dx.doi.org/10.1016/0025-5408(92)90029-y.
Full textTaguba, Manny Anthony, Dennis Ong, Benny Marie Ensano, Chi-Chuan Kan, Nurak Grisdanurak, Jurng-Jae Yee, and Mark Daniel de Luna. "Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) Uptake from Water by MnFe2O4/Chitosan Nanoadsorbents." Water 13, no. 12 (June 14, 2021): 1662. http://dx.doi.org/10.3390/w13121662.
Full textSeyyed Ebrahimi, S. A., and Z. Pishgahi Fard. "An Investigation on the Optimum Conditions for Preparation of Pure Mn-Mg-Zn Ferrite Powder." Key Engineering Materials 336-338 (April 2007): 699–702. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.699.
Full textCai, Wei, Chun Lin Fu, Rong Li Gao, Wei Hai Jiang, Xiao Ling Deng, and Gang Chen. "Ferroelectric and Photovoltaic Properties of Mn-Doped Bismuth Ferrite Thin Films." Materials Science Forum 815 (March 2015): 135–40. http://dx.doi.org/10.4028/www.scientific.net/msf.815.135.
Full textBhalla, Deepak, S. K. Aggarwal, G. P. Govil, and Ish Kakkar. "Manufacturing of Manganese-Zinc Soft Ferrite by Powder Metallurgy." Open Materials Science Journal 4, no. 1 (February 3, 2010): 26–31. http://dx.doi.org/10.2174/1874088x010040100026.
Full textYoo, Han-Ill, and Harry L. Tuller. "In situ phase equilibria determination of a manganese ferrite by electrical means." Journal of Materials Research 3, no. 3 (June 1988): 552–56. http://dx.doi.org/10.1557/jmr.1988.0552.
Full textAl-Hilli, Muthafer F. "A comparison study of the Structural and magnetic properties of pure Ni metal and NiZnMn ferrite." Iraqi Journal of Physics (IJP) 17, no. 43 (November 29, 2019): 18–25. http://dx.doi.org/10.30723/ijp.v17i43.418.
Full textPeters, Joop A. "Relaxivity of manganese ferrite nanoparticles." Progress in Nuclear Magnetic Resonance Spectroscopy 120-121 (October 2020): 72–94. http://dx.doi.org/10.1016/j.pnmrs.2020.07.002.
Full textKatsnelson, E. Z. "Photogalvanomagnetic Properties of Manganese Ferrite." Physica Status Solidi (a) 104, no. 2 (December 16, 1987): K127—K132. http://dx.doi.org/10.1002/pssa.2211040261.
Full textDissertations / Theses on the topic "Manganese ferrite"
Tourinho, Francisco. "Ferrofluides a base de ferrite de cobalt et de ferrite de manganese : elaboration, comportement physicochimique et magnetique." Paris 6, 1988. http://www.theses.fr/1988PA066570.
Full textRoberts, V. A. "The production of manganese zinc ferrite by the citrate gel route." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380216.
Full textZufelato, Nícholas. "Hipertermia magnética de nanopartículas à base de ferrita de manganês: efeito do recobrimento superficial de nanopartículas por moléculas de citrato." Universidade Federal de Goiás, 2012. http://repositorio.bc.ufg.br/tede/handle/tede/8164.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-02-15T12:55:26Z (GMT) No. of bitstreams: 2 Dissertação - Nícholas Zufelato - 2012.pdf: 2835862 bytes, checksum: 9d1149314ab7a9df2da0b228aeeed37b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2018-02-15T12:55:26Z (GMT). No. of bitstreams: 2 Dissertação - Nícholas Zufelato - 2012.pdf: 2835862 bytes, checksum: 9d1149314ab7a9df2da0b228aeeed37b (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2012-05-31
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work investigated the magneto-thermal properties of manganese ferrite-based nanoparticles. The nanosctructures were synthesized by the coprecipitation method. Three samples were studied, namely: non passivated (2A), passivated (2B), and passivated with citrate coating molecules (2B cit). The particles were characterized by x-ray diffraction (XRD), transmission eléctron microscopy (TEM), vibrating sample magnetometer (VSM) and electron magnetic resonance (EMR). The non-coated samples showed similar diameter and saturation magnetization values, while the citrate-coated sample showed striking diferente values. In particular, the 2B cit sample showed lower values of particle size (determined from Scherrer relation), saturation magnetization and magnetic anisotropy. Those results corroborate with a core-shell nanoparticle model. The magnetic hyperthermia studies, perfomed around 300kHz, revealed that sample 2B had a higher magneto-thermal effiency when compared with the 2B cit one. Dynamic hysteresis curves, obtained within the linear response regime, were capable to explian qualitatively the experimental data. The phenomena was related to a lower magnetic anisotropy for the 2B cit nanoparticles. In addition, the biocompatible magnetic colloid (2B cit) showed SAR values around 50 W/g of MnFe 2 O 4 at the high field limit. However, differently from results reported in the literature, based upon magnetite/maghemite nanoparticles, saturation is achieved at a lower magnetic field amplitude. This suggest that this type of material has great biomedical potential for low-field magnetic hyperthermia applications, which might be necessary in order to inhibit harmful eddy currents inside the patient’s body.
Neste trabalho investigamos as propriedades magneto-térmicas de nanopartículas à base de ferrita de manganês. As nanopartículas foram sintetizadas pelo método de coprecipitação. Três amostras foram investigadas, são elas: nanopartículas não passivadas (2A), passivadas (2B) e passivadas recobertas com moléculas de citrato (2B cit). As nanoestruturas foram caracterizadas por difração de raios-X (DRX). microscopia eletrônica de transmissão (TEM), magnetometria de amostra vibrante (VSM) e ressonância magnética eletrônica (RME). As amostras não recobertas apresentaram valores de diâmetro e magnetização de saturação semelhantes, enquanto que uma significativa alteração foi evidenciada na amostra recoberta. Esta amostra (2B cit) apresentou valores de diâmetro (utilizando a relação de Scherrer), constante de anisotropia e magnetização menores que as não recobertas. Tais resultados corroboram para a formação de uma nanopartícula do tipo core-shell. Os estudos de magnetohipertermia, realizados em torno de 300kHz, revelaram, ainda, que a amostra 2B apresenta uma eficiência magneto-térmica bem maior que a 2B cit. Curvas de histerese dinâmica, usando a teoria do regime linear, foram capazes de explicar qualitativamente tais resultados. O fenômeno foi explicado pela menor anisotropia magnética da amostra 2B cit. Adicionalmente, o fluido magnético biocompatível (amostra 2B cit) apresentou um SAR em torno de 50 W/g de MnFe 2 O 4 no limite de alto campo. Entretanto, diferentemente de outras amostras da literatura à base de magnetita/maguemita, a saturação foi alcançada em baixa amplitude de campo magnético. Isto sugere, que esta amostra, possui grande potencial biomédico em aplicações de hipertermia magnética com baixa amplitude de campo, as quais são desejáveis para inibir possíveis correntes parasitas em tecidos sadios.
Debray, Bruno. "Microstructure and mechanical properties of an as-hot rolled carbon manganese ferrite-bainite sheet steel." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69713.
Full textOptical microscopy and TEM were used to study the microstructures. The mechanical properties were studied by means of tensile testing. A method developed by IRSID for deducing the transformation kinetics from the cooling data was adapted to the present context and used successfully to interpret the observed influence of the process parameters. (Abstract shortened by UMI.)
Semykina, Anna. "Recovery of iron and manganese values from metallurgical slags by the oxidation route." Doctoral thesis, KTH, Materialens processvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24534.
Full textQC 20100916
RIBEIRO, THATIANA G. D. "Sintese e caracterizacao de nanoparticulas magneticas de oxidos mistos de MnFesub(2)Osub(4) recobertas comm quitosona. Estudos da influencia na dopagem com Gdsup(3+) nas propriedades estruturais e magneticas." reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11515.
Full textMade available in DSpace on 2014-10-09T14:02:48Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Colán, Victoria Amelia Lázaro. "Perdas em ferritas de manganês zinco: o papel da sinterização e de parâmetros microestruturais." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-30112010-144937/.
Full textThe use of manganese zinc ferrite in power sources of battery chargers is growing, due to its low magnetic power losses at inductions around 0.2 T. These ferrites belong to the soft magnetic materials group, they are polycrystalline ferromagnetic oxides with face centered cubic structure. Powders of this material were compacted in uniaxial press and in automatic press of production, by ring and toroidal form, respectively. Two firing cycles, varying the atmosphere oxygen content between 5 and 15%, were applied to evaluate its effect on microstructure, density, magnetic losses in high induction and permeability. Samples sintered in warmer positions inside the furnace resulted in higher density and larger grain size, as expected, but higher losses at 25 °C were achieved. Increasing the atmosphere oxygen content from 5 to 15% did not alter density significantly, but resulted in a slight increase in grain size. On the other hand, the correlation between oxygen content and losses was complex. There are lower losses, at 60 °C. Similar behavior was observed with hysteresis loss, which is compatible with the change in magnetocrystalline magnetic anisotropy (K1). Measurements were performed from 25 to 100 °C, at 0.2 T, aiming at the evaluation of the effect of temperature on the two parcels of hysteresis loss. Samples sintered at 1290 °C with low atmosphere oxygen content showing a minimum on the losses versus temperature curve. The available techniques to analyze Fe2+ content were not capable of establishing, unequivocally, the expected relation between this variable and the oxygen content of the sintering atmosphere.
Recouvreur, Michel. "Contribution à l'étude des liants organiques pour ferrites étude de l'alcool polyvinylique dans le ferrite manganèse-zinc /." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37600681v.
Full textVerdier, Thomas. "Elaboration de poudres nanostructurées de ferrites de manganèse-zinc par mécanosynthèse : Influence des paramètres de broyage." Rouen, 2006. http://www.theses.fr/2006ROUES042.
Full textSpinel ferrites compounds are widely used for their technological applications, which are essentially their magnetic and catalytic properties. Nanocrystalline Mn-Zn ferrites have been synthesized by high-energy ball milling in different media (tempered steel and WC) starting from simple oxides (α-Fe2O3, ZnO and MnO). This technique leads to a change in the distribution of cations in both sites, resulting in an increase of magnetic properties. X-ray diffraction, Mössbauer spectrometry and VSM are used to characterize the powders. This work shows that a redox reaction is observed between Fe11 and metalling iron during milling in steel medium, leading to a spinel phase containing some Fe11. The mechanism for the appearance of this phase is studied : ZnO seems to have a non negligeable influence on the synthesis, by creating an intermediate wüstite-type phase solid solution with FeO. Millings in WC medium permit to avoid the Fe11 contamination
Ferreira, Diego Lopes. "Síntese e caracterização de microesferas poliméricas reticuladas à base de poli(ácido metacrílico) contendo nanopartículas magnéticas de ferritas de manganês." Universidade do Estado do Rio de Janeiro, 2012. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3572.
Full textAs nanopartículas de ferritas de manganês (MnFe2O4) tem sido de grande interesse por causa de suas notáveis propriedades magnéticas doces (baixa coercividade e moderada magnetização de saturação) acompanhada com boa estabilidade química e dureza mecânica. A formação de materiais híbridos/compósito estabiliza as nanopartículas magnéticas (NPMs) e gera funcionalidades aos materiais. Entretanto, não foi encontrada na literatura uma discussão sobre a síntese e as propriedades de polímeros polares reticulados à base de ácido metacrílico contendo ferritas de manganês na matriz polimérica. Assim, o objetivo desta Dissertação foi produzir partículas esféricas poliméricas reticuladas, com boas propriedades magnéticas, à base de ácido metacrílico, estireno, divinilbenzeno e ferritas de manganês. Neste trabalho, foram sintetizados compósitos de ferrita de manganês (MnFe2O4) dispersa em copolímeros de poli(ácido-metacrílico-co-estireno-co-divinilbenzeno), via polimerização em suspensão e em semi-suspensão. Foram variados os teores de ferrita (1% e 5%) e a concentração do agente de suspensão (0,2% e 5%). Além disso, foram testadas sínteses contendo a fase orgânica pré-polimerizada, e também a mistura da ferrita na fase orgânica (FO), antes da etapa da polimerização em suspensão. Os copolímeros foram analisados quanto as suas morfologias - microscopia óptica; propriedades magnéticas e distribuição das ferritas na matriz polimérica - VSM, SEM e EDS-X; propriedades térmicas TGA; concentração de metais presentes na matriz polimérica absorção atômica. As ferritas foram avaliadas quanto à cristalografia XRD. A matriz polimérica foi avaliada pela técnica de FTIR. As amostras que foram pré-polimerizadas e as que além de pré-polimerizadas foram misturadas as ferritas de manganês na FO, apresentaram as melhores propriedades magnéticas e uma incorporação maior da ferrita na matriz polimérica. Essas rotas sintéticas fizeram com que os copolímeros não apresentassem aglomeração, e também minimizou a presença de ferritas na superfície das microesferas. Em geral, todos os copolímeros obtidos apresentaram as características de materiais magneticamente doces além do superparamagnetismo. Foi constatado que o aumento da concentração do PVA e a diminuição da concentração da ferrita fazem com que os diâmetros das microesferas decresçam. Os resultados de TGA e DTG mostraram que ao misturar as ferritas na FO, a concentração de material magnético na matriz polimérica aumenta cerca de 10%. Entretanto, somente a amostra PM2550, pré-polimerizada e com as ferritas misturadas na FO (5% de ferrita e 0,2% de PVA), apresentou potencial aplicação. Isso porque as ferritas não ficaram expostas na superfície das microesferas, ou seja, o material magnético fica protegido de qualquer ação externa
Manganese ferrite (MnFe2O4) nanoparticles have been of great interest for their remarkable soft-magnetic properties (low coercivity, moderate saturation magnetization) and also for their good chemical stability and mechanical hardness. The formation of ferrite/polymer hybrid/composite materials not only stabilized the magnetic nanoparticles (NMPs), but also gives the materials new properties. However, it was not found in the literature neither the synthesis nor the properties of manganese ferrites in polar crosslinked polymers based on methacrylic acid. The aim of this Dissertation is to produce spherical particles of crosslinked polymers with good magnetic properties based on methacrylic acid, styrene, divinylbenzene and manganese ferrites. In this work, it was synthesized compounds of manganese ferrites (MnFe2O4) scattered at copolymers of poly(methacrylic-acid-co-styrene-co-divinylbenzene) by suspension polymerization and semi-suspension polymerization. The following parameters were evaluated: contents of ferrites (1% and 5%) and concentration of suspension agent (0,2% and 5%). Moreover, it was evaluated synthesis containing organic phases (FO) pre-polymerized and mixture of the ferrite to the organic phase, previous to the stage of suspension polymerization. The copolymers were analyzed as the morphology optical microscopy; magnetic properties and distribution of ferrites at polymeric matrix VSM, SEM e EDS-X; thermal properties TGA; concentration of ferrites at polymeric matrix atomic absorption. Ferrites were evaluated as the crystallography XRD. The pre-polymerized samples and those which the ferrites were mixed at the organic phase, showed better magnetic properties and higher ferrite incorporation at polymeric matrix. No agglomeration was found in the copolymers synthesized by these routes and also the ferrite presence was minimized on the microsphere surface. All copolymers presented soft-magnetic properties as well as superparamagnetism. It was observed that raising the suspension agent concentration and reducing ferrite concentration resulted in the decrease of the microspheres diameters. TGA and DTG results showed that mixing ferrites at the organic phase rises the concentration of magnetic materials about 10%. However, only PM2550 sample, pre-polymerized and with ferrites mixed with the organic phase (5% ferrite and 0,2% PVA), presented potential application as know ferrites presence was not detected on microspheres surface, hence, magnetic materials will be protected by any external action
Books on the topic "Manganese ferrite"
Miyoshi, Kazuhisa. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textMiyoshi, Kazuhisa. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.
Find full textPigram, A. J. The use of novel fabrication routes for the production of manganese-zinc and nickel-zinc ferrites. Manchester: UMIST, 1993.
Find full textBook chapters on the topic "Manganese ferrite"
Del Sol Fernández, S., Oscar F. Odio, E. Ramón-Gallegos, and Edilso Reguera. "Hybrid Manganese Spinel Ferrite Nanostructures: Synthesis, Functionalization and Biomedical Applications." In Nanohybrids in Environmental & Biomedical Applications, 141–66. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351256841-6.
Full textWashburn, Cody, Jacob Jorne, and Santosh Kurinec. "Cathodic Electrophoretic Deposition of Ceramic Nano-Particle Manganese Zinc Ferrite." In Electrophoretic Deposition: Fundamentals and Applications II, 127–32. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-998-9.127.
Full textWang, Lin, Yan-hong Li, Jin-lin Lu, Wei Xu, and Hui-long Lin. "Thermal Decomposition Kinetics of Manganese Carbonate In the Process of MnZn Ferrite Preparation." In TMS 2016: 145thAnnual Meeting & Exhibition: Supplemental Proceedings, 335–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274896.ch40.
Full textWang, Lin, Yan-hong Li, Jin-lin LU, Wei XU, and Hui-long Lin. "Thermal Decomposition Kinetics of Manganese Carbonate in the Process of MnZn Ferrite Preparation." In TMS 2016 145th Annual Meeting & Exhibition, 335–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48254-5_40.
Full textSantos, A. A., and Ronaldo Barbosa. "Modeling Austenite-to-Ferrite Transformation Kinetics in Low-Carbon Manganese Steels during Continous Cooling." In THERMEC 2006, 4590–95. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4590.
Full textXia, Leige, Xinyu Li, Jianliang Zhang, Chaoquan Yao, Jian Guo, and Chao Zhang. "Effect of Manganese on the Formation Mechanisms of Silico-Ferrite of Calcium and Aluminum (SFCA)." In Characterization of Minerals, Metals, and Materials 2015, 549–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093404.ch68.
Full textXia, Leige, Xinyu Li, Jianliang Zhang, Chaoquan Yao, Jian Guo, and Chao Zhang. "Effect of Manganese on the Formation Mechanisms of Silico-Ferrite of Calcium and Aluminum (SFCA)." In Characterization of Minerals, Metals, and Materials 2015, 549–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48191-3_68.
Full textPottker, Walmir E., Patricia de la Presa, Mateus A. Gonçalves, Teodorico C. Ramalho, Antonio Hernando, and Felipe A. La Porta. "Nanocrystalline Spinel Manganese Ferrite MnFe2O4: Synthesis, Electronic Structure, and Evaluation of Their Magnetic Hyperthermia Applications." In Functional Properties of Advanced Engineering Materials and Biomolecules, 335–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62226-8_12.
Full textBalavijayalakshmi, J., and C. Annie Josphine. "Impact of Annealing on Structural and Magnetic Properties of Manganese Co-Doped Magnesium-Cobalt Ferrite Nanoparticles." In Springer Proceedings in Physics, 233–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44890-9_22.
Full textWang, Jia, Zijian Su, Manman Lu, Juan Wang, and Yuanbo Zhang. "Pb(II) Removal from Acidic Wastewater by Magnetic Manganese Ferrites Synthesized from Ferromanganese Ores." In The Minerals, Metals & Materials Series, 131–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36628-5_13.
Full textConference papers on the topic "Manganese ferrite"
Alvani, Carlo, Mariangela Bellusci, Aurelio La Barbera, Franco Padella, Marzia Pentimalli, Luca Seralessandri, and Francesca Varsano. "Reactive Pellets for Improved Solar Hydrogen Production Based on Sodium Manganese Ferrite Thermochemical Cycle." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54170.
Full textMUROI, M., J. AMIGHIAN, R. STREET, and P. G. McCORMICK. "SYNTHESIS OF ULTRAFINE MANGANESE-FERRITE POWDERS BY MECHANOCHEMICAL PROCESSING." In Proceedings of the First Regional Conference. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812793676_0144.
Full textFukunaga, Kazuhiro, Rikio Chijiiwa, Yoshiyuki Watanabe, Akihiko Kojima, Yoshihide Nagai, Nobuhiko Mamada, Toshihiko Adachi, et al. "Advanced Titanium Oxide Steel With Excellent HAZ Toughness for Offshore Structures." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20319.
Full textBoss, Alan F., Ingrid Wilke, and Antonio C. Migliano. "Optical and Dielectric Properties of Manganese Cobalt Ferrite at Terahertz Frequencies." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.lw2b.5.
Full textArba, Tika Alvianuri, Utari, and Budi Purnama. "Photocatalytic property of co-precipitated manganese substituted on cobalt ferrite nanoparticles." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS2020). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0030386.
Full textYashpreet and Bhupendra Chudasama. "Effect of annealing on structural and magnetic properties of manganese ferrite nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017142.
Full textKumar, Atul, Bharti, Satya Dev, Sardul Singh Dhayal, Rajesh Thakur, Rakesh Dhar, and Surender Duhan. "Effect of thermally evaporated manganese ferrite thin film on bacterial biofilm formation." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001803.
Full textHiratsuka, N., T. Miyazaki, K. Kakizaki, O. H. Kwon, and B. C. Soo. "Epitaxial growth of [111] oriented manganese zinc ferrite thin films their magnetic properties." In IEEE International Magnetics Conference. IEEE, 1999. http://dx.doi.org/10.1109/intmag.1999.837779.
Full textZhao, Hui, Xuehan Li, and Haitao Zhao. "Effect of Reaction Conditions on the Morphology and Properties of Manganese Zinc Ferrite." In 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME). IEEE, 2020. http://dx.doi.org/10.1109/icedme50972.2020.00121.
Full textPourkia, Navid, Pirooz Marashi, Rouzbeh Leylabi, Seyed Alireza Tabatabaei, and Hadi Torshizi. "The Effect of Weld Metal Manganese Content on the Microstructure, Mechanical Properties and Hot Crack Susceptibility of Helically Welded Linepipes." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64152.
Full textReports on the topic "Manganese ferrite"
Gentscheva, Galia, Paunka Vassileva, Nikolay Marinkov, Christina Tzvetkova, and Daniela Kovacheva. Investigation of the Possibility for Removal of Hexavalent Chromium Using Manganese Ferrite Nanoparticles. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.06.
Full textKoretsky, Carla. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108224.
Full text