Journal articles on the topic 'Manifolds (Mathematics) Nonlinear theories'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Manifolds (Mathematics) Nonlinear theories.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nigsch, E. A., and J. A. Vickers. "Nonlinear generalized functions on manifolds." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2244 (December 2020): 20200640. http://dx.doi.org/10.1098/rspa.2020.0640.
Full textAvramidi, Ivan G., and Giampiero Esposito. "Gauge Theories on Manifolds with Boundary." Communications in Mathematical Physics 200, no. 3 (February 1, 1999): 495–543. http://dx.doi.org/10.1007/s002200050539.
Full textDimofte, Tudor, Davide Gaiotto, and Sergei Gukov. "Gauge Theories Labelled by Three-Manifolds." Communications in Mathematical Physics 325, no. 2 (December 15, 2013): 367–419. http://dx.doi.org/10.1007/s00220-013-1863-2.
Full textWei, Shihsuh Walter. "The balance between existence and nonexistence theorems in differential geometry." Tamkang Journal of Mathematics 32, no. 1 (March 31, 2001): 61–88. http://dx.doi.org/10.5556/j.tkjm.32.2001.370.
Full textMonnier, Samuel. "Topological field theories on manifolds with Wu structures." Reviews in Mathematical Physics 29, no. 05 (April 12, 2017): 1750015. http://dx.doi.org/10.1142/s0129055x17500155.
Full textPark, Jae-Suk. "Semi-Classical Quantum Fields Theories and Frobenius Manifolds." Letters in Mathematical Physics 81, no. 1 (June 21, 2007): 41–59. http://dx.doi.org/10.1007/s11005-007-0165-z.
Full textCattaneo, Alberto S., Pavel Mnev, and Nicolai Reshetikhin. "Perturbative Quantum Gauge Theories on Manifolds with Boundary." Communications in Mathematical Physics 357, no. 2 (December 5, 2017): 631–730. http://dx.doi.org/10.1007/s00220-017-3031-6.
Full textSONG, YI, and STEPHEN P. BANKS. "DYNAMICAL SYSTEMS ON THREE MANIFOLDS PART II: THREE-MANIFOLDS, HEEGAARD SPLITTINGS AND THREE-DIMENSIONAL SYSTEMS." International Journal of Bifurcation and Chaos 17, no. 06 (June 2007): 2085–95. http://dx.doi.org/10.1142/s0218127407018233.
Full textWu, Siye. "Topological quantum field theories on manifolds with a boundary." Communications in Mathematical Physics 136, no. 1 (February 1991): 157–68. http://dx.doi.org/10.1007/bf02096795.
Full textDung, Nguyen Thac, Pham Duc Thoan, and Nguyen Dang Tuyen. "Liouville theorems for nonlinear elliptic equations on Riemannian manifolds." Journal of Mathematical Analysis and Applications 496, no. 1 (April 2021): 124803. http://dx.doi.org/10.1016/j.jmaa.2020.124803.
Full textKelnhofer, Gerald. "Abelian gauge theories on compact manifolds and the Gribov ambiguity." Journal of Mathematical Physics 49, no. 5 (May 2008): 052302. http://dx.doi.org/10.1063/1.2909197.
Full textBOI, LUCIANO. "IDEAS OF GEOMETRIZATION, GEOMETRIC INVARIANTS OF LOW-DIMENSIONAL MANIFOLDS, AND TOPOLOGICAL QUANTUM FIELD THEORIES." International Journal of Geometric Methods in Modern Physics 06, no. 05 (August 2009): 701–57. http://dx.doi.org/10.1142/s0219887809003783.
Full textDE WIT, B., and A. VAN PROEYEN. "HIDDEN SYMMETRIES, SPECIAL GEOMETRY AND QUATERNIONIC MANIFOLDS." International Journal of Modern Physics D 03, no. 01 (March 1994): 31–47. http://dx.doi.org/10.1142/s0218271894000058.
Full textLukas, Andre, and Challenger Mishra. "Discrete Symmetries of Complete Intersection Calabi–Yau Manifolds." Communications in Mathematical Physics 379, no. 3 (September 24, 2020): 847–65. http://dx.doi.org/10.1007/s00220-020-03838-6.
Full textEguchi, Tohru, Yuji Sugawara, and Satoshi Yamaguchi. "Supercoset CFT’s for String Theories on Non-compact Special Holonomy Manifolds." Annales Henri Poincaré 4, S1 (December 2003): 93–95. http://dx.doi.org/10.1007/s00023-003-0908-z.
Full textAref'eva, I. Ya, and I. V. Volovich. "Manifolds of constant negative curvature as vacuum solutions in Kaluza-Klein and superstring theories." Theoretical and Mathematical Physics 64, no. 2 (August 1985): 866–71. http://dx.doi.org/10.1007/bf01017969.
Full textMokhov, O. I. "Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds." Theoretical and Mathematical Physics 152, no. 2 (August 2007): 1183–90. http://dx.doi.org/10.1007/s11232-007-0101-5.
Full textFORGER, MICHAEL, CORNELIUS PAUFLER, and HARTMANN RÖMER. "THE POISSON BRACKET FOR POISSON FORMS IN MULTISYMPLECTIC FIELD THEORY." Reviews in Mathematical Physics 15, no. 07 (September 2003): 705–43. http://dx.doi.org/10.1142/s0129055x03001734.
Full textBonacina, Giuseppe, Maurizio Martellini, and Jeanette Nelson. "Generalized link-invariants on 3-manifolds ?h � [0, 1] from Chern-Simons gauge and gravity theories." Letters in Mathematical Physics 23, no. 4 (December 1991): 279–86. http://dx.doi.org/10.1007/bf00398825.
Full textGliklikh, Yuri E., and Andrei V. Obukhovskii. "On a two-point boundary value problem for second-order differential inclusions on Riemannian manifolds." Abstract and Applied Analysis 2003, no. 10 (2003): 591–600. http://dx.doi.org/10.1155/s1085337503209027.
Full textRICHARD, S., and R. TIEDRA DE ALDECOA. "SPECTRAL ANALYSIS AND TIME-DEPENDENT SCATTERING THEORY ON MANIFOLDS WITH ASYMPTOTICALLY CYLINDRICAL ENDS." Reviews in Mathematical Physics 25, no. 02 (March 2013): 1350003. http://dx.doi.org/10.1142/s0129055x13500037.
Full textZeng, Fanqi. "Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds." AIMS Mathematics 6, no. 10 (2021): 10506–22. http://dx.doi.org/10.3934/math.2021610.
Full textZHU, Xiaobao. "Gradient estimates and liouville theorems for linear and nonlinear parabolic equations on riemannian manifolds." Acta Mathematica Scientia 36, no. 2 (March 2016): 514–26. http://dx.doi.org/10.1016/s0252-9602(16)30017-0.
Full textWang, Wen. "Complement of gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds." Mathematical Methods in the Applied Sciences 40, no. 6 (August 4, 2016): 2078–83. http://dx.doi.org/10.1002/mma.4121.
Full textJost, Jürgen, and Shing-Tung Yau. "A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry." Acta Mathematica 170, no. 2 (1993): 221–54. http://dx.doi.org/10.1007/bf02392786.
Full textKlyachin, Aleksey, and Vladimir Klyachin. "Research in the Field of Geometric Analysis at Volgograd State University." Mathematical Physics and Computer Simulation, no. 2 (August 2020): 5–21. http://dx.doi.org/10.15688/mpcm.jvolsu.2020.2.1.
Full textSaberi, Ingmar, and Brian R. Williams. "Twisted characters and holomorphic symmetries." Letters in Mathematical Physics 110, no. 10 (August 3, 2020): 2779–853. http://dx.doi.org/10.1007/s11005-020-01319-4.
Full textRejzner, Kasia, and Michele Schiavina. "Asymptotic Symmetries in the BV-BFV Formalism." Communications in Mathematical Physics 385, no. 2 (April 5, 2021): 1083–132. http://dx.doi.org/10.1007/s00220-021-04061-7.
Full textJost, Jürgen, and Shing-Tung Yau. "Erratum to: A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry." Acta Mathematica 173, no. 2 (1994): 307. http://dx.doi.org/10.1007/bf02398438.
Full textHuang, Wentao, Chengcheng Cao, and Dongping He. "Quasi-Periodic Motion and Hopf Bifurcation of a Two-Dimensional Aeroelastic Airfoil System in Supersonic Flow." International Journal of Bifurcation and Chaos 31, no. 02 (February 2021): 2150018. http://dx.doi.org/10.1142/s0218127421500188.
Full textFeehan, Paul M. N., and Manousos Maridakis. "Łojasiewicz–Simon gradient inequalities for analytic and Morse–Bott functions on Banach spaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 765 (August 1, 2020): 35–67. http://dx.doi.org/10.1515/crelle-2019-0029.
Full textLazaroiu, C. I., and C. S. Shahbazi. "Generalized Einstein-Scalar-Maxwell theories and locally geometric U-folds." Reviews in Mathematical Physics 30, no. 05 (May 31, 2018): 1850012. http://dx.doi.org/10.1142/s0129055x18500125.
Full textBranding, Volker. "Nonlinear Dirac Equations, Monotonicity Formulas and Liouville Theorems." Communications in Mathematical Physics 372, no. 3 (November 13, 2019): 733–67. http://dx.doi.org/10.1007/s00220-019-03608-z.
Full textCaccese, E. "On some involution theorems on twofold Poisson manifolds." Letters in Mathematical Physics 15, no. 3 (April 1988): 193–200. http://dx.doi.org/10.1007/bf00398587.
Full textDing, Lu. "Positive mass theorems for higher dimensional Lorentzian manifolds." Journal of Mathematical Physics 49, no. 2 (February 2008): 022504. http://dx.doi.org/10.1063/1.2830803.
Full textLuskin, Mitchell, and George R. Sell. "Approximation theories for inertial manifolds." ESAIM: Mathematical Modelling and Numerical Analysis 23, no. 3 (1989): 445–61. http://dx.doi.org/10.1051/m2an/1989230304451.
Full textGuddat, J., H. Th Jongen, and J. Rueckmann. "On stability and stationary points in nonlinear optimization." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 28, no. 1 (July 1986): 36–56. http://dx.doi.org/10.1017/s033427000000518x.
Full textRichard, Edouard, and Jean C. Vivalda. "Mathematical Analysis of Stability and Drift Behavior of Hydraulic Cylinders Driven by a Servovalve." Journal of Dynamic Systems, Measurement, and Control 124, no. 1 (May 18, 2001): 206–13. http://dx.doi.org/10.1115/1.1433482.
Full textWeinberger, Shmuel. "Fixed-point theories on noncompact manifolds." Journal of Fixed Point Theory and Applications 6, no. 1 (September 7, 2009): 15–25. http://dx.doi.org/10.1007/s11784-009-0112-y.
Full textCao, Yalong, and Naichung Conan Leung. "Orientability for gauge theories on Calabi–Yau manifolds." Advances in Mathematics 314 (July 2017): 48–70. http://dx.doi.org/10.1016/j.aim.2017.04.030.
Full textOhta, Shin-ichi. "Nonlinear geometric analysis on Finsler manifolds." European Journal of Mathematics 3, no. 4 (May 1, 2017): 916–52. http://dx.doi.org/10.1007/s40879-017-0143-7.
Full textYamada, Shinichi, and Yoshiharu Kato. "Reflection principles for synthetic theories of smooth manifolds." Nonlinear Analysis: Theory, Methods & Applications 30, no. 8 (December 1997): 5135–46. http://dx.doi.org/10.1016/s0362-546x(96)00153-8.
Full textNG, S. K., and P. E. CAINES. "Nonlinear Filtering in Rieznnnnifln Manifolds." IMA Journal of Mathematical Control and Information 2, no. 1 (1985): 25–36. http://dx.doi.org/10.1093/imamci/2.1.25.
Full textIwaniec, T., C. Scott, and B. Stroffolini. "Nonlinear Hodge theory on manifolds with boundary." Annali di Matematica Pura ed Applicata 177, no. 1 (December 1999): 37–115. http://dx.doi.org/10.1007/bf02505905.
Full textBugajska, Krystyna. "Gauge theories on open spin space-time manifolds." International Journal of Theoretical Physics 26, no. 7 (July 1987): 637–47. http://dx.doi.org/10.1007/bf00670574.
Full textByeon, Jaeyoung, and Junsang Park. "Singularly perturbed nonlinear elliptic problems on manifolds." Calculus of Variations and Partial Differential Equations 24, no. 4 (October 18, 2005): 459–77. http://dx.doi.org/10.1007/s00526-005-0339-4.
Full textFORGER, MICHAEL, and LEANDRO G. GOMES. "MULTISYMPLECTIC AND POLYSYMPLECTIC STRUCTURES ON FIBER BUNDLES." Reviews in Mathematical Physics 25, no. 09 (October 2013): 1350018. http://dx.doi.org/10.1142/s0129055x13500189.
Full textFan, Jinyan. "Duality theories in nonlinear semidefinite programming." Applied Mathematics Letters 18, no. 9 (September 2005): 1068–73. http://dx.doi.org/10.1016/j.aml.2004.09.017.
Full textFomenko, A. T., and N. V. Krylov. "Nonlinear analysis on Manifolds: Monge-Amp�re equations." Acta Applicandae Mathematicae 8, no. 2 (February 1987): 206–10. http://dx.doi.org/10.1007/bf00046714.
Full textFUJII, KAZUYUKI, HIROSHI OIKE, and TATSUO SUZUKI. "UNIVERSAL YANG–MILLS ACTION ON FOUR-DIMENSIONAL MANIFOLDS." International Journal of Geometric Methods in Modern Physics 03, no. 07 (November 2006): 1331–40. http://dx.doi.org/10.1142/s0219887806001740.
Full text